
BSc (Hons) Computing and Information Systems (External)

CIS226

Software Engineering, Algorithm

Design and Analysis Volume I

Subject guide

Written by Tim Blackwell, Department of Computing, Goldsmiths College, University of

London.

Published 2006

Copyright c© University of London Press 2006

Printed by Central Printing Service, The University of London

Publisher:

University of London Press
Senate House

Malet Street

London
WC1E 7HU

All rights reserved. No part of this work may be reproduced in any
form, or by any means, without permission in writing from the

publisher. This material is not licensed for resale.

Contents

Introduction iii

I Principles 1

1 Software Engineering 3

1.1 What is a good system? 3

1.2 The problem . 4

1.3 Building systems with objects 5

1.4 OO design . 7

1.5 Exercises . 9

1.6 Summary . 9

2 Development Process and Modelling 11

2.1 Iterative and waterfall processes 11

2.2 Design and modelling 12

2.3 A unified modelling language: UML 13

2.4 Fitting UML into a process 14

2.5 Exercises . 15

2.6 Summary . 16

II UML 17

3 Use Cases 19

3.1 Requirements capture 19

3.2 The basic technique 20

3.3 When to use use cases 21

3.4 Exercises . 21

3.5 Summary . 21

4 Class Diagrams: The basic technique 23

4.1 Class identification . 23

4.2 Properties . 24

4.3 Properties as code . 25

4.4 Adding more information to the class model 26

4.5 When to use class diagrams 27

4.6 Exercises . 27

4.7 Summary . 27

5 Sequence Diagrams 29

5.1 The basic technique 29

5.2 Advanced techniques 30

5.3 When to use sequence diagrams 31

5.4 Exercises . 31

5.5 Summary . 31

6 Class Diagrams: Advanced techniques 33

6.1 Responsibilities and collaborators 33

6.2 Static operations and attributes 34

6.3 Aggregation and composition 34

6.4 Interfaces and abstract classes 34

i

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

6.5 Classification . 35

6.6 Association classes and visibility 36
6.7 When to use advanced concepts 36

6.8 Exercises . 37

6.9 Summary . 37

7 State Machine Diagrams 39

7.1 The basic technique 39

7.2 Implementing state diagrams 40
7.3 When to use state diagrams 41

7.4 Exercises . 41
7.5 Summary . 41

8 Activity Diagrams 43

8.1 The basic technique 43
8.2 Advanced techniques 44

8.3 When to use activity diagrams 45

8.4 Exercises . 46
8.5 Summary . 46

9 Summary of UML modelling techniques 47

III Quality 49

10 Product Quality 51

10.1 Verifying software . 51
10.2 Validating software . 52

10.3 Testing . 52
10.4 Exercises . 53

10.5 Summary . 54

11 Process Quality 55
11.1 Project management 55

11.2 Project planning . 56

11.3 Exercises . 56
11.4 Summary . 57

IV Resources 59

12 Analysis and design of a personal 0rganiser 61

12.1 Scenarios . 61

12.2 Use cases . 61
12.3 Class Identification . 62

12.4 UML diagrams . 62

13 Sample examination paper 69

13.1 Advice . 69

13.2 Questions . 69
13.3 Answers . 71

ii

Introduction

A while ago I decided to build a small tool shed. I took a trip to the
local construction yard and bought some wood. Back home, I built a

wooden frame for my shed, sawing the bits of wood as I needed

them. I then nailed sheets of wood to the frame. I left a space for a
window - but I had forgotten to buy any glass at the yard, so I

returned there. I discovered that the yard has ready-made windows,
and they looked rather good, so I bought one. Returning home, I

found that the space was too small for the window unit I had just

bought, but this was not a problem because I could easily saw some
wood away from the wall panel. And so I continued with my

haphazard construction, returning to the yard from time to time to

buy roof felt, a door, hinges etc. Finally my shed was finished and it
is fine. In fact it was so good and I was so proud of my achievement

that I commenced another, larger construction project. I really did
need a bigger kitchen.

After many trips to the construction yard to replace ill-fitting pipes
and window frames, after knocking down a newly-built wall

because I had forgotten to install any plumbing, and after countless

other minor re-starts, the kitchen extension was finished, and it was
OK, even though it had taken me months to complete. My next

project was a complete new house, built from scratch in a

neighbouring field.

You know the ending to this domestic tale! My construction
techniques just could not scale to this big project. The complexity of

the supply of materials (bricks, tiles, concrete, plaster, wood...), the

relationship between the various systems (heating, drainage,
electric, gas) and the ramifications of late design change (perhaps

the stairs should really be to the right of the hall - but then the

bathroom needs to be moved to the left of the landing - now this
means re-routing the water pipes - ...) meant that, if I were lucky,

this project might actually have succeeded, but I would certainly
overrun and at a very high cost. And would it be the house I actually

wanted?

After some calls I assembled a project team. An architect designed

the house, producing several plans of her design according to my

initial brief. Several rather artistic drawings showed the house from
the outside so I was able to judge the overall physical design. Other

more formal plans of the interior layout, so I could imagine walking

around inside and visiting the various rooms. At this stage I changed
a few things. Still other plans were made for the electrician and the

plumber detailing where the pipes and cables should be fitted.
There was even a special plan of the kitchen showing in detail the

work-surfaces and appliances. A surveyor was employed to organise

the supply of materials, builders were employed to perform the
construction, and engineers checked the work at various stages. A

manager oversaw the whole process.

iii

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

Learning activity

Extract from this tale some general principles of large-scale construction.

Comments on the activity

Large scale construction requires: analysis of the project so that the right thing is built;

early consultation with the client; plans of the project from various perspectives and

levels of analysis; inclusion of pre-built components into the design; management to

ensure that parts of the project are built in the correct order; builders; people to check

the construction, both for accuracy, and for quality.

All of these principles apply to software projects. Here the

constructed artefact is not tangible, but is a logical object. A large
piece of computer code is very intricate, far too complex for any

person to understand. Additional complexity arises from interaction
between the software and an uncertain physical world, and in

understanding the changing needs of the client. Software, then,

needs to be engineered.

This course is strategically placed at the midpoint of your studies.

You will already have studied a computer language at an
introductory level, corresponding to rudimentary do-it-yourself

skills. Later in your studies you will be developing a larger software

project and this will require a more systematic and scalable
approach. You will not longer be able to sit at the computer and

type your programme code in a trial and error fashion. As the
programme grows in size you will drown in a sea of complexity.

Your software project will have to be designed, you must become a

software architect. It is the purpose of this course to provide you
with the skills and insights to bridge the gap between small scale

programming and large commercial applications.

The complexity of software is modelled, rather like an architect

models a building, with the use of diagrams. We shall use a

technique that has become an industry standard: the Unified
Modelling Language (UML). Proficiency at UML, along with the

computer languages you have studied, will be amongst the main
transferable skills you will acquire throughout your entire degree

programme.

This subject guide, which covers one half of CIS226, provides an

introduction to software engineering. Part I of the guide begins with

a look at some principles of good software design and how these
principles fit into a particular developmental process. The main

topic of this course unit, covered in Part II, examines how to analyse
and design software using the Unified Modelling Language (UML).

Part III discusses quality assurance, both of the product and in the

process. Part IV shows a specimen software project and examination.

There are two software projects in this guide: a Personal Organiser

and Space Game. Each chapter of part II ends with an exercise for
each project. These exercises cover the analysis and design stages of

the software life cycle. Algorithm design is an important part of the

implementation phase of a software project, and this is covered in
the second half of this course unit. There will not be any

implementation of Personal Organiser or Space Game. The final

iv

stages of a software project are testing and maintenance, which, in

the absence of actual code, can only be studied theoretically in this
course. Later in your studies you will undertake a complete software

project and you will find the ideas and skills of CIS226 invaluable

for the successful completion of this project.

Here are the main topics of this course, arranged to correspond to

the parts of this guide:

I Principles

(a) the role of design and modelling in software development

(b) software development process

II UML

(a) use cases

(b) class, sequence, state machine and activity diagrams

(c) objects and links

(d) compositions, aggregations and dependencies

(e) other UML diagrams and concepts

III Quality

(a) Product quality: verification, validation and testing

(b) Process quality: project management and planning

How to use this subject guide

This subject guide is not a self-contained account, but is a

companion to the course texts UML Distilled by Martin Fowler and

Using UML by Perdita Stevens and Rob Pooley. It is essential that you

obtain these books. This guide is structured in the form of selected

readings from these texts. Learning activities will test your

understanding of the main points of each reading. You are strongly
advised to attempt these activities as a way of monitoring your own

progress. There are more exercises at the end of each chapter and a
sample examination paper at the end of the guide.

Each chapter begins with a general statement of the essential
reading for this part, and throughout the text you will find specific

instructions on what to read. It is important that you read the

relevant sections of the course texts when instructed to because text
subsequent to a reading will only make sense in the context of the

reading. The reading will be cited on the following format:

Read UUML/UMLD, Chapter x, heading [omit]

where UUML/UMLD are the title initials of the course texts, x is the
relevant chapter (identical to the chapter(s) of the essential reading)

and heading is the chapter section for this directed reading. Each
chapter of either course text begins with a short introduction which

does not have a section heading and is denoted introduction. You

are expected to read all the subsections contained in the section you
have been directed to. Some directions include an omit guard which

tells you to ignore certain subsections or boxes. British English is

used throughout this guide, except in quotations and section
headings for the set readings, where the original punctuation and

spelling (which might be American English) is used.

v

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

There is an additional list of books which expand on a number of

topics and you are advised to deepen your understanding by
referring to these additional texts where directed.

Readings

Here are the details of the course texts and additional materials:

Essential

1. UML Distilled (third edition), Martin Fowler, Addison-Wesley,
2004

2. Using UML (updated edition), Perdita Stevens with Rob

Pooley, Pearson Education Limited 2000

Supplementary

1. Project-based Software Engineering, Evelyn Stiller and Cathie
Leblanc, Addison Wesley, 2002

2. Software Engineering (fifth edition), Roger Pressman,

McGraw-Hill, 2000

3. The Mythical Man-Month (anniversary edition), Frederick

Brooks, Addison Wesley 1995

4. Effective Java, Joshua Bloch, Addison Wesley 2001

Aims and objectives

At the end of this course you will be able to

1. Explain the role of software development in the software

life-cycle

2. Produce static and behavioural models of software programs

3. Specify and verify software systems

4. Decompose problems and develop software architectures

5. Implement software models in a structured and efficient way.

These are the major objectives of this course unit. Each chapter also

lists a number of learning outcomes. The learning outcomes break
the objectives into manageable tasks.

The examination

You will be assessed on your understanding of objectives 1 - 4.

(Objective 5 will be assessed at a later stage of your studies when
you will be asked to implement a particular project.) The method of

assessment for the complete course unit CIS226 will be one unseen

written exam paper of 3 hours (85 per cent) and four equally
weighted assignments (15 per cent). Software Engineering (the

subject of this guide) will comprise one half of the overall mark for
CIS226. There is a sample examination paper for Software

Engineering and advice on exam preparation in the final chapter of

this guide.

vi

Part I

Principles

1

Chapter 1

Software Engineering

Essential reading

Using UML Chapters 1 and 2

All large-scale construction projects follow five main phases of

activity: analysis, design, construction, testing and maintenance.

Software projects are no exception. Software engineering is
concerned both with the phases themselves and also with how each

phase fits into the overall development of the project (in software
engineering-speak, process).

A large software project runs like this: software architects draw up
plans (models) at various levels (abstractions) of analysis. The

models facilitate further analysis and design. Models also serve as

construction guides during the implementation phase and as
documentation of the end result. To facilitate design and

implementation, ready-made units (components) are used wherever

possible. A project manager oversees the whole process.

A major aspect of software engineering is therefore concerned with

the development process. However, in order to judge how well our
software is engineered, we need to have an idea of software quality.

In most domains of engineering, we understand fairly well what a
successful construction is, and how to achieve it. For example,

bridges should not fall down (and they rarely do), and there are

accepted design principles, construction techniques and quality
assurance assessments. The situation with engineered software is

not so clear, however.

This chapter begins by considering what a high quality software

system should be like and outlines some important design
principles. Software design with objects is an important

manifestation of these principles and the important aspects of this

paradigm are explained in the remaining sections of this chapter.

1.1 What is a good system?

Read UUML, Chapter 1, What is a good system?.

Stevens and Pooley, the authors of UUML point out that a good

system is surely one that meets its users’ needs. They list five

desirable attributes (namely: usability, reliability, flexibility,
affordability and availability) of a good system and consider how

well current systems satisfy these criteria.

3

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

Although successful systems do exist, there are a number of

spectacular failures. These are informally known as software horror
stories and a web search will reveal many sources of information.

Remarkably, many large projects are cancelled, and of those that do

survive, most will significantly overrun their initial planning period.
Three quarters of large projects that are actually completed will

ultimately fail!

Learning activity

Suppose that you are managing a large software project which is slipping behind

schedule. Should you employ more people to work on the project? Explain your

answer.

Comments on the activity

The surprising answer to this question is that increasing the size of the team will not

necessarily have any benefit. The reason for this is that as the team increases in size,

more and more of the project’s costs and time are consumed in the overhead of

inter-person communication. In fact, the time needed to ensure that all the information

is available to keep the work consistent can actually extend a project. This idea is

expanded at some length in Fred Brooks’ The Mythical Man Month.

1.2 The problem

Read UUML, Chapter 1, What are good systems like? [omit

Architecture and components, Component-based design: pluggability]

What is behind this gloomy state of affairs alluded to above? Quite

simply, software is extremely complex: there is a limit to how much
we can understand at one time.

If your only experience of programming has been an introductory
course on Java, you will have been the sole author of your

programmes and should (in principle) have been able to understand
everything about your code. At first you probably just sat in front of

a screen and typed code directly into an editor, rather like me and

the shed. However, as an application grows in size, this
unstructured approach becomes increasingly hard to sustain - the

programme becomes a single monolithic unit and is just too

complex and difficult to develop and maintain. It seems that some
time must be spent planning how you will code your solution to a

software problem. Then you will implement your solution. Good
quality systems are surely designed.

A number of fundamental design concepts are broadly agreed upon.
See Software Engineering by R. Pressman, sections 13.4 and 13.5 for

a full discussion. Above all, the division of software into smaller

modules is universally accepted as the main way to control
complexity. There is nothing special about this idea; it is the way

that we seek to understand anything. For example, science works by

modularising the world in a process called reductionism. There is a
hierarchy of software modules: from methods to classes to packages

to subsystems. Note however that an excessive modularisation of a

4

Building systems with objects

system could actually increase overall complexity due to the

overhead of integrating very many modules.

Abstraction is the thinning away of detail from a problem domain,

leaving a more general representation. At the highest level of
abstraction, a software solution is provided in broad terms, using

the language of the problem domain. And at the lowest level, the

language is the programming code itself. In between there are many
levels. The software architect will abstract and model the system in

various ways in order to focus on the essential programme elements.

A cohesive module performs a single task and requires little

interaction with other modules in order to accomplish this. For
example, it is a common dictum that methods should only do one

thing i.e. return or alter a single value with no other side-effects.

Similarly, a cohesive class will represent a single concept, or type of
real-life object.

Coupling refers to the connectivity between modules, and should be
kept to a minimum if the software is to be understood. The

elimination of the notorious go to statement has done much to

reduce ”spaghetti code” and the complexity of a programming unit.
There is no such check on modular spaghetti networks however, and

software designers must guard against high coupling.

It is generally agreed that all modules should present a simple,

public interface. The interface defines what tasks the modules can
perform, but not how the modules may accomplish this task. These

details are private to the module; a client of the module need never

know them. Each module in a ’good’ system is only linked to a few
others and every client is not able to know more about the module

than is contained in the interface. This is the important principle of

encapsulation.

A module with high cohesion and low coupling can be re-used,
either in later systems, or in other modules of the present system.

The object orientated paradigm supports re-usable modules as we

will later explain. High cohesion and low coupling also mean that
modules can be replaced without too much disruption to the system

as a whole. They are pluggable. Re-usable, replaceable pluggable

modules function rather like component parts in a mechanism. That
is why they are called software components.

Learning activity

Write, in your own words, a paragraph on what a good system should be like.

1.3 Building systems with objects

Read UUML, Chapter 2, What is an object?.

This reading relates programming with objects to the reusable,
replaceable modules which make good components and ultimately,

we hope, a good system.

5

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

The fundamental module of object orientated (OO) programming

languages is (unsurprisingly) the object. Here we summarise, from a
software engineering perspective, some properties of objects, and

introduce a small amount of the unified modelling language (UML).

Objects are programming modules that group related data items

together. A set of objects with a similar role in a system is grouped

into a class. Blocks of code which perform common operations on
this data are also grouped together and are maintained by the class.

Objects are supposed to be the software analogue, or representation,

of an actual object or of a concept. In this way, we hope to map the
tangible real world of things onto the logical, abstract world of

computer code.

The class is an object factory, responsible for making however many

objects the system requires. (An object can be referred to as an
instance of a class.) The state of an object is the value of all the

variables in that object and the behaviour of an object is the way

that an object responds to messages. In the OO world, a system is a
collection of objects which are sending messages to each other in

order to accomplish a certain task.

An example of an object message is:

resetTime(newTime: Time)

This message is written in UML notation. Here, newTime is an object
of type Time i.e. an instance of the Time class. Notice that the

message resetTime(newTime: Time) is language independent;

we just expect that a myClock object will accept and respond to this
message. In Java, we would ensure that an Time object would

accept this message by implementing a method in TimeTime with

the signature:

public void resetTime(Time newTime)

The class of an object also defines its interface. In the Clock

example, myClock is an object of class Clock. Clock’s public

interface might specify that each Clock object should provide
reset-time and report-time operations. A Clock object will also have

a private time attribute. Private attributes are only available to the
object itself: clients’ of Clock cannot access time directly. Instead,

they can only ask the time by sending the message report-time to a

Clock object. This is known as data-hiding. In contrast, a public
attribute or operation is accessible by any client. Hidden-data is

often accessed using specific accessor (getters and setters) methods.

Objects from the same class have the same interface. The public and
private interface to Clock might be:

-time : Time

+ reportTime() : String

+ resetTime(newTime: Time)

where the symbols + and - refer to public and private visibility.

Learning activity

1. What is an object’s interface? What is the difference between a public and a

private interface?

6

OO design

2. Why bother grouping similar objects together into a class?

3. Write, in pseudo-Java, a class outline for Clock based on its declared interface.

Comments on the activity

1. See section UUML, What is an object [subsection: Interfaces].

2. See the digression UUML, What is an object? [subsection: Digression: why have

classes?]. A basic answer to the problem of maintaining consistent copies of any

software artefact is to structure code so that no copies are necessary! For

example, all my Clock objects need to be reset. It’s far easier to maintain (i.e.

revise and re-use) a single reset method in the class myClock. A further and

more technical point is that a class can be thought of as a type, and the language

compiler can spot possible errors when type-checking.

3. The pseudo-Java code, shown below, is a bridge between the design and the

implementation phases of a software project.

class Clock

private Time time

public String reportTime()

return time.toString()

public void resetTime(Time newTime)

time = newTime

Read UUML, Chapter 2, How does this relate to the aims of the

previous chapter?.

The previous chapter proposed that reusable, replaceable,

component-like modules will lead to reduced development time and
cost, ease of maintenance and greater reliability. OO is expected to

deliver on these counts, but objects themselves do not make good

modules, because there can be many similar objects in a system, and
the requirement to ensure consistency between them would be a

very high price to pay. A house is made from many bricks but a
single Brick class provides the necessary generalisation.

Another benefit of OO is that it is natural to objectify the world, so
that an OO system can provide a better match between abstract

computer code and the problem domain of the customer. An object

model can help engineers’ in capturing requirements, following
changes in user requirements and allowing for more naturally

interacting systems.

OO, of course is not the only possible approach, but it is one that

takes modularity, encapsulation and abstraction as fundamental.

1.4 OO design

Read UUML, Chapter 2, Inheritance.

Inheritance, polymorphism and dynamic binding are the three

features that make OO special.

7

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

Inheritance is an important concept in OO design and you should

make sure that you understand the explanations given in this
reading. Notice in particular how a subclass can inherit attributes

and operations from its superclass, a subclass can add extra

attributes and operations, and a subclass may override some
superclass methods. (Less usefully, a subclass may also shadow

superclass variables.)

Apart from the direct advantage of code re-use, inheritance implies

another defining feature of the OO paradigm. A subclass object can

be freely substituted for its superclass parent. This means that an
object can have any one of several types. The ability of an entity to

exist in different forms is called polymorphism.

Since methods may be overridden in sub-classes, what code should

be executed as the result of some message? For example, a
Lecturer class can be sub-classed by a DirectorOfStudies class

with the overridden method canDo(Duty duty). In the following

pseudo-code

for each o in lecturers

o.canDo(seminarOrganisation)

lecturers is a list of Lecturer objects, and includes a
DirectorOfStudies object, o is a specific object selected from this

list and canDo(seminarOrganiisation: Duty) is an operation

on Lecturer objects. Note also the dot notation signifies message
sending: o is the recipient of the message cando(

seminarOrganisation). When the program execution reaches the

DirectorOfStudies object, the overriden canDo method is invoked,
as we would expect. The runtime selection of the correct method

due to a specific message is known as dynamic binding.

Learning activity

Inheritance clearly favours code re-use, and it would therefore appear to be a desirable

feature of OO. Do you think that inheritance leads to greater or less encapsulation?

Comments on the activity

Item 14 of Effective Java by Joshua Bloch warns against inheritance across package

boundaries. A subclass depends on the implementation details of its superclass,

clearly in conflict with the principle of encapsulation. Composition is a better solution -

we shall return to this in a later chapter.

Read UUML, Chapter 2, Polymorphism and dynamic binding.

Clearly, polymorphism promotes code re-use. But polymorphism

also makes code more flexible. For example, the Java classes Vector

and ArrayList both implement the Java interface List. Remember
that an interface, in general, defines what tasks a module can do,

but not how it may do it. In Java, an interface type is a

programming implementation of this general notion: Vector and
ArrayList implement certain methods which are specified by the

List definition. Hence they share the same public interface.

8

Summary

Furthermore, an interface defines a type which all implementing

classes share. For example, wherever a Vector is instantiated

Vector subscribers = new Vector();

we can use a List object:

List subscribers = new Vector();

and a Vector instance method such as add(Object o) will still

work:

subscribers.add(newSubscriber);

This is more flexible because we can later switch implementations

List subscribers = new ArrayList()

and all the surrounding code will still work. Item 34 of Effective Java

explains this point in some more detail.

1.5 Exercises

1. Would individual objects make good modules?

2. Supporters of OO claim that a major benefit of this paradigm is

that it is inherently natural to look at the world in terms of
objects. Why should this be beneficial for software design?

3. Suppose that OO enables us to build a good system. How much
of this is due to the intrinsic nature of OO techniques?

Answers

1. No. See UUML, Chapter 2, How does this relate to the aims of the

previous chapter? [first three paragraphs].

2. The short answer is that the system can better match the users’

model of the world. But you should try to understand why
software architects consider this to be desirable.

3. If OO succeeds, it is because this paradigm takes modularity,
encapsulation and abstraction as fundamental.

1.6 Summary

After studying this chapter you should be able to

state what a high quality software system should be like and

comment on to what extent we have such systems

state the basic problem faced by software developers

list and explain the fundamental design concepts of software

engineering (modularity, abstraction, high cohesion, low

coupling, simple public interfaces, encapsulation, components)

explain what software objects are, and how they communicate

use UML to specify a class interface

translate object messages into Java methods, and write a class

skeleton based on a declared interface

9

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

list and explain the three special features of OO (inheritance,

polymorphism, dynamic binding)

10

Chapter 2

Development Process and Modelling

Essential reading

UML Distilled, Chapters 1-2

Using UML, Chapter 4

Additional reading

R. Pressman, Software Engineering, a Practitioner’s Approach, Chapter 2

The first chapter argued by analogy that software, like any other

engineering project, proceeds by phases of development. The phases
fit together into a process. In this chapter we consider the

development process in more detail. We also look again at the

fundamental problem of software systems - the intangibility and
complexity of computer code. Good design, we have discovered, is

modular. But how do we arrive at these modules? We can’t play
with a lump of plasticine or sketch pictures in order to brainstorm

new ideas. However, the system must be modelled in some way. We

introduce software modelling languages and the chapter finishes by
demonstrating how the most prevalent modelling language, UML,

integrates back into the developmental process.

2.1 Iterative and waterfall processes

Read UMLD, Chapter 2, Iterative and Waterfall Process.

The iterative and waterfall methods are the two major categories of

software development processes. Both methods agree that the

process must be subdivided into phases. The waterfall emphasises
discrete activities that must be completed sequentially. And just like

a real waterfall, back flow is impossible (or at least exceptional).
Iterative techniques break the project down into chunks of

functionality, called iterations. Each iteration is a complete life-cycle:

analysis, design, implementation and testing. Each iteration outputs
a system of production quality, even if it is not actually released at

this stage. Time boxing forces an iteration to be of fixed duration,

even at the expense of slipping functionality. Generally speaking it is
better to slip a function rather than a date because the team can

then learn just what the most important functional requirements
actually are.

11

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

Learning activity

Which process is recommended by the OO community? Why is this?

Comments on the activity

See UMLD, Chapter 2, Iterative and Waterfall Processes [last half of this section].

(Martin Fowler, the author of UMLD recommends "You should use iterative

development only on those projects that you wish to!")

2.2 Design and modelling

Read UUML, Chapter 4, Defining terms [omit: Process and Quality].

As we have mentioned before, a model is an abstract representation

of a specification, a design or a system. The model itself is usually
represented visually, as a diagram, but can be textual. The model is

precise according to the implicit point of view. Room plans, wiring

diagrams, elevations and other architectural plans strip away
unnecessary detail in order to focus more clearly on what they are

representing. The modelling language has syntax and semantics,

just as a natural (spoken) language does. The unified modelling
language, UML, is quickly becoming the lingua franca of software

architects. One reason for this is that the language is very flexible
and is not tied to a particular process.

Learning activity

What are the attributes of an ideal modelling language?

Comments on the activity

A modelling language should be expressive, easy to use, unambiguous, supported by

tools and widely used - see the list of points in UUML, Chapter 4, Defining terms

[subsection: Why a unified modelling language?].

Read UUML, Chapter 4, system, design, model, diagram.

The developmental process will produce (we hope) a collection of

programmes which work in an appropriate environment to fulfil the

users’ needs. The architecture of this system abstracts away many
details and embodies just how the system should be built.

The plans for a house do not include each brick, each floorboard and
every electrical socket, but they do show the relative positions of the

walls, floors and ceilings, the electrical wiring, the landscaping of

the garden...There are many plans, each one is incomplete in itself,
but taken together they describe the project at just the right level of

detail for the builders, electricians, joiners and landscape gardeners.

12

A unified modelling language: UML

Plans are roughly analogous to models in software engineering.

Many models are needed even with a simple design; it is impossible
that a single diagram can capture every design aspect. There are

three groupings of software models, a use case model, a static or

structural model and a dynamic or behavioural model. A building
plan may be drawn from different perspectives. Similarly, four

software ”views” have been suggested: logical, process,

developmental and physical. A design requires several models, and
each model might require several diagrams from various views, and

all of these must be consistent.

We are now ready to begin our study of UML.

2.3 A unified modelling language: UML

Read UMLD, Chapter 1, What Is the UML?.

The fundamental imperative behind all graphical techniques is that
programme code is not at a high enough abstraction to promote

meaningful discussions about design. UML is a family of graphical
notations, unified by a single meta-model. These notations help in

describing and designing OO software. UML is an open standard,

controlled by the Object Management Group, and is a unification of
many pre-existing OO graphical techniques.

Read UMLD, Chapter 1, Ways of using UML [omit Model Driven

Architecture and Executable UML].

This reading suggests that UML can be used in different ways. This
is because people use older graphical modelling languages in

different ways, and that legacy has passed to the newer, unified
language. The three uses or modes outlined are sketching,

blueprinting and programming. One criticism of the blueprinting is

that it takes too much time to prepare and that textual languages
are already very effective for most programming tasks. In

programming mode, UML becomes the source code, and this mode

demands very sophisticated tools.

Learning activity

Write a few sentences on each of the three modes of use of UML.

As well as the three modes of use, there are two perspectives, the

software perspective and the conceptual perspective. Some tools
will turn a UML diagram into source code. This is very much a

software perspective. Alternatively, in the conceptual perspective,

the diagrams are language independent representations of
structures and relationships.

Read UMLD, Chapter 1, UML diagrams.

Tables 1.1 and 1.2 of UMLD show classifications of the thirteen

diagram types in UML 2.0. You do not need to learn these tables!
They will be useful, though, for you to refer back to as we introduce

various diagrams in part II of this guide. The UML authors’ do not in

13

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

fact see the diagrams as the central part of UML and as a result the

diagram types are not rigid and there is much flexibility in their use.

Read UMLD, Chapter 1, What is legal UML?.

Most people regard that the UML rules are descriptive rather than

prescriptive. This means that we infer language rules by looking at

how other people have used them, just as we have all done in
learning our own first spoken language. The UML does have a

standard, although even this is imprecise because UML is so

complex. Information may be suppressed in UML, so that nothing
can be inferred from the absence of any particular detail in a

diagram. But most important, it is better to have good design rather
than strictly legal and precise UML.

Read UMLD, Chapter 1, The meaning of UML.

There is no formal definition of how UML maps to any particular

programming language. The meaning of UML (within the sketch
mode) is to provide a rough idea of what the code will look like. We

can trust the bricklayer to actually make the wall, but a plan tells

her where to put it.

Read UMLD, Chapter 1, Where to start with UML.

Luckily, Fowler recommends that we don’t need to use all thirteen

UML diagrams! A team will work well with just a subset of UML.

The most common and useful diagrams are class and sequence
diagrams. Chapter 9 makes further suggestions.

2.4 Fitting UML into a process

Read UMLD, Chapter 1, Fitting the UML into a process [omit

Documentation].

This section of UMLD suggests which types of diagrams are useful in

the analysis and design phases, and also for documentation. The

section also discusses how to use UML in sketch or blueprint mode.

Learning activity

Contrast the different uses of UML in the waterfall and the iterative process.

Comments on the activity

In the waterfall approach to development, the diagrams are prepared as part of each

phase and are included in the end of phase documents. UML is used for blueprinting,

and the diagrams are definitive.

In the iterative process, the UML diagrams may be sketches or blueprints, but they may

be modified at each iteration. The analysis diagrams will be drawn in the iteration

preceding the iteration that adds functionality to the software. Blueprint design can be

made early in the iterations for targeted, principal functionality, and any iteration can

make changes to existing models rather than building a new model. The model itself is

not reworked.

14

Exercises

2.5 Exercises

1. What are the similarities and differences between the waterfall
and iterative development processes?

2. How can you tell if a process is truly iterative?

3. A project manager is overheard saying ’This iteration’s buggy,

but we’ll clean it up at the end’. What software development

process is being used on this project? Explain your answer.

4. (a) What is code rework?

(b) In many domains, such as manufacturing, rework is seen as

being wasteful. Is this true in the software domain?

(c) Which technical practices can make rework more efficient?

5. (a) Which UML techniques are useful in the requirements

analysis phase?

(b) What is the main objective during this phase?

(c) How does this impact on the UML techniques?

6. Which diagrams are useful during the design phase, and how

are they used?

Answers

1. Two paragraphs summarising the material in UMLD, Chapter 2,

Iterative and Waterfall Processes [first page] would be a good

answer. Diagrams similar to R. Pressman, Software Engineering:

A Practitioner’s Approach, Figures 2.4 and 2.7 will gain bonus

marks.

2. Each iteration must produce tested, integrated code that is of (or

close to) production quality. The test is that any iteration that
has not been scheduled for release, could in fact be released.

3. A waterfall process, because the manager admits the current

iteration is not of production quality, contrary to the definitive

test for a genuine iterative process (see above answer).

4. (a) Rework means that existing code is revised, possibly even
deleted

(b) Far from being wasteful, code rework saves time (and hence
money) in the long run because it is rarely a good idea to

patch badly designed code.

(c) Automated regression tests, re-factoring and continuous

integration.

5. (a) See UMLD, Chapter 2, Fitting the UML into a Process

[subsection: Requirements Analysis].

(b) Use cases, class, activity and sequence diagrams are all

useful in this phase.

(c) The overriding aim is communication between architects

and users (just as in house building projects), so UML rules

may have to be broken because clients - who are the
domain experts - will not necessarily be at all familiar with

software engineering.

15

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

6. See UMLD, Chapter 2, Fitting the UML into a Process [second

page]. Class diagrams - these show the classes and how they
interrelate. Sequence diagrams model scenarios (scenarios will

be explained in a later chapter, but basically they are short

stories illustrating how a user may interact with the system).
Package diagrams - these show the large-scale organisation of

the software. State diagrams are useful for any class with a

complicated life history. Deployment diagrams show the
physical layout of the software.

2.6 Summary

After studying this chapter you should be able to

list the four phases of software development (analysis, design,

implementation, testing)

explain why developmental phases must be managed in a
process

describe and distinguish the waterfall, iterative and agile

development processes

explain the importance of modelling and finding a good
modelling language

list the features of a good modelling language (expressive, easy

to use, unambiguous, supported by tools, widely used)

state the three groups of software models (use case, static or

structural and behavioural or dynamic)

state and explain the three modes of use of UML (sketch,

blueprinting and programming)

explain the difference between a software perspective and a

conceptual perspective

recommend types of diagrams for the analysis and design phases

16

Part II

UML

17

Chapter 3

Use Cases

Essential reading

UML Distilled Chapter 9

You have been introduced to the idea of a modelling language. Part
II of this guide is largely devoted to the unified modelling language

(UML). However, we begin with a technique that UML does not
standardise, and whose value derives from text rather than

diagrams.

3.1 Requirements capture

The hardest single part of building a software system is deciding

precisely what to build. No other single part of the conceptual work is

as difficult as establishing the detailed technical requirements,

including all the interfaces to people, to machines, and to other

software systems. No other part of the work so cripples the resulting

system if done wrong. No other part is more difficult to rectify later 1. 1Frederick Brooks in No Silver Bullet:

Essence and accidents of software

engineering IEEE Computer, pp.

10-19, 1987
The essential phases of software development are: requirements

analysis, design, implementation, testing and maintenance. These
phases are common to all software development processes, but each

process differs in the duration, completeness and sequence of these
steps. But all processes agree on the very first step, namely deciding

what needs to be built.

Learning activity

Why do you think deciding precisely what needs to be built is so difficult? What are the

ramifications for not making these decisions?

Comments on the activity

The important thing is not to decide what to build, but to decide what precisely to build.

This is hard because

the client might only have a vague and unrealistic idea of what they want

the software engineers are not experts in the application domain

shifting requirements as the project develops

19

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

3.2 The basic technique

The aim of requirements analysis is a description of how the system

should behave in certain situations, i.e. a set of functional

requirements. Use cases are a technique for capturing these
requirements. The use cases describe typical interactions between

the users and the system. This narrative is built from scenarios. A
scenario is one thing that might happen, and several scenarios, all

tied together by a specific user goal, constitute a use case.

The users of the system are called actors, a mistranslation of the

Swedish word for role. An actor is a role that a user has when

engaging with the system. Actors need not even be people: an
external computer system could also be an actor.

Read UMLD, Chapter 9, Content of a Use Case.

Figure 9.1 of UMLD shows a possible format of a use case. UML

itself does not specify a standard. Notice that the use case is textual
rather than diagrammatic. Each statement or step is an element of

the interaction between the actor and the system, showing the
intention, but not the mechanism. Each step may suggest alternative

situations, and these are logged as extensions to the use case.

Sometimes a sequence of steps can occur in other use cases as well.
These steps can be factored out and replaced with a single more

complex step. Pre-conditions, guarantees and triggers can also be

added to use cases, but the aim should always be for simplicity.

Learning activity

1. What is a scenario, and why is it used?

2. What is the relationship between scenarios and use cases?

Comments on the activity

1. A scenario is a sequence of steps describing an interaction between the user and

the system. It is written as a paragraph of normal text. They are used for

requirements capture. Since they are textual, they are easily understood by the

domain expert. A number of scenarios will eventually comprise a single use case.

The use case is the principle UML expression of system requirements.

2. Several scenarios may share a single goal, but in some of them the user does not

succeed in achieving this goal. These scenarios, linked by a common user goal,

become a single use case. The main success scenario becomes the main body

of the use case, the other scenarios enter the use case as extensions.

Read UMLD, Chapter 9, Use Case Diagrams.

As you can see in Figure 9.2, UML does specify a diagram for use
cases, but really such things serve best as a table of contents to the

textual descriptions. The diagram shows the actors, the use cases,
and any inclusions.

Read UMLD, Chapter 9, Levels of Use Cases.

20

Summary

The reading distinguishes business use cases from system use cases.

The system use case concerns a (relatively short) interaction
between an actor and the system. These are ”sea-level” use cases.

Interactions that have complex ramifications for the entire business

are at a higher (kite) level. And use cases that only exist because
they are included in other level 1 cases are at fish level.

3.3 When to use use cases

Read UMLD, Chapter 9, When to Use Use Cases.

Use cases help us to grasp the basic functional requirements of the
system and should be generated early in the project. Later,

immediately prior to implementation, more detailed versions of

these cases can be derived. The use case diagram is of little value
compared to the textual specification. As with all good UML, always

strive for simplicity and clarity.

3.4 Exercises

1. Your development team has been asked to develop a Personal
Organiser. The organiser should allow users to enter

appointments in a calendar, receive alarms and maintain an

address book of contacts. You might be able to think of other
desirable functions. To begin this project, write some scenarios.

Form a few simple use cases from these scenarios and draw a

use case diagram. Now, in a mini-iteration, study your use cases
and include any pre-conditions, guarantees and triggers that

might seem appropriate.

2. Your development team has been contacted by a client who

wishes to produce a Space Game. This game will be based on

classic video games such as Space Invaders, Galaxians and
Asteroids as a single application. See

http://www.spaceinvaders.de/ for information on Space

Invaders and links to other retro arcade games.

To start, develop a set of scenarios and use cases for Space
Invaders. If you have time, develop some use cases for at least

one more game. Are there common features? Can you now

develop some use cases for a generic Space Game?

3.5 Summary

After studying this chapter you should be able to

state what a scenario and a use case are

explain the relationship between a use case and a scenario

compose scenarios and use cases for software projects

draw a use case diagram

understand the different levels of use cases

add common information such as pre-conditions, guarantees,

triggers to a use case

21

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

be able to factor out common steps from use cases and

represent this on a use case diagram

know when (at what stage of the software development
process) to compose and amend use cases

22

Chapter 4

Class Diagrams: The basic

technique

Essential reading

UML Distilled Chapter 3

Using UML Chapter 5

Read UMLD, Chapter 3, Introduction.

The class diagram is a very widely used modelling technique. A class
diagram describes the types of objects in the system and the static

relationships between them. This chapter shows you the basic

techniques of class modelling. We begin by asking: how do we know
which classes a system might have in the first place?

4.1 Class identification

Read UUML, Chapter 5, Identifying objects and classes.

The objectives for any software project are to minimise expense and
development time whilst maximizing system maintainability and

adaptability. These objectives are often in conflict, but they may be

met if the class model provides all required system behaviours, and
if the classes represent enduring domain objects, irrespective of the

particular functionality required during development. A Book class
in a library system represents just such a domain object.

Any technique that leads to a good class model is satisfactory. It is
unlikely that you will find all the correct classes at the first iteration.

The most important domain objects (such as books, catalogue,

library member) should be easy to spot, because these belong to the
problem. More elusive, though, are other classes that will have to be

introduced in order to help solve the problem. A common technique
is noun identification. Start with the requirements specification and

make a candidate list of all nouns and noun phrases. Then eliminate

inappropriate classes, and rename, if necessary the remaining
classes. UUML lists some reasons why a candidate class might be

eliminated and you should study this list carefully.

Ultimately, what you will be left with is a list of tangible or

real-world things (book, journal, catalogue) and less tangible things

such as roles (librarian, library-member). Ideally a software object,
as generated by a class, represents a real-world object. This

correspondence between the world and its representation as code

23

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

helps us to conceptualise the system and deal with complexity. The

system itself is the sum total of all the objects, and of all their
interactions. OO design seeks to avoid the monolithic top-down

approach where a single module knows and does everything and

you should be careful that your own architecture does not fall into
this trap, for example by using a single object to represent the core

of the system.

Learning activity

1. What is so bad about top-down design?

2. Suppose you are refining a candidate class list. Under what criteria would you

reject any candidates?

Comments on the activity

1. Top-down systems with a single monolithic class are difficult to maintain and have

built-in assumptions about how the system will be used.

2. An inappropriate class will have one or more of the following undesirable

attributes:

redundancy

vagueness

an event or an operation

too abstract, not representing an object in the problem domain

outside the scope of the system

an attribute with no interesting behaviour

4.2 Properties

Read UMLD, Chapter 3, Properties.

Properties are the structural features of a class, and appear on the

class diagram as an attribute or an association. The attribute appears
inside the class box, and only the name of the attribute is necessary.

At the first attempt, you might wish to restrict attribute descriptions

in your class diagram to name:type, e.g. price:Money. This means
that price is an object of class Money.(In fact there are other

possibilities, because an object’s type is quite a complicated thing.)

An association is a solid line between classes, directed from the

source to the target class. In this case, the name of the attribute
appears at the target end of the line. In Figure 3.3, dateReceived,

lineItems and isPrepaid are properties of Order, represented in

the diagram by associations. Following the advice in this reading,
you may wish to reserve associations and class boxes for the most

significant classes - it all depends on what you want to emphasise by

any particular diagram.

Learning activity

Study the associations in Figure 3.3.

24

Properties as code

1. How many orders may be made on any day?

2. Can we have an order line without an order?

Comments on the activity

1. Any number, including none at all (consider the association between the source

Date and the target Order).

2. No. The OrderLine (source) - Order (target) association has multiplicity 1.

Any number of order lines are associated with one, and only one, order.

4.3 Properties as code

Read UMLD, Chapter 3, Programming Interpretation of Properties.

A simple way of implementing properties in code is with private
data fields. Clients of the class can then retrieve or alter this data

with public getter and setter methods. However, the property can
also be computed rather than stored. In this case a getter method

could calculate the data (e.g. multiply the number of items by their

unit price). Multi-valued attributes are coded with a collection, and
in this case you will certainly choose to update an item with a setter

method. An alternative, and dangerous, implementation might

return the entire collection to the caller.

The class skeleton for Order shows how the lineItems property can

be implemented by a HashSet, which is a particular sort of
unordered collection, or set. In contrast, this same property is

marked as ordered in Figure 3.3, and it would be implemented by a
List or an Array. In practice, for consistency, the class diagram and

class skeletons should really agree.

Note that the getter/setter methods will retrieve/alter a single item

from lineItems, rather than pass the whole set to the requesting

client object. The client would not need to know that line items are
stored in a list, or an array; all the client wishes to do is inspect an

item. This is the essence of encapsulation.

Learning activity

Why should you be afraid of classes that are nothing but a collection of fields and their

accessors?

Comments on the activity

OO design is concerned with objects that have rich behaviour. Objects are not just

parcels of data, but also have operations and behaviour. A heavy use of an object’s

accessors indicates that some behaviour should be moved to this object.

25

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

4.4 Adding more information to the class model

Read UMLD, Chapter 3, Multiplicity.

The multiplicity of a property is the number of how many objects fill

this property. Make sure that you understand the meaning of the

notation [1], [0..1], [0..2] etc. and [*].

Read UMLD, Chapter 3, Bidirectional Associations.

The bidirectional association, signified by navigability arrows at

either end, refers to a pair of properties that are linked together, as

in the Person - Car association. Navigating from Car to Person and
back again returns us to the same car. Implementing bidirectionally

is difficult due to synchronisation of the data.

Learning activity

1. Could you mark a Person - Address association as bidirectional?

2. Write down the property pair that represents the actual property ’lives at’ for

Person - Address. Draw two class boxes, one for each for Person and

Address and link these boxes with an association. Mark multiplicity’s on the

ends of the association. Add further properties to the diagram.

Comments on the activity

1. Yes. An object can ask an Address instance who lives there. Address returns

a number of Person objects. Take one of these Persons and ask where they

live. The returned object will be the original Address.

2. The Address class has properties dweller:Person[*] and the Person

class has a property home:Address[0..1]. (We assume that no-one has

more than one address.)A d d r e s sn u m b e r : I n t e g e rs t r e e t : S t r i n gc i t y : S t r i n ga d d O c c u p a n t (P e r s o n)r e m o v e O c c u p a n t (P e r s o n) P e r s o nn a m e : S t r i n ga d d A d d r e s s (A d d r e s s)0 . . 1 *
Read UMLD, Chapter 3, Operations.

Operations are the actions of a class, and correspond to methods in

Java. There is a subtle distinction between the two: an operation is

a procedure which might be carried out by any one of several
methods in an inheritance tree. Notice that operations appear in the

lower third of the class boxes in Figure 3.1.

26

Summary

UML distinguishes between query and command operations.

Technically, a query does not change the observable state of an
object. A useful programming tip is to separate commands from

queries by ensuring that commands do not return any value to the

caller.

Read UMLD, Chapter 3, Generalization.

Generalisation means that two objects of different types may be

freely substituted for each other. The obvious OO mechanism is

inheritance. Subclasses of a parent inherit all the features of that
parent, and may override any method of the parent. In general, a

subtype can replace a super-type in any code block and the
programme will still function (although the output may be different,

of course). This is a manifestation of the OO principle known as

polymorphism. A subclass is therefore a subtype. Different
languages might have additional mechanisms for sub-typing, for

example interfaces in Java. Interfaces are studied in Chapter 5 of

UMLD.

4.5 When to use class diagrams

Read UMLD, Chapter 3, When to Use Class Diagrams.

Class diagrams are the single most important modelling idea in UML
and you will use them all the time. However they can be very

detailed. Too much detail can detract from the underlying purpose

of the diagram. It is best therefore to start simply and add extra
information only when necessary. Don’t draw models for everything.

A few class diagrams should cover the breadth of the system. Each
class diagram should be used in conjunction with a behavioural

diagram so that the dynamic relationship between objects can be

grasped.

4.6 Exercises

1. Examine the scenarios and use-cases that you wrote for the

Personal Organiser (Section 3.4). Construct a candidate class

list. Refine this list by elimination and renaming until you are
confident that you have discovered the base classes. Now

construct a class diagram for one or more of the use cases that
you have previously identified (see Section 3.4).

2. Draw up a class list for Space Game. Refine this list and

construct a class diagram for one or more of the use cases that

you have already identified in Section 3.4.

4.7 Summary

After studying this chapter you should be able to

draw up a candidate class list from a requirements document

state what characteristics a candidate class should have

27

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

recognise class boxes, attributes and associations on a class

diagram

be able to use the full textual description of an attribute

understand how an association on a class diagram relates to

message-passing between objects

draw simple class diagrams

write class skeletons for simple class diagrams

add multiplicity’s to associations

use, where appropriate, a bi-directional association

distinguish command operations from query operations

state the meaning of subtype, super-type and inheritance

28

Chapter 5

Sequence Diagrams

Essential reading

UML Distilled Chapter 4

Class diagrams show the static structure of a system and are

classified as Structure Diagrams in UML (see Fig 1.2 of UMLD). But
dynamic object message passing is the fundamental way that an OO

system executes any particular behaviour. Interaction Diagrams

describe how objects collaborate, and the most widely-used is the
Sequence Diagram. The sequence diagram illustrates a single

scenario and depicts relevant objects and messages. This chapter

will show you how to construct sequence diagrams and add features
such as creating and deleting participants and asynchronous and

synchronous calls. There will also be an important example of
decentralised control, a defining characteristic of the OO paradigm.

5.1 The basic technique

Read UMLD, Chapter 4, introduction.

Figure 4.1 of this reading shows a sequence diagram for the
scenario Calculate Price for a business system. Note the presence

of participant boxes at the head of each lifeline. Although a
participant is essentially an object, the name of the participant

should not be underlined. (Object names are usually underlined in

UML). Also note that messages are shown as lines with filled arrow
heads and are also named. The participant activation bar shows

when a participant is active, corresponding directly to when the

object’s methods are currently being executed by the CPU (on the
stack). Return arrows can be used for each method call, and the

found message begins the interaction. Finally, this diagram shows
how an object can call a method on itself. The order object makes

such a call with the message calculateBasePrice.

Learning activity

What feature of Calculate Price is not evident in Figure 4.1? What features of

the interaction are well illustrated by sequence diagrams?

29

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

Comments on the activity

This basic sequence diagram does not show when messages have to be repeated.

Sequence diagrams are not good at describing algorithmic details such as loops and

conditionals (although these can be incorporated) but they do excel in their depiction of

calls between participants, and the particular processing that each participant has to

undertake.

Look now at Figure 4.2, and carefully study Fowler’s account of this

diagram which accomplishes Calculate Price through distributed
rather than central control. You should certainly aim to construct

sequence diagrams that look more like Figure 4.2 than Figure 4.1,
because your system architecture will then reflect the OO paradigm,

which is to use lots of little objects and lots of method calls, rather

than a single module that does the bulk of the work.

Learning activity

What are the advantages and disadvantages of distributed control?

Comments on the activity

The main advantage is that the effects of change are localised. Data and behaviour

that accesses this data are contained in one place, and this reduces the complexity of

system change and enhances system development and maintenance. Another

advantage is that opportunities for polymorphism are increased. In the example of

Figure 4.2, products with unusual product pricing algorithms can be sub-classed from

Product, hence avoiding the use of conditional logic in a larger module.

However, the OO style is harder to understand because you have to refer to a number

of objects to see how the behaviour takes place. You just can’t simply read through a

single module and expect to understand programme flow. Another disadvantage might

be for real-time/embedded systems where programming efficiency is important, and

such operations as the creation and destruction of objects will consume valuable

memory and CPU cycles.

5.2 Advanced techniques

Read UMLD, Chapter 4, Creating and Deleting Participants,

Synchronous and Asynchronous Calls

Figure 4.3 shows the creation of two objects during a scenario Query

Database. These objects exist only for the course of the interaction,

and should be deleted when they are no longer needed. Although

Java has a mechanism to do this automatically (garbage collection),
in general, the deletion of the object should be notated.

Although we are not studying loops and conditionals in this chapter,
you should have a look at Figures 4.4 and 4.5, noting in particular

that the arrow heads are not filled. This signifies asynchronous calls:

an object makes such a call when it can continue with its own
processing and doesn’t have to wait for a response. A thread is a

programming task that can run in parallel (i.e. asynchronously) to

30

Summary

other tasks, and can be an efficient way of programming, although

debugging can be hard.

5.3 When to use sequence diagrams

Read UMLD, Chapter 4, When to Use Sequence Diagrams [omit CRC

Cards].

In summary, sequence diagrams are an excellent technique for

modelling the message-passing behaviour of objects in a single

scenario. The procedural details of the behaviour is better
represented in an Activity Diagram. State Diagrams are used for the

behaviour of a single object in many scenarios. Other interaction
diagrams are Communication Diagrams (used to show connections)

and Timing Diagrams for timing constraints.

5.4 Exercises

1. Choose a scenario for the Personal Organiser project of Section
3.4 and draw a corresponding sequence diagram. You will need

to refer to your class diagrams in order to define the participants

(see Section 4.6).

2. Draw sequence diagrams for the scenarios of the Space Game
project (Sections 3.4, 4.6).

5.5 Summary

After studying this chapter you should be able to

construct a sequence diagram from a scenario and a class

diagram

add object creation/deletion and asynchronous calls where
appropriate

state when a sequence diagram is a valuable modelling

technique, and state which other Behaviour Diagrams are useful
in different circumstances

distinguish, on inspection of a sequence diagram, centralised

control from distributed control and state why the distributed
technique fits the OO paradigm.

31

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

32

Chapter 6

Class Diagrams: Advanced

techniques

Essential reading

UML Distilled Chapter 5

Chapter 4 introduced the key elements of the class model.

Sometimes, and especially for design class diagrams, further
annotations are needed, and a few of the many advanced concepts

are discussed in this chapter.

6.1 Responsibilities and collaborators

Read UMLD, Chapter 4, CRC Cards, Chapter 5, Responsibilities.

Although Class-Responsibility-Collaboration cards are not a UML

technique, they are a widely used OO design tool, and you should
understand what they are and how they are used.

Read UMLD, Chapter 5, Responsibilities.

In particular, note the definition of class responsibilities and

collaborators. Figure 5.1 of UMLD shows how responsibilities can be
incorporated in the UML class diagram.

Learning activity

What is a class responsibility? Who/what are the class collaborators? At what stage of

the software life-cycle do you think that CRC cards could be used?

Comments on the activity

A responsibility is a short sentence that summarises something about an action that

the object performs, some knowledge that the object holds, or some important decision

that the object can make. Collaborators are other classes that this class must work with

in order to maintain this responsibility. In essence, CRC cards are a high level class

modelling technique, and can be used during analysis or early in the design phase.

33

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

6.2 Static operations and attributes

Read UMLD, Chapter 5, Static Operations and Attributes.

A static operation or attribute applies to a class rather than an
instance of that class. In other words, all objects have access to a

single variable (static attribute) or can use a common operation (in
Java this is a static method). For example, in a Library System, each

library user might be represented by a unique instance of the

LibraryUser class, but the LibraryUser class would hold a static
variable numberOfUsers and static methods getNumberOfUsers and

incrementNumberOfUsers and decrementNumberOfUsers. Static

items are underlined in the class box.

6.3 Aggregation and composition

Read UMLD, Chapter 5, Aggregation and Composition.

Aggregation, which refers to a part-of relationship is a fairly

meaningless concept in class diagrams. People are parts of a club,
but people are also parts of other structures. Since the class diagram

is entirely about such structures, aggregations are unnecessary
annotations. In Figure 5.3 of UMLD, if a club object is deleted, the

members of that club would not necessarily be deleted as well, since

they are parts of other structures.

However, in the example of Figure 5.4 of UMLD, a polygon is said to

be composed of points if Point instances are deleted if the polygon is
also deleted. Composition identifies strong associations, and is

notated in UML by a filled diamond. The Point class is associated

with Polygons and Circles, but point objects can only be parts of
polygons or circles, and never both.

6.4 Interfaces and abstract classes

Read UMLD, Chapter 5, Interfaces and Abstract Classes.

Interfaces and abstract classes, which are elements of Java and

other OO languages, are a common instrument for polymorphism.
An abstract class has one or more abstract operations, and may

contain a number of implemented operations. An abstract operation
has no implementation and an abstract class cannot itself be

instantiated. A concrete sub-class of the abstract super-class may,

however, be instantiated, as long as it provides implementations of
all the abstract operations.

Abstract classes are useful if we can imagine that different
subclasses provide different implementations of a common

operation. For example, ArrayList is just one sort of Abstract

List. It shares equals() with other Abstract Lists, but
implements the get() operation (see Figure 5.6). (In addition, it

overrides the implementation dependent add() method.)

34

Classification

An interface is a class that has no implementation at all, but serves

to define a type. In the example of Figure 5.6 of UMLD, an order

holds a list of items, stored by the variable lineItems. Exactly how

this list is implemented is unimportant to order, as long as

lineItems has a get operation for retrieval of items. All
implementations must therefore conform to the List interface,

which specifies a get operation (and possibly other useful

operations too).

The UML annotations for abstract classes and interfaces as

illustrated in UMLD Figures 5.6 and 5.7. Note the use of an open
arrowhead for inheritance, and the dashed line and ball and socket

notation for interfaces.

Learning activity

The variable lineItems of Order could be declared as:

private ArrrayList lineItems = new ArrayList()

However, a better design choice is available. What is it, and why is it better?

Comments on the activity

The problem with the suggested declaration is that it will be harder to change the

implementation of lineItems at a later date. For example, another implementation

of lineItems could provide data base accessibility. All the lines of code involving

lineItems would then have to be changed. However, by using the declaration

private List lineItems = new ArrayList()

then as long as future implementations conform to List, only a single line of code

would need to be changed.

6.5 Classification

Read UMLD. Chapter 5 Classification and Generalization, Multiple and

Dynamic Classification.

This reading highlights the difference between a classification and a

generalisation. Generalisation is distinguished from classification by

the property of transitivity: if an a is a b and a b is a c, then an a is a
c. Study carefully the example of UMLD Figure 5.11, paying

attention to the generalisation sets which occur as labelled
arrowheads. Surgeons can be classified into two sets, role and sex.

In this two-fold classification, a surgeon object would have two

types that are not connected by inheritance. On the other hand, a
chain of inheritance links a surgeon to a person(a surgeon is a

doctor, and a doctor is a person).

Learning activity

You are designing a University Library system. The library has public members and

employees. Some public members are allowed to read books inside the library, but not

35

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

to borrow them, and other public members have full borrowing rights. Library

employees are also members of the library, and include staff who can check-in and

check-out books, and librarians who can perform these duties as well as order new

books. Draw a multiple classification diagram to show these relationships.

Comments on the activityM e m b e r
L i b r a r i a n

S t a f f
R e a d e r B o r r o w e rp u b l i ce m p l o y e e

Figure 6.1: Multiple Classifications for a Library System

6.6 Association classes and visibility

Read UMLD, Chapter 5, Association Class and Visibility.

An association class can be added to an existing association on a
class diagram. Such a class provides extra attributes and operations

to a particular association. If the association class can have

numerous objects for the same association, the notation of Figure
5.13, which specifically shows the multiplicities, must be used.

Otherwise, the association class can be joined to the association by a

broken line.

UML allows attributes and operations to be tagged as public,
private, package and protected, with the precise meaning of each

visibility determined by the choice of programming language. They

should only be used if you wish to draw attention to differences in
visibility of some elements in a class diagram.

6.7 When to use advanced concepts

The advanced concepts discussed in this chapter should only be

attempted at the late analysis and design phases of the software

project. The incorporation of these advanced concepts deepens the
class model and leads to a design class diagram. Such a diagram

immediately precedes implementation.

36

Summary

6.8 Exercises

1. Take a class diagram from the Personal Organiser example of

Exercise Section 4.6 and add multiplicities to the associations

and visibilities to the attributes and operations.

2. Continue your development of the Space Game Sections 3.4,

4.6, 5.4 project by adding any of the advanced features

introduced in this chapter to your class diagrams. Study your
classes for generalisations and classifications and draw a

multiple classification diagram for a Space Game.

6.9 Summary

After studying this chapter you should be able to

state the CRC technique and know when this technique is useful
in the software life-cycle

define class responsibilities and class collaborations and

incorporate responsibilities into a class diagram

understand the difference between static/instance operations
and attributes

understand the difference between aggregation and

compositions and know how to notate composition on a class
diagram

state what an interface and an abstract class are, and why they

enable polymorphism in OO design

know the UML notation for interfaces and abstract classes

distinguish classification from generalisation and draw multiple
classification class diagrams

understand the purpose of association classes and know the two

ways that they may be added to an association between two
classes

know the UML annotation for private, public, package and

protected visibility.

37

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

38

Chapter 7

State Machine Diagrams

Essential reading

UML Distilled Chapter 10

State diagrams pre-date UML and even OO analysis and design.

They are commonly used to show the behaviour of a system. The

UML equivalent is the state machine diagram. Unlike the previous
diagrams we have studied, the state machine diagram shows the

lifetime behaviours for a single object.

7.1 The basic technique

Take a look at UMLD Figure 10.1, a state machine for a Gothic Castle
controller. There are four features in this diagram: an initial

pseudo-state, the state themselves, represented by a box with

rounded corners, state transitions and their labels, and a final state.
The transitional label has three optional parts:

trigger-signature[guard]/ activity.

The trigger-signature is usually a single event that triggers a

change of state. This change of state is a transition, possibly
invoking some behaviour or activity. The guard is a boolean

condition that must be true for the transition to occur.

Learning activity

1. The three parts of a transition label are optional. What is signified by any missing

part?

2. There can only be one transition out of any state. However the Lock state of

Figure 10.1 has two exit arrows. Why is this?

3. What is the purpose of the final state?

Comments on the activity

1. A missing activity means that no behaviour is executed during the transition. A

missing guard indicates that the transition always take place if the event occurs. A

missing trigger-signature indicates that the transition occurs automatically, as with

activity states.

39

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

2. Multiple transitions exiting a state are allowed, as long as the transitions are

mutually exclusive.

3. The final state indicates that the state machine is completed and the object can

be deleted.

Read UMLD Chapter 10, Internal Activities, Activity States, Concurrent

States.

We have seen how a controller can be successfully modelled with a

state machine diagram. Another frequent use of these diagrams is

user interface (UI) modelling, as in Figure 10.2. Internal activities
are defined as self-transitions that do not trigger entry or exit

transitions. In this example of a text field UI, the trigger signatures

character and help do not cause a transition from the Typing

state, but they do cause internal activities such as opening a help

page and updating a status bar.

Sometimes states may take a while to complete an activity. These

are activity states, and the on-going activity is marked with a do/ in
the state box (see Figure 10.3). As soon as the activity is completed,

a transition can occur without an external trigger. For example, in

Figure 10.3, as soon as the search is over, the system moves to the
Display New Hardware Window state.

Figure 10.5 shows how alternative states (’orthogonal’ in UMLD) can
be represented by adjacent boxes within a concurrency region of a

superstate. This figure also depicts a useful notation for state history.

Learning activity

A Book object represents all the copies of a certain book in a library system. A Book

object is borrowable provided that there is at least one copy on the shelf. The triggers

for state change are borrow and return. Draw a state machine diagram for

Book’s life-cycle.

Comments on the activity

N o t B o r r o w a b l eb o r r o w [l a s t c o p y]r e t u r nB o r r o w a b l er e t u r n
b o r r o w [n o t l a s t c o p y]

7.2 Implementing state diagrams

Read UMLD Chapter 10, Implementing State Diagrams.

This reading outlines three ways of implementing a state machine

diagram.

40

Summary

In the nested switch technique an if - else if - else structure

provides a direct, if laborious implementation.

The state pattern method uses a hierarchy of state classes to handle

state behaviour. In other words, each state has one state subclass
and the controller has methods for each event, simply forwarding

the handle requests to the respective class. This technique turns the

if - else if - else structure into a set of objects, a good
application of modularisation.

The state table approach uses a data table with source/target state
information. This table might be generated at runtime, or

pre-loaded. In either case, an interpreter can read the table, or an
automatic code generator could generate classes based on the table.

7.3 When to use state diagrams

Read UMLD chapter 10, When to Use State Diagrams.

The state machine diagram is good at describing the behaviour of a

single object across a number of use cases. This is opposite to the
sequence diagram which shows how a number of objects collaborate

during a single use case. An intermediate UML model which shows

numerous objects for several use cases exists: it is the activity
diagram, and this will be the subject of the next chapter.

7.4 Exercises

1. An Event class is responsible for making an appointment in a
Personal Organiser. Once the appointment has been made, an

alarm is set, and the date and time of the appointment are

displayed. The alarm flashes if the appointment is current. A
past appointment will still exist in the calendar, unless deleted

by the user. Draw a state machine diagram for the lifetime

behaviour of Event.

2. Choose a class with interesting behaviour from the Space

Invaders project (Sections 3.4, 4.6, 5.4, 6.8). Draw a state

machine diagram for this class.

7.5 Summary

After studying this chapter you should be able to

recognise the four features of a state machine diagram

use the three parts of a transition label, and know what is

inferred if any part is missing

know what internal activities, activity states and concurrent
states are, and how they are notated on a state machine diagram

state and explain the three ways of implementing a state

machine diagram

know when to use state machine diagrams

41

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

draw state machine diagrams using any of the features

described in this chapter

42

Chapter 8

Activity Diagrams

Essential reading

UML Distilled Chapter 11

Activity diagrams are a generalisation of flowcharts, as used to

describe procedural logic, business process and work flow. Activity

diagrams differ from flowcharts, however, by the possible inclusion
of parallel behaviour. In UML terms, an activity diagram can show

the behaviour of several use cases and may involve a number of
objects.

8.1 The basic technique

Read UMLD, Chapter 11, Introduction.

Figure 11.1 of UMLD shows the diagram for the activity Receive

Order. Any activity is made from individual actions, where each
action is represented as a box with round edges. Figure 11.1 shows

some other important features: forks, joins, decision diamonds and
merges. All theses elements are connected by flows (also called

edges). The notation for the initial and final nodes is similar to the

initial and final states of the state machine diagram.

Learning activity

1. Does the diagram tell us anything about the order of the actions in the two

sub-activities headed by Fill Order and Send Invoice?

2. The final action, Close Order, happens immediately following the completion

of either sub-activity. True or false? Explain your answer.

3. How is conditional behaviour represented on an activity diagram?

Comments on the activity

1. No. Sub-activities that originate from a single fork happen in parallel, but no

sequence of actions can be inferred from the diagram. For example, the order

might be delivered before or after the invoice is sent.

2. False. The join establishes a synchronisation between the two branches. The

order must be delivered and paid for before it can be closed.

43

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

3. Conditional behaviour is represented by a decision. A decision has a single

incoming flow and several outgoing flows. The outgoing flows are labelled by

guards. Guards are mutually exclusive. The conditional behaviour is ended by a

merge diamond which has a single out flow.

Read UMLD, Chapter 11, Decomposing an Action.

Figures 11.2 and 11.3 illustrate how sub-activities from one diagram

can be factored out as actions on another. Notice the strange rake

symbol, indicating a sub-activity within an action box. Figure 11.3
also shows how a method call can be added to an activity, using the

notation

Class::method.

Read UMLD, Chapter 11, Partitions.

The activity diagrams we have seen so far depict what happens, but
not which objects are involved in the actions. If you need to show

which actions are performed by a particular class, the activity

diagram can be organised into partitions, also known informally as
swim lanes (see Figure 11.4).

Read UMLD, Chapter 11, Signals.

The initial mode in an activity diagram corresponds to the

invocation of a program or method. Actions can also respond to time

signals and accept signals. A signal arises from an external process.

Learning activity

1. According to Figure 11.5, when can I leave for the airport?

2. Explain how Figure 11.6 resolves the apparent paradox of two contradictory

actions, Book Itinerary and Cancel Itinerary happening in parallel

branches.

Comments on the activity

1. Within two hours of the flight, and only after the taxi has arrived.

2. The contradictory sub-activities are in a race. The activities are not joined, but

end on the final state. The slower flow is terminated upon arrival of the quicker

flow at the final state.

8.2 Advanced techniques

These advanced techniques take us some way into the vast UML
specification of an activity diagram. The basic technique will be

adequate for most of the activity diagrams you will be drawing. You

are not expected to use all of the advanced techniques of this section
in your activity diagrams, but you should certainly recognise them

in other diagrams and know what the technique is used for.

44

When to use activity diagrams

Read UMLD, Chapter 11, Tokens.

Tokens are a means of tracing flow through the diagram, The initial
node creates a token which is passed from action to action. Any

encountered fork creates additional tokens (one per alternative
sub-activity), which are subsequently destroyed at a join.

Read UMLD, Chapter 11, Flows and Edges.

Figure 11.7 shows four ways of depicting an edge. The connectors

are purely for convenience, but the lower two diagrams of this
figure show how to depict object transfer. The transferred objects

play the role of tokens, but they can carry data as well.

Read UMLD, Chapter 11, Pins and Transformations.

Pins are an optional annotation, useful if you want to parameterise
actions. A transformation must be shown on the diagram if the

output parameters of an outboard action do not match the input
parameters of a receiving action. This transformation can only

change one pin parameter into another. It must have no further side

effect.

Read UMLD, Chapter 11, Expansion Regions.

Expansion regions are useful for situations involving multiple

actions that have been triggered from a single action upstream. In

Figure 11.9, Choose Topics generates a list of topics which are
dealt with at the same time (note the keyword concurrent). Figure

11.10 shows another way of indicating that a single action is

repeated. In this case, concurrency is assumed. Expansion regions
generate multiple tokens: there is a token for each article in Figures

11.9 and 11.10. Simply, there is a single written article for each
listed topic.

Read UMLD, Chapter 11, Flow Final.

The flow final (see Figure 11.11) indicates the end of a particular

flow, but without terminating the entire activity. The decision
diamond in this figure rejects articles, and the token is destroyed in

the flow final. The overall effect is that the number of written

articles can be less than the number of topics.

Read UMLD, Chapter 11, Join Specifications.

A join specification attaches a boolean expression to a join. The

specification is evaluated at the arrival of each token and an output
token is only generated when the expression is true.

8.3 When to use activity diagrams

Read UMLD, Chapter 11, When to Use Activity Diagrams.

Work flow and process modelling frequently involve parallel
behaviour and this is well represented by an activity diagram. The

diagram can show several use cases and objects and interpolates

between the state machine and sequence diagram modelling
techniques. The ability of an activity diagram to represent

procedural logic makes them useful to software architects who use

45

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

UML in the programming mode.

8.4 Exercises

1. Continuing with the Personal Organiser project, draw an activity

diagram for an event which is scheduled to occur at a fixed time

over a number of weeks. The event might have an associated
email reminder which is sent to the event attendees on the day

before the meeting, and an alarm is activated on the actual day

of the meeting. The alarm is deactivated when the meeting has
finished. Any event might be cancelled at any time.

2. Choose a set of use cases from the Space Game project and

draw an activity diagram to show how various actions
contribute to an overall behaviour.

8.5 Summary

After studying this chapter you should be able to

recognise and understand the meaning of: initial node, actions,
activity final, forks, joins, decisions, merges, flows and edges as

they appear on activity diagrams

construct activity diagrams for procedural logic

construct activity diagrams for several use cases or a well
defined activity

describe in words the content of an activity diagram

know how to decompose an activity into sub-activities

know how to include method calls in an action

partition an activity diagram

recognise the symbols for time and accept signals

use, where appropriate, the time and accept notation

understand the use of tokens

recognise the advanced techniques associated with pins,

expansions, and join specifications

know when to use activity diagrams

46

Chapter 9

Summary of UML modelling

techniques

Essential reading

UML Distilled Chapters 2, 6-8, 12-17

In the preceding chapters we have introduced five UML techniques:
scenarios/use cases and class, sequence, state machine and activity

diagrams. Figure 1.2 of UMLD shows the complete family of UML

techniques. As you can see, we have covered a single structural
diagram (the class diagram) and four behavioural models. The

remaining eight UML techniques (object, package, deployment,

composite structure, activity, communication, interaction overview
and timing diagrams) will not be studied in depth in this course but

you might wish to look at them and use them in any project you are
subsequently asked to undertake.

UMLD suggests that use cases and class, activity and state machine
diagrams are useful tools for requirements analysis. Customer

communication is paramount during this phase, so any diagrams

you produce here will need to be simple and intuitive. The biggest
risk with UML techniques during requirements analysis is that the

domain expert will not understand your diagrams. That can lead to

bafflement, or to a false sense of confidence.

UMLD recommends that class, sequence, package, state machine
and deployment diagrams are useful techniques during the design

phase, and the notation can be more precise and the diagrams more

refined at this stage. In an iterative process, the diagrams are used
as sketches or blueprints. Each iteration modifies the existing body

of diagrams, highlighting the inevitable changes as design becomes

more detailed. In principle, blueprinting produces very detailed and
specific diagrams and will lead directly to implementation. UML in

sketch mode is much more fluid - coding is based on, but not
prescribed by, UML diagrams, and coding imperatives may well

cause the design to alter.

Once the system is built, UML can document the system although it

is no substitute for detailed documentation that is generated from

the code, as, for example, by the JavaDoc tool. UML illustrates the
detailed implementation documents, sketching out the important

parts of the system. Package, deployment and class diagrams are all

useful for the structural parts of the system, as well as sequence
diagrams to show the important interactions between classes, and a

state machine diagram for any class with complex life-cycle

47

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

behaviour.

48

Part III

Quality

49

Chapter 10

Product Quality

Essential reading

Using UML Chapter 19

Verification, validation and testing are product-based techniques for
ensuring that software is of high quality. Verification is the process

of making sure that we have built the product correctly i.e.

according to the specification. Validation is an attempt to ensure
that the software is fit for its purpose, and this is an open-ended and

difficult task, because we even need to look beyond the captured

requirements. Software testing contributes to both verification and
validation.

Ultimately, the concern of software engineering is to ensure high
quality, both of the product and of the process that led to its

creation. This is the focus of this part of the subject guide.

Learning activity

Define software quality.

Comments on the activity

This has already been defined in our course - see section 1.1

10.1 Verifying software

Read UUML, Chapter 19, Verification.

Verification is a check that the product and the specification agree.

In an iterative process, verification happens at each iteration.

Learning activity

What are the three areas of concern in verification of a UML development?

51

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

Comments on the activity

Verification that the use cases satisfy any other requirements specification not

contained in the use case descriptions (i.e. that the use cases are complete),

verification that the classes and their interactions can provide the use cases and

verification that the code corresponds to the class design.

Verification also consists of checking that the programme compiles

and runs without error (after all, this should be requirement of the

system!). A check can also be made that the UML diagrams
generated by the project are consistent in the sense that there is

always at least one programme that is described by the model.

10.2 Validating software

Read UUML, Chapter 19, Validation.

Validation requires the involvement of the customer and is difficult

because the aim is to find anything that might make the system less

useful to the customer than perhaps it should be, and this is very
open-ended indeed.

Learning activity

Why is the developer poorly placed to assess the usability of the system?

Comments on the activity

Unlike a typical user, the developer understands the system, and they will therefore find

it very hard to imagine themselves as interacting with the system as users might.

Furthermore, the engineer has considerable experience of interacting with software in

general, and so is much more confident and competent than the intended users of the

system.

10.3 Testing

Read UUML, chapter 19. Testing.

Testing has three aims: to find bugs, to convince the customer that

there are no damaging bugs, and to provide information for further
product development. The first aim is the most important and has

the direct implication that a successful test is one that finds a bug.

Clearly, if the system passes a set of easy tests, little has been learnt.

Learning activity

What kinds of tests are possible?

Comments on the activity

52

Exercises

Usability testing - is the system easy to use effectively?

Unit testing - checks the software modules (OO: classes) for bugs

Integration testing - do the parts of the system collaborate correctly?

System testing - this checks that the entire system meets the requirements

specification

Acceptance testing - this is the validation of the system by the customer

Stress testing - places the system under extreme conditions to check that the

system degrades gracefully rather than failing catastrophically

Regression testing - these tests confirm that the system continues to work

correctly after any modification, and can involve reapplication of any of the above

tests

Tests can be white or black box. In a black box test, a module is

checked against the specification: none of the implementation

details are available to the tester. A white box test, in contrast, is
carried out with knowledge of the modules and code. For example,

a white box test might examine extreme loop termination

conditions. A black box test will only be concerned with the public
interface of the module.

Any test needs to be repeatable, documented and precise. A test
specification should be written at the same time as the requirements

are gathered, and this can help analyse requirements and ensure
that they are testable.

Sometimes tests can be automated, and this alleviates some of the
boredom of this dull task. Apart from the tedium, testing is time

consuming (30-50% of project time), expensive and only perilously

left until the end of the development process. In an iterative project,
testing is spread throughout the project life-cycle.

10.4 Exercises

1. It might appear that a class can be tested by checking that every

method contained in the class is bug free. However this is
incorrect. Why is this? How can state machine diagrams help

with class testing?

2. What is encapsulation, and why might an encapsulated
component be quite hard to test? In practice, how can we test a

well encapsulated class?

3. Polymorphism also presents particular problems to the tester.

Why is this? What lesson can we learn from this analysis?

Answers

1. Apart from operations, a class may also have attributes, and
these variables may determine the effects of method calls. One

method may change the state of an object in such a way that a

different method call might fail. A better way to test a class is to
check all the ways an object may enter and leave all possible

states, as described and defined by the state machine diagram.

53

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

2. An object is encapsulated if its clients need only refer to the

public interface of the object in order to accomplish its task.
This is problematic in testing because the internal state of an

encapsulated object is private and hidden. In practice, methods

can be added to the class that report on the internal state.

3. Polymorphism, for example by inheritance, means the
substitution of one component by another. However the

substituted component might override superclass methods and
produce side effects that were not present before the

substitution took place. In general, polymorphism, although a

hallmark of OO design, increases inter-module coupling because
the whole inheritance tree must be checked to see which

method is being overridden, or variable is being shadowed.

Therefore the moral is: only use inheritance when the
advantages outweigh the disadvantages. It is not a panacea.

10.5 Summary

After studying this chapter you should be able to

define verification, validation and testing

place verification in the context of use case driven development

explain why validation is difficult from the developer’s
perspective

state the aims of testing, and the criterion for a successful test

state and discuss the kinds of testing and the meaning of

black/white box testing

understand the importance of testing in the software life-cycle,
and how testing relates to waterfall and iterative processes

understand the problems associated with the testing of OO

systems.

54

Chapter 11

Process Quality

Essential reading

Using UML Chapter 20.

UML Distilled Chapter 2.

Higher quality software can be achieved by focusing on two

approaches. Product quality, as we saw in the last chapter, involves
the verification, validation and testing of the system itself. Process

quality involves a scrutiny of the human structure that produced the
software system.

There are no learning activities in this short chapter. They have been
collected together and placed in the exercises section at the end of

the chapter.

11.1 Project management

Read UUML, Chapter 20, Management.

The project manager has the overall responsibility for the success of
the project. The manager’s responsibilities are wide ranging, as the

long list of this reading shows. Clearly an important responsibility is
keeping the project on track, especially since large projects overrun,

on average, by 50% of the original estimate. Estimation is difficult

because the project schedule is usually set at the outset, even before
the requirements are well understood. And worse still, requirements

themselves may alter during the course of the project. Estimation is

especially difficult for an iterative process because there are no
milestones that mark the end of each phase (analysis, design,

implementation, testing) because all these phases are repeatedly
revisited.

If the development is component based - and a large project almost
certainly will be - the manager must help the developers to make

best use of available components such as code libraries, re-usable

modules from other project teams in the organisation and,
importantly, re-use from within the project team.

Read UMLD, Chapter 2, Fitting Process into a Project.

Software projects differ greatly, far greater than, say, the difference

between a garden shed and a house. This means that the process of
developing software depends on many things: the kind of system

under development, the technology used by the development team,

55

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

the size and distribution of the team, the nature of the risks, the

consequence of failure, the working styles of the team and the
culture of the organisation.

The manager can also adapt any process to suit a project, although
this is a difficult thing to do without experience. Organisations

suffer from the repetition of expensive mistakes. In order to reduce

this toll, and for managers to gain experience, iteration and project
retrospectives are recommended.

11.2 Project planning

Read UMLD, Chapter 2, Predictive and Adaptive Planning.

One reason for the popularity of the waterfall model is that a

manager can provide clear costings and time estimates. These
estimates are more problematic in an iterative process, but some

planning techniques are available.

In predictive planning, an initial stage serves to provide the manager

with enough information to make long term plans for the second,
hopefully predictable, stage of development. Most projects,

however, undergo requirements churn whereby the requirements

change during this second stage. Of course the requirement
specification can be frozen at the end of the first stage, but there is a

risk that the delivered system no longer meets the needs of the

customer.

There are two solutions to requirements churn: place more
resources into requirements engineering, or acknowledge the

inherent complexity of software development and choose an

adaptive strategy. In adaptive projects, change is treated as normal.
The project becomes controllable, but is still unpredictable. Plans

are still made in adaptive projects, but the plans are treated as

baselines to assess the consequences of change, and are not a
prediction of the future.

Read UMLD, Chapter 2, Agile Processes.

Extreme programming is the most well known Agile process. These

processes are all highly adaptive and take as fundamental the
assumption that the most important criterion in a project’s success is

the quality of the people working on the project, and on how they
work together. Agile methods use short time-boxed iterations of up

to a month in duration and utilise UML in sketch mode. Agile

methods are often characterised as being lightweight which means
that there is a minimum of documentation and control points during

the project.

11.3 Exercises

1. What is an iteration retrospective? What is a project

retrospective?

2. Compare predictive and adaptive approaches to project

planning.

56

Summary

3. What milestones can be set for an iterative project? Are there

any ways of estimating project duration for an iterative process?

Answers

1. An iteration retrospective is a meeting by the team at the end of

each iteration with the intention of working out what went well
and how things can be improved. This meeting can be short,

perhaps a couple of hours. It is helpful to maintain a list:

Keep: parts of the process that worked well and should be
remembered and used in the next iteration.

Problems: parts that did not work well

Try: changes to improve the process.

A project retrospective happens at the end of the project, or at a
major release, and is formal, lasting a couple of days. The

project retrospective can use the same list as the iteration
retrospective, but now the lessons learned apply to the next

project, rather than the next iteration.

2. In predictive planning, an initial stage serves to provide the
manager with enough information to make long term plans for

the second, hopefully predictable, stage of development. This

means that the manager can develop a contract stating how
much the project will cost, what shall be built, and what will be

delivered. This is only possible if precise and accurate

requirements are available, and change is not expected.

In adaptive projects, requirements change is treated as normal.

The project becomes controllable, but is still unpredictable.
Plans are still made in adaptive projects, but the plans are

treated as baselines to assess the consequences of change and
are not a prediction of the future. An adaptive approach is

recommended in the absence of precise, accurate and static

requirements. An adaptive plan can fix a budget and a delivery
time but can not predict what functionality will be delivered

within these constraints. Only iterative processes can be

adapted in this way. Predictive planning can be used with any
process, although it is best suited to a waterfall or staged

delivery process.

3. Since each iteration must finish with tested code of production
quality, we might mark each iteration by delivery of a particular

functionality. This can help measure the progress of a project,
but it does not help with time estimation. It has been suggested

that the use cases - which represent functionalities - are a basic

unit of process time. Of course, the time to implement a
particular use case must still be guessed.

11.4 Summary

After studying this chapter you should be able to

discuss the responsibilities of a project manager

explain why estimation of cost and project duration is difficult

discuss the management of component based developments

explain the terms iteration and project retrospectives

57

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

explain predictive and adaptive planning

explain requirements churn, and its relationship to predictive

and adaptive projects

58

Part IV

Resources

59

Chapter 12

Analysis and design of a personal

0rganiser

12.1 Scenarios

Make Appointment

The user scrolls the calendar to the date of the event. The user clicks on

a time box and selects the menu option ”schedule event”. A form

appears on the screen and the user enters some event details. It’s a

meeting with a client at the office, and it is not a regular event. The

user sets the alarm and arranges for an email reminder to be sent to

the client. The user fills in an additional note ”wear suit”. The user

clicks OK, the form disappears and the calendar displays a red circle

around the date of the appointment.

Make Appointment at a past date

The user scrolls the calendar to the date of the appointment. The user
clicks on a time box and selects the menu option ”schedule event”. A

warning box appears on the screen with the message ”Cannot schedule

event for a past date. The user clicks OK, the warning vanishes and the

screen returns to the calendar.

12.2 Use cases

Make Appointment

Goal Level: Level 1

Main Success Scenario:

1 User scrolls calendar to date of appointment

2 User clicks on time box and selects schedule event

3 User specifies the type of event

4 User chooses if the alarm should be set

5 User chooses a regular event or single event

6 User chooses whether or not to send an email reminder, and to
whom.

7 User completes any further meeting notes

8 User clicks OK and the calendar is displayed with a red circle

around the date of the appointment

Extensions:

61

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

2a User has attempted to schedule an event in the past. A warning

box is displayed and the user must click OK

12.3 Class Identification

List of nouns from the two scenarios above:

Calendar

Date

Appointment

Time

Time box

Menu

Form

Screen

Event

Meeting

Client

Office

Regular event

Alarm

Reminder

Note

Red circle

Warning box

Message

The following nouns all refer to the Organiser display: Menu, Form,
Screen, Red circle, Warning box, Message, time box. These are

possibly already represented by Java classes.

Meeting, Office and Note are the details of a particular event.

Client is particular role and is a potential class.

Calendar, Date, Appointment, Time, Event, Alarm, Regular event

and Reminder are tangible, long lasting, real word objects (for
example they could exist in a conventional paper-based organiser,

post-its etc.) and are good candidate classes.

12.4 UML diagrams

62

UML diagrams

E v e n td a t e : D a t e [1]d e t a i l s : S t r i n g [1]i s A l a r m e d () : B o o l e a n
C a l e n d a rc u r r e n t T i m e () : I n t e g e rd i s p l a y C u r r e n t (a p p o i n t m e n t s : L i s t)

* { o r d e r e d }a p p o i n t m e n t s
R e g u l a r E v e n tf r e q u e n c y : I n t e g e r

A l a r md a t e : D a t e [1]r i n g ()c a n c e l ()
10 . . 1

Figure 12.1: A class diagram for the use case Make Appointment

63

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

C a l e n d a r E v e n tn e w
A l a r m

d a t e
c o n f i r m d a t en e w E m a i ld a t e

A d d r e s s B o o k

n e w
a d d r e s sm e s s a g e

g e t C u r r e n t D a t e
m a k e A p p t

Figure 12.2: A sequence diagram for the scenario Make Appointment

64

UML diagrams

E v e n td a t e : D a t e [1]d e t a i l s : S t r i n g [1]f r e q u e n c y : I n t e g e ri s A l a r m e d () : B o o l e a n
C a l e n d a ra p p o i n t m e n t s : L i s t [1]c u r r e n t T i m e () : I n t e g e rd i s p l a y C u r r e n t (a p p o i n t m e n t s : L i s t)

* { o r d e r e d } M e e t i n gn a m e : S t r i n g

A l a r md a t e : D a t e [1]r i n g ()c a n c e l ()
1

0 . . 1
R e m i n d e rm e s s a g e : S t r i n g

A p p o i n t m e n ta t t e n d e e s : L i s t
E m a i la d d r e s s : S t r i n gm e s s a g e : S t r i n gs e n d D a t e : D a t e

1 *

A r e g u l a r e v e n t h a sf r e q u e n c y > 1 .
Figure 12.3: A refined class diagram for the use case Make Appointment

65

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

C r e a t ed o / s e t d a t e a n d t i m ef i e l d s

I m m i n e n td o / s e n d e m a i l r e m i n d e r

F u t u r ed o / r e d c i r c l e i n c a l e n d a r
[d a t e > t o d a y] [d a t e < = t o d a y]

[d a t e = t o d a y ÿ 1
[d a t e = t o d a y] T o d a yd o / r i n g a l a r m

P a s t
t i m e > e n d o f e v e n t

d e l e t ed e l e t e
d e l e t e d e l e t e

Figure 12.4: State machine for the class Event

66

UML diagrams

A c t i v a t eA l a r m
S e n dE m a i l[r e m i n d]4 8 h o u r sb e f o r ee v e n ts c h e d u l e dd a t e s

t i m e o f e v e n t
2 4 h o u r sb e f o r ee v e n t

C a n c e l

l a s td a t e
D e a c t i v a t eA l a r m

Figure 12.5: Activity diagram for event alarm

67

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

68

Chapter 13

Sample examination paper

13.1 Advice

You will be asked to demonstrate your knowledge of the principles
of software engineering (Part I), product and process quality (Part

III) and UML notation (Part II). Additionally, you will be tested on

your ability to develop software architectures by drawing UML
diagrams for a simple design problem (any of the diagrams from

Part II). You should know how each UML modelling technique is

placed within the whole development process (summary sections of
Chapters 3 - 8 and Chapter 9). It is important, too, that you

understand, and can use, the non-diagrammatic aspects of part II:
requirements capture by use case and scenario development

(Chapter 3) and class identification (Chapter 4).

A good revision strategy would be to confirm that you can do all of

the things listed in the summary sections that close each chapter.

The exercises and learning activities which are part of each chapter
provide valuable revision material and examples of questions at

examination level. It is strongly recommended that you re-visit

either the Personal Organiser or the Space Game project and
practise developing these diagrams from scratch.

You should not assume that just because there are three parts of the

guide, and that there are three questions in the examination, that

each question will test your knowledge and understanding from just
one part. The exam will test how well you have integrated all

aspects of this course and you should accordingly revise all the

material presented on this guide. However you need only answer
two questions to obtain full marks, so take some time at the start of

the exam to decide which two questions you can answer best.

Good luck!

13.2 Questions

Duration: 1 1

2
hours

Full marks will be awarded for complete answers to a total of two

questions. Each question carries 25 marks. The marks for each part
of a question are indicated at the end of the part in [] brackets.

There are 50 marks available on this paper.

Electronic calculators are not allowed.

1. NailIt is a proposed on-line hardware store. Calculate price

69

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

of order is a scenario that has been written during the

requirements capture phase of the project. Read this scenario
carefully and answer the following questions.

Calculate price of order

A customer has placed an order with an on-line hardware store.

The order consists of three order-lines: 9 boxes of nails, 144
wood screws and a packet of washers. The price of the order is

calculated by looking up the unit price of each line-item (box of

nails, wood screw, packet of washers), and multiplying this price
by the number of items in the order, and then summing over all

order-lines. The system then calculates a possible discount,

determined by some rules that relate to the customer and the
order.

(a) Use this scenario to make a list of possible classes. [3
marks]

(b) Prepare a candidate class list by considering each class in

turn from the list of part (a). Explain your reasons for
choosing/eliminating each possibility. [5 marks]

(c) Explain the meaning of an association class in a UML class

diagram. [5 marks]

(d) Draw a class diagram for the classes that are involved in the
scenario Calculate price of order. [12 marks]

2. (a) What are the aims of testing? [3 marks]

(b) What is the criterion for a successful test? [1 mark]

(c) What is black box testing? [2 marks]

(d) What is white box testing? [2 marks]

(e) Explain the three modes of use of UML. [8 marks]

(f) Figure 13.1 shows a UML diagram. What is the name of this

type of diagram? Arrows A, B, C and D refer to elements of
this diagram. Name these elements and explain their role in

the diagram. [9 marks]

CBA

D
Figure 13.1:

3. (a) It is frequently said that the problem of software complexity

can be tackled by modularisation. Modules should have high
cohesion and low coupling and present a simple interface.

Explain the meaning of these italicized words. [6 marks]

70

Answers

(b) Customers at NailIt, a proposed on-line hardware store, are

represented by instantiations of a Customer class. Write an
interface for a customer class. Your interface should include

at least four attributes and operations (only two of which

may be data accessors). [8 marks]

(c) The NailIt project manager has broken the 1 year project
down into four activities: requirements analysis (2 months),

design (4 months), coding (3 months), testing (3 months).

Which software development process is being suggested by
this plan? Explain your answer. [3 marks]

(d) Which software process would you recommend to the NailIt

manager? Explain how the four project activities would fit

into your process, giving timescales where appropriate. [8
marks]

13.3 Answers

1. (a) Customer, order, store, order-line, box, nail, screw, packet,

washers, price, unit price, line item, discount, rules.

(b) Customer: Yes - a customer class would have data and
behaviours such as calculate discount

Order: Yes - corresponds to an order in real life

On-line hardware store: No - this is the whole system

Order-line: Yes - an order is made up from various

order-lines

Box, nail, screw, packet, of washer: No - too specific, relates

to a particular order-line

Price: No - a Price class would not have any interesting

behaviour in itself. Can probably be included as a data field

in another class

Line-item: Yes, an actual thing (box of nails, screws, packet

of washers)

Unit price: No, this is an attribute of an item, not

sufficiently rich in behaviour for a class

Discount: No - a method could use the rules to calculate this

Rules: Yes/no - could be hard-wired into the customer class,

but might also be an association class for Customer-Order

(c) An association class adds attributes and operations to

associations. [Diagram similar to Figure 5.12 in UMLD].
There can only be one instance of an association class

between any two participating objects.

(d) See Figure 13.2

2. (a) The aims are: to find bugs, to convince the client that there

are no important bugs, and to provide information for
further development.

(b) A successful test causes the module/system to fail.

(c) Black box testing is done without knowledge of the
implementation. The system/module is tested against the

specification. Only the public interface of the module is
available to the tester.

(d) The full code is available in white box testing. For example,
a loop might be scrutinised for abnormal termination

conditions.

71

CIS226 Software Engineering, Algorithm Design and Analysis Volume IO r d e rp r i c e : M o n e yi t e m s : L i s t o f o r d e r l i n e sg e t P r i c e (i t e m s) : M o n e y
O r d e r L i n eq u a n t i t y : I n t e g e ri t e m : I t e mg e t P r i c e (i t e m) : M o n e y

I t e mp r i c e : M o n e y

1★[o r d e r e d]★1

C u s t o m e rn a m e : S t r i n ga d d r e s s : S t r i n g★ 1R u l e sd i s c o u n t

Figure 13.2: Class diagram for Question 1(d)

(e) In sketching mode, UML is an informal method of
expressing ideas about the system. Sketches may rough out

some ideas about code before it is written. Sketches can

also be used to explain the essence of a piece of code
(reverse engineering). Sketching is informal, dynamic,

often undertaken by a small team around a whiteboard.

UML in blueprinting mode is comprehensive and complete,

allowing the programmer to code directly from the
diagrams. Blueprinted UML is very detailed, rather like

engineering drawings. In reverse engineering, the

blueprints show every detail about a class. Whereas UML
sketches are explorative, UML blueprints are definitive.

UML in programming mode becomes equivalent to source

code itself. A sophisticated tool will convert the diagrams

into executable code.

(f) An activity diagram.

A: A send signal. Send signals indicate where an activity

receives an even from an outside process. The activity

constantly listens for these signals and the diagram shows
how the activity reacts.

B: A join. The outgoing flow from a join is taken only when

all the incoming flows have reached the join.

C: An action. This is the basic unit of the activity - an

activity is a sequence of individual actions. Actions will be

72

Answers

implemented either as sub-activities or as methods on

classes.

D: This is a rake symbol. It indicates that the action stands

for an entire sub-activity.

3. (a) Modularisation is the division of software into smaller
programming elements. Java provides a hierarchy of

modules: methods, classes, packages.

A Cohesive module performs a single task and requires little

interaction with other modules to accomplish this. For
example, a method should do only one thing or alter a

single value, with no other side effects.

Coupling refers to the connectivity between modules.

Ideally this should be at a minimum and this is not always
in object systems where there is no check to the number of

modules that can be inter-related.

(b)
-name: String

-address: String

-cardNumber: Integer

-isRegularCustomer: Boolean

+getName(): String

+setName(name: String): void

+calculateDiscount(): Float

+getCreditRating(): Float

(c) This is a waterfall style because each activity occurs once

and there is no (or, only exceptionally) back flow to
previous activities.

(d) An iterative style is far better. The project is broken down

into subsets of functionality. A single iteration negotiates
the complete software cycle: analysis, design, coding and

testing. Four 3 month iterations might be planned, each one

delivering one quarter of the functionality. This is called
time boxing. The system should be of prediction quality at

the end of each iteration. If it is not possible to build all of
the functionality during a particular time box, then some of

the planned functionality must be dropped. Unlike the

waterfall style, iterative approaches allow for code rework
and deletion, so that poorly designed code can be replaced

rather than patched.

73

	Introduction
	I Principles
	Software Engineering
	What is a good system?
	The problem
	Building systems with objects
	OO design
	Exercises
	Summary

	Development Process and Modelling
	Iterative and waterfall processes
	Design and modelling
	A unified modelling language: UML
	Fitting UML into a process
	Exercises
	Summary

	II UML
	Use Cases
	Requirements capture
	The basic technique
	When to use use cases
	Exercises
	Summary

	Class Diagrams: The basic technique
	Class identification
	Properties
	Properties as code
	Adding more information to the class model
	When to use class diagrams
	Exercises
	Summary

	Sequence Diagrams
	The basic technique
	Advanced techniques
	When to use sequence diagrams
	Exercises
	Summary

	Class Diagrams: Advanced techniques
	Responsibilities and collaborators
	Static operations and attributes
	Aggregation and composition
	Interfaces and abstract classes
	Classification
	Association classes and visibility
	When to use advanced concepts
	Exercises
	Summary

	State Machine Diagrams
	The basic technique
	Implementing state diagrams
	When to use state diagrams
	Exercises
	Summary

	Activity Diagrams
	The basic technique
	Advanced techniques
	When to use activity diagrams
	Exercises
	Summary

	Summary of UML modelling techniques

	III Quality
	Product Quality
	Verifying software
	Validating software
	Testing
	Exercises
	Summary

	Process Quality
	Project management
	Project planning
	Exercises
	Summary

	IV Resources
	Analysis and design of a personal 0rganiser
	Scenarios
	Use cases
	Class Identification
	UML diagrams

	Sample examination paper
	Advice
	Questions
	Answers

