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Introduction

In The Cognition of Basic Musical Structures, David Temperley presents a computational theory of music
cognition that is deeply influenced by Lerdahl and Jackendoft’s (1983) 4 Generative Theory of Tonal Music
(henceforth, GTTM). Like Lerdahl and Jackendoff, Temperley attempts to explain the cognition of common-
practice music by means of a system that generates structural descriptions from musical ‘surfaces’. As in GTTM,
the hypothesis underlying Temperley’s theory is that the analysis it generates for a passage of common-practice
music correctly describes certain aspects of how the passage is interpreted by listeners who are experienced in
the idiom.

Like GTTM, Temperley’s theory consists of a number of preference rule systems, each containing well-
formedness rules that define a class of structural descriptions and preference rules that specify an optimal
structural description for a given input. Temperley presents preference rule systems for six aspects of musical
structure: metre, phrasing, counterpoint, harmony, key and pitch spelling.

In collaboration with Daniel Sleator, Temperley has implemented most of his theory as computer programs.
Finding the best analysis satisfying a given set of preference rules is an optimisation problem that can be solved
using a technique called dynamic programming (Bellman, 1957; Cormen et al., 1990, Chapter 16). Each of
Temperley’s six models is implemented using the dynamic programming technique, the systems for harmony
and pitch spelling being combined into a single program.

Temperley evaluated each of his six models using objective tests. For example, he tested his metre program on a
corpus of 46 excerpts from a theory workbook by Kostka and Payne (1995), comparing the output of the
program with the scores of the excerpts.

The input representation

Temperley’s systems take ‘piano-roll’ representations as input (Temperley, 2001, pp. 9—12). Such
representations give the pitch of each note (expressed by its MIDI number) and its onset- and offset-time (in
milliseconds). Piano-roll representations can automatically be derived from MIDI files. If they are derived from
MIDI files created using notation software, then they will be ‘metronomic’ representations in which the onset-
times and durations are strictly proportional to their notated values. Piano-roll representations can also be derived
from performances on MIDI instruments, in which case they will be ‘expressive’ representations in which the
timing is not strictly regular because of slight imperfections and expressive tempo changes. Temperley's theory
works with both ‘metronomic’ and ‘expressive’ piano-roll representations (Temperley, 2001, p. 12).

As Temperley (2001, p. 361, note 2) observes, the programs implementing his theory can be used as the basis of
a tool for computing a staff-notation score from a performance on MIDI instruments. If this had been his primary
motivation, then using piano-roll representations as input would certainly have been appropriate.
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However, Temperley’s goal was to construct a computational model of how ‘we extract basic kinds of musical
information...from music as we hear it’ [my emphasis] (Temperley, 2001, p. ix), and using piano-roll
representations as input to such a model may be inappropriate, as I shall now explain.

Temperley (2001, p. 5) claims that one can model a cognitive process at the computational level ‘without
worrying about how it might be instantiated neurologically’. However, in order to be feasible, a computational
model of musical listening must be consistent with the neurology, physiology, psychophysics and psychology
underlying musical listening. In particular, the information used by the model must be either present in the input
to that part of the auditory system that performs the process being modelled, or it must be derivable from this
input using a procedure that could feasibly be performed by that part of the auditory system. I believe that some
of the information used by Temperley’s preference rule systems for metre, phrasing, harmony and key is not
available to those parts of the auditory system that extract these types of information.

A piano-roll representation of a musical passage specifies the notes that need to be played in order to perform the
passage. For most listeners, even singing all the notes in a single close position chord is harder than tapping in
time with a passage or identifying phrase boundaries. In general, identifying the notes that have been played is
harder even than singing the root of a chord or the tonic of a short passage. Scheirer (2000, p. 70) goes so far as
to claim that ‘there are no mental entities that correspond to events happening in the music being heard’.

Temperley claims that his theory models the cognitive processes involved in tasks such as
tapping in time to a passage;
identifying phrase boundaries;
identifying the root of a chord; and
identifying the tonic of a passage.

These are all tasks that many listeners can perform successfully as they listen to a passage for the first time or
immediately after hearing it once. Specifically, they are all tasks that can be performed successfully without first
identifying all the notes that have been played. Indeed, even expert transcribers often have to listen many times
to a complex passage in order to identify successfully the notes that have been played. This suggests that those
parts of the auditory system responsible for identifying metre, phrasing, harmonic roots and key tonics during
listening neither require nor have access to detailed information about the notes that have been played. Yet this
information is explicitly encoded in the piano-roll representations used as input to Temperley’s models of metre,
phrasing, harmony and key.

Metrical structure

Most of the rules in Temperley’s model of metre are borrowed from the metre component of GTTM (see Table
1). However, unlike most previous approaches, Temperley’s metre model can process ‘expressive’ polyphonic
input representations. Temperley's system first quantizes the event onsets and offsets in the input representation
to the nearest ‘pip’ (35 ms). This improves the running time of the metre program by dividing the number of
possible instants at which onsets and offsets can occur by 35.

Temperley’s MPR 1 (Temperley, 2001, p. 32) states that strong beats should preferably be aligned with event-
onsets and Temperley proposes that ‘the more event-onsets at a time point, the better a beat location it is’
(Temperley, 2001, p. 33). As Temperley points out, in a human performance the notes of a chord are seldom
played precisely simultaneously leading to what he calls ‘smudged chords’ in which the event-onsets may differ
by up to 20 ms (Temperley, 2001, p. 40). This means that some event-onsets that are intended to be simultaneous
are not. Consequently, the number of event-onsets at a given time point in an ‘expressive’ input representation
may not be a good indicator of how strong a beat it is. Temperley claims that quantizing the ‘expressive’ input
into pips, causes the onset-times of the events in a smudged chord to be made equal. However, this would seem
to be a rather hit-and-miss strategy, given that if a pip is 35ms long, then two events that are 20 ms apart are
more likely to be quantized to different pips than to the same one!

I argued above that identifying all the note events in a passage is not a prerequisite for being able to tap in time to
it. In particular, listening to a chord and then identifying the number of notes played is a hard task. Whereas most
listeners can tap in time with a passage at various metrical levels, only highly trained transcribers can reliably
identify the number of note events that occur simultaneously at each point in the passage as they hear it.
Temperley’s proposal that a listener’s perception of the metrical strength of a time point is influenced by the
number of event-onsets that occur at that time point is therefore not feasible.
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Lerdahl and Jackendoff’s (1983, pp. 72, 347) MWFR 4 specifies that beats at the tactus level and above must be
‘equally spaced’. Clearly, this only applies if the input is a ‘metronomic’ representation. Temperley enables his
model to handle ‘expressive’ representations by re-expressing Lerdahl and Jackendoff's MWEFR 4 as a preference
rule (MPR 3), stating that beats at each level should be ‘maximally evenly spaced’ (Temperley, 2001, p. 35).
Despite this modification, his program produced rather better results with ‘metronomic’ input representations
than with ‘expressive’ ones (Temperley, 2001, p. 45).

Although Temperley carried out objective tests to evaluate his theory of metre, he did not compare its
performance with that of other models. He also does not mention any relevant work on metre published since
1996, ignoring, for example, important recent work on audio beat-tracking and tempo-tracking (Dixon, 1999,
2000; Dixon and Cambouropoulos, 2000; Scheirer, 1998, 2000).

Melodic phrase structure

Temperley's theory of melodic phrase structure (Temperley, 2001, Chapter 3) is the least well-developed and
least successful of his models. It only works on monophonic music with a regular metric structure which must be
explicitly supplied as input to the system. This phrase-structure model consists of just three rules, none of which
take pitch structure into account.

The first of the phrase structure preference rules, PSPR 1 (Temperley, 2001, pp. 68, 358), is a modification of
Lerdahl and Jackendoff’s (1983, pp. 45, 344) GPR 2. It is a simple variation on the Gestalt principle of
proximity.

The second rule, PSPR 2 (Temperley, 2001, pp. 69, 358), is a simplistic and ad hoc rule that claims listeners
prefer phrases to contain about 8 notes. In practice, the average number of notes per phrase depends on the style,
genre and instrumentation of the music. For example, as Temperley (2001, p. 82) himself points out, in
instrumental music, phrases routinely contain many more than 8 notes. Even in the sample of simple folk songs
that Temperley used to test his implementation, the average length of phrases was 9.2 notes, which meant that
the model performed best on this particular corpus when PSPR 2 was modified to favour 10-note phrases
(Temperley, 2001, p. 74). This illustrates just how ad hoc PSPR 2 is.

PSPR 3 (Temperley, 2001, pp. 70, 358) is a half-hearted attempt to model the effect of parallelism on grouping.
Temperley acknowledges that identifying parallelism (i.e., significant repetitions) is an important factor in
grouping structure (Temperley, 2001, p. 69), metrical structure (Temperley, 2001, pp. 49-51) and contrapuntal
structure (Temperley, 2001, p. 113). However, he considers it to be a ‘huge and complex problem’ and so does
not attempt to solve it in his preference rule systems, even though many of the mistakes made by these systems
seem to be due to their failure to take parallelism into account.

In fact, in recent years, considerable progress has been made in constructing computer programs for discovering
parallelism not only in monophonic music (e.g., Rolland, 1999) but, more recently, in polyphonic music also
(Meredith et al., 2001, 2002). Indeed, Cambouropoulos (1998a,b, 2001b) has presented a sophisticated
computational model of grouping and parallelism in monophonic music which performs considerably better than
Temperley’s simplistic model on a range of different musical styles. One wonders why Temperley omitted to
mention this closely related work. Also, as with his model of metre, Temperley did not compare the performance
of his melodic phrase structure model with that of other computational models of phrasing and grouping
structure.

Contrapuntal structure

Temperley’s model of contrapuntal structure is based on auditory stream segregation (Bregman, 1990). His CPR
1 (Temperley, 2001, p. 100) states that large pitch intervals should be avoided within streams. This clearly
derives from the principle, discovered by van Noorden (1975), that listeners cannot hear a sequence of
alternating tones as belonging to a single stream when the frequency difference between the tones is greater than
a certain value known as the ‘temporal coherence boundary’ (TCB) (Bregman, 1990, pp. 59-60). However, the
TCB increases approximately linearly with the duration of the tones in the sequence. This suggests that the
likelihood of two consecutive tones being perceived to be in the same stream depends not only on the pitch
interval between them but also their durations. In Temperley’s model, each interval incurs a penalty that is
proportional to its size. One wonders whether the system’s performance could be improved by considering the
durations of the tones involved in each interval. Also, Ortmann (1926) (cited by Bregman, 1990, p. 462) showed
that, although the frequency of occurrence of intervals between consecutive tones in melodies is roughly
inversely proportional to interval size, harmonic intervals occur more often than predicted by this simple rule.
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One wonders whether the performance of Temperley’s system could be improved by making the penalty
imposed on each interval depend on its frequency of occurrence within melodies.

Temperley’s counterpoint model accounts well for the effects of repetition, rate of alternation and frequency
separation on the perception of streams in two-tone alternating sequences (Temperley, 2001, pp. 106-107; see
also Bregman, 1990, pp. 58—-65, 128—130). He also claims that listeners have a ‘perceptual abhorrence ... for
having multiple simultaneous notes in a single stream’ (Temperley, 2001, pp. 107-108) and his second
contrapuntal well-formedness rule (CWFR 2) (Temperley, 2001, p. 98) ensures that this never happens in the
analyses generated by his system.

However, it seems to me that musical streams often contain ‘sound objects’, each one perceived as a single
percept but notated and produced using two or more notes. Consider, for example, a sequence of close position
chords such as those in the left hand in Figure 1 or a theme played in octaves such as that in the right-hand in
Figure 2. Thus, while it may be true that musical streams must contain no more than one ‘unified percept’ at any
given instant, it is surely not true that each of these percepts must be a single note.

Temperley (2001, p. 366) suggests that ‘polyphonic’ streams like those in Figures 1 and 2 are actually ‘higher-
level’ streams and he claims he is concerned only with the ‘lowest-level” streams, in which no more than one
note occurs at a time. However, his stated goal is to model music cognition not construct a music transcription
system, so his concern should have been with what listeners sear. And while anyone who understands music
notation might be able to see a multi-level, hierarchical organization of note-streams in a score, most of us are
incapable of hearing such complexities. Thus, Temperley’s claim that he is concerned only with streams that
contain no more than one note at a time seems to conflict with his goal of explaining how listeners extract
information from music as they hear it.

Pitch spelling

Temperley distinguishes between neutral-pitch-classes (NPCs), which are the usual pitch classes as used in pitch
class set theory, and tonal-pitch-classes (TPCs) which are identified using note names with the octave
designation omitted (i.e., G sharp, A flat, etc.). The basic idea underlying Temperley’s pitch spelling system is
that nearby events in the music have TPCs that are as close together as possible on the ‘line of fifths’—an
infinite unidimensional space in which each TPC is separated from the next by a perfect fifth. Thus, Temperley
claims we prefer to spell the upper note in the final chord in Figure 3 as C sharp because it is nearer to the
‘center-of-gravity’ (COG) of the preceding notes when they are represented on the line of fifths (Temperley,
2001, p. 120).

According to harmonic theory (see, for example, Piston, 1978), the pitch name of a note is determined by its
perceived function within the ambient key. Thus, in Figure 3 there is no preferred spelling for the upper tone in
the final chord because the correct spelling depends upon how the fragment is continued. If it is continued as
shown in Figure 4a, then the correct spelling would be C sharp; but if it is continued as shown in Figure 4b, then
the correct spelling would be D flat. It may be that the continuation in Figure 4a is more expected than that in
Figure 4b, but the way a tone is spelt is not determined by expectation, it is determined by its tonal function.

Temperley and Sleator implemented the pitch-spelling and harmonic structure models together in a single
program in order to incorporate the ‘Harmonic Feedback Rule’ (TPR 3) (Temperley, 2001, p. 131) which causes
the system to prefer TPC representations that result in ‘good’ harmonic representations. Temperley therefore
does acknowledge that harmonic structure is a factor in pitch spelling. However, he emphasizes that ‘one of the
main claims’ of his model ‘is that spelling can be accomplished without relying on “top-down” key information’
(Temperley, 2001, p. 126). Since one can only determine if a note is spelt correctly by analysing the harmonic
and key structure of its context, it follows that any pitch-spelling method that does not employ harmony and key
information must be just a ‘rule-of-thumb’ that may give the right results surprisingly often, but not for the right
reasons and not in all cases. Temperley’s claim that ‘recognizing spelling distinctions at the level of pitches
provides useful input in harmonic and key analysis’ (Temperley, 2001, p. 122) therefore seems to be the reverse
of what happens in perception.

It is not always easy, however, to determine the correct spelling of a note from the harmonic and key structure of
its context. For example, as Piston (1978, p. 390) observes, the tenor E flat in the third and fourth bars of Figure
5 should be spelt as a D sharp if one perceives the harmonic progression here to be “II*-I as shown. But spelling

the soprano E flat in the fourth bar as D sharp would result in a strange melodic line.

As with his metre and phrasing models, Temperley fails to compare the performance of his pitch spelling
program with that of other systems. He also again omits to mention certain important closely-related work—in
particular, the pitch-spelling algorithm developed by Cambouropoulos (1996, 1998b, 2000). This is especially
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unfortunate because, like Temperley’s system, Cambouropoulos's algorithm derives pitch-spelling without
(explicitly) considering harmonic and key information. Also, Cambouropoulos (2001a) shows that his system
performs better than Temperley’s on a corpus of Mozart sonatas containing over 40000 notes.

Harmonic structure and key structure

Temperley divides the problem of harmonic analysis into two subproblems: root-finding and key-finding. His
preference rule system for harmonic structure performs the first of these tasks, his key-structure system performs
the second.

As I see it, the only problematic feature of Temperley’s harmonic structure system is the fact that it requires TPC
information as input (see discussion above). Even this problem is mitigated by the ‘Harmonic Feedback Rule’
(TPR 3) (Temperley, 2001, p. 131). Two nice features of this harmonic structure model are its ability to deal with
unaccompanied melodies (Temperley, 2001, pp. 159-160) and the fact that it takes tempo into account
(Temperley, 2001, pp. 161-162). The latter feature models the fact that some tones that are perceived as chord
tones at slow tempos may be considered ornamental at faster tempos.

Temperley’s key-finding algorithm is based on that of Krumhansl and Schmuckler (Krumhansl 1990, Chapter 4).
This algorithm predicts that the perceived key of a segment is the one whose tonal hierarchy most closely
correlates with an ‘input vector’ giving, for each pitch class, the sum of the durations of tones with that pitch
class within the segment. As an example, Temperley presents a table (Temperley, 2001, pp. 175, Table 7.1)
giving the correlation between the input vector for the first bar of ‘Yankee-Doodle’ (Figure 6) and the tonal
hierarchy of each of the major and minor keys. Unfortunately, the values in Temperley’s table are incorrect—the
correct values are shown in Table 2. As can be seen, the tonal hierarchy (or key-profile) of G major correlates
most strongly with the input vector of the “Yankee-Doodle’ extract, so the algorithm correctly predicts the
perceived key of this segment.

Temperley modifies the Krumhansl-Schmuckler algorithm in three ways. First, he modifies the tonal hierarchies
by increasing the difference between the diatonic and chromatic degrees, decreasing the relative value for the
flattened seventh degree and increasing the value for the leading note by a relatively large amount (Temperley,
2001, p. 180). Second, he uses ‘flat’ input vectors in which the value for each pitch class is 1 or 0, indicating
whether or not the pitch class is present in the segment (Temperley, 2001, p. 182). Third, he adapts the tonal
hierarchies for use with TPC rather than NPC input, assigning the lowest values to the flattened seventh and all
TPCs more than 5 steps away from the tonic or dominant on the line of fifths (Temperley, 2001, pp. 183-187).
As discussed above, using TPC information to determine key seems to be the reverse of what happens in
perception—one generally needs to take key into consideration in order to determine whether or not a note-
spelling is correct.

Temperley tested two versions of the algorithm, one taking TPC information as input as described above, the
other using just NPC information. He also compared the performance of his algorithm with that of algorithms
described by Longuet-Higgins and Steedman (1971), Vos and van Geenen (1996) and Holtzman (1977)
(Temperley, 2001, pp. 191-198). Temperley found that his algorithm was not as successful at finding the main
keys of the fugue subjects in Bach’s Das Wohltemperirte Klavier as the algorithms of Holtzman and Longuet-
Higgins and Steedman. However, as Temperley (2001, p. 193) points out, these algorithms are rather limited,
being incapable of dealing with modulations and polyphonic music. Interestingly, he found that the NPC version
of his algorithm performed nearly as well as the version that was provided with TPC information (Temperley,
2001, p. 198).

Revision, ambiguity and expectation

Temperley argues that the preference rule approach can be used to model ambiguity as well as certain
‘diachronic’ aspects of musical listening. He points out that, because they use dynamic programming, each of his
programs analyses the input in a ‘left-to-right’ manner, keeping track of a set of ‘best-so-far’ analyses as it
proceeds. Typically, at each step in this process one of these ‘best-so-far’ analyses scores highest, in which case,
Temperley proposes, the degree of ambiguity perceived at that step will be low. If, however, there are two or
more highest-scoring analyses at a given step, then the perceived ambiguity will be greater (Temperley, 2001, p.
219). Also, the highest-scoring analysis for a step might not be contained within the highest-scoring analysis for
some later step and this, Temperley suggests, models the phenomenon of ‘revision’, where a listener reinterprets
an event in the light of a later one (Temperley, 2001, pp. 206—7). Temperley, (2001, p. 232) also proposes that
‘the more expected events’ are ‘those permitting a more “high-scoring” analysis’.
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Temperley provides various examples of musical expectation (Temperley, 2001, pp. 231-235), ambiguity
(Temperley, 2001, pp. 219-230) and revision (Temperley, 2001, p. 214) and discusses how his models might
account for them. In particular, he gives examples of ‘tonal’ revision in which the key of a segment is
reinterpreted in the light of later evidence. He provides two examples of output from a version of his key
program adapted to give a ‘running analysis’ of a passage. The second of these examples is an analysis of 16 bars
from a Chopin Mazurka (Op. 67, No. 2) (Temperley, 2001, p. 217). The tonality of this passage oscillates
between G minor and B flat major. However, although the program correctly identifies the modulations, it
predicts that each one causes the listener to reinterpret everything that has gone before as being in the new key. I
find this particular example unconvincing. However, his use of preference rules to account for expectation,
ambiguity and revision is, in general, elegant and compelling.

Application of the theory to rock music and African music

Temperley shows that, with small modifications, some of his models can be applied to styles other than common
practice music. Although he does not implement these modified rule systems as computer programs, he provides
in-depth discussions of how his metre, harmony and key models can be applied to rock (Temperley, 2001,
Chapter 9), and how his metre and phrasing models can be applied to African music (Temperley, 2001, Chapter
10).

Generally, authoritative scores exist neither for rock songs nor African music. This makes it more difficult to
evaluate theories of structure in these musical styles (Temperley, 2001, p. 238).

Temperley’s model of metric structure states that event-onsets and stressed syllables of text should preferably be
aligned with strong beats (Temperley, 2001, pp. 32, 51). However, in rock music, stressed syllables and melodic
events very often occur on weak beats (Temperley, 2001, pp.240-242). Temperley (2001, p. 243) therefore
proposes a ‘Syncopation Shift Rule’ which is applied to the ‘surface’ input representation in order to yield a
‘deep representation’ in which each syncopated melodic event has been shifted forward onto the next strong beat.
This deep representation then forms the input to his metre model. It seems possible that this simple modification
might significantly improve the performance of his metre model on rock music. However, he does not explain
how one is supposed to decide which metrically weak melodic events are syncopations.

Temperley (2001, p. 255) also proposes that the performance of his harmony and key models on rock music
could be significantly improved by using deep representations in which the syncopations have been removed.
However, as Temperley points out, rock music uses modality in a way that common practice music does not. In
particular, the Ionian, Dorian, Mixolydian and Aeolian modes are commonly used—sometimes in the same song
(Temperley, 2001, p. 259). For a given tonic, these modes overlap each other on the line of fifths so that if they
are all combined, one gets what Temperley calls a ‘supermode’, spanning 10 positions on the line of fifths
(Temperley, 2001, p. 260). Temperley proposes that this ‘supermode’ be used to construct a new ‘tonal
hierarchy’ adapted for key-finding in rock music (Temperley, 2001, p. 262).

Temperley argues that the same fundamental cognitive structures underlie rhythm perception in both African and
Western music (Temperley, 2001, p. 289) and claims that, with only minor modifications, his metre and
grouping models could account for African rhythm. For example, to Africans, the ‘regularity rule’ (MPR 3,
Temperley, 2001, p. 35) is more important and the ‘accent rules’ (MPRs 1, 2, 7 and 8, Temperley, 2001, pp. 32,
51) are less important than they are to Westerners. A Western listener thus tends to shift the metrical structure to
get a good match with phenomenal accents, whereas an African listener maintains a strictly regular tactus even if
it entails more syncopation (Temperley, 2001, p. 278). An interesting difference between grouping in African
and Western music seems to be that Africans prefer to align strong beats with the ends of phrases (Temperley,
2001, p. 288), whereas, in common practice music, strong beats tend to occur near the beginnings of phrases
(MPR 4, Temperley, 2001, p. 38).

Temperley emphasizes that most of the evidence for rhythm perception in African music comes from
observations and transcriptions made by Western ethnomusicologists (Temperley, 2001, p. 266), whose use of
bar-lines and slurs is often inconsistent (Temperley, 2001, pp. 270, 286). This makes it difficult to evaluate any
theory of African rhythm.

Style, composition and performance

Temperley, (2001, Chapter 11) argues (convincingly) that the preference rule approach can be used to explain
aspects of musical style, composition and performance. When one of his computational models is used to analyse
a passage, it returns not only the ‘most preferred’ analysis but also a numerical score indicating how well this



David Meredith Review of Temperley (2001)

analysis satisfies the preference rules (Temperley, 2001, p. 293). If the score achieved by a passage is very low,
this indicates that the passage cannot be interpreted in terms of the preference rule system. For example,
Temperley’s key-structure model would return a low-scoring analysis for a piece of 12-tone serial music
(Temperley, 2001, p. 297). On the other hand, a passage that achieves a very high score when analysed by one of
Temperley’s models, would, in general, be unacceptably boring (Temperley, 2001, p. 298). Temperley proposes
that between these extremes lies a ‘range of acceptability’ within which pieces are considered to be in the ‘style’
implicitly defined by the preference rule system (Temperley, 2001, p. 314). Passages achieving scores at the high
end of this range will be perceived to be ‘typical’, while those that score at the lower end will be perceived to be
more ‘tense or daring’. In this way, preference rule systems can be used to characterize both musical styles and
musical ‘tension’.

Temperley also proposes that preference rules can be viewed as constraints on compositional practice,
compositional choices being guided by the composer’s goal to produce a piece that ‘optimally’ satisfies the
preference rules governing the musical style in which he or she is working (Temperley, 2001, p. 298). As
Temperley explains (Temperley, 2001, pp. 320-321), the preference rule approach also sheds light on aspects of
performance. For example, one could hypothesize that performers play events that begin on strong beats longer
and louder (Sloboda, 1983; Palmer and Kelly, 1992; Drake and Palmer, 1993) because, according to Temperley's
MPRs 2 and 7, listeners prefer to hear stronger beats on longer, louder events. Also, according to his PSPR 1
(Temperley, 2001, p. 68), listeners prefer to place phrase boundaries between events separated by longer gaps.
This suggests that performers slow down at the ends of phrases because this lengthens the gap in which the
phrase boundary should be heard without disrupting the metric structure.

Motivic structure

In the final chapter, Temperley discusses how the low-level aspects of musical structure modelled by his systems
affect higher-level structure. In particular, he considers motivic structure which he defines to be the ‘network of
segments in a piece heard as similar or related’ (Temperley, 2001, p. 326). His ideas on this topic are based on
those of Deutsch and Feroe (1981). Like them, he stresses the importance in motivic analysis of identifying
appropriate ‘alphabets’ and claims that not just motivic analysis but harmonic and tonal analysis can be viewed
as ‘a search for a parsimonious encoding of musical input’ (Temperley, 2001, p. 328). He supplements the ideas
of Deutsch and Feroe, however, by highlighting the importance of metre in motivic structure. As he points out,
two motivically related patterns are perceived to be related even when they are not played with metronomic
precision, suggesting that the onset-times and durations of the events in the patterns are represented mentally as
‘integer multiples of a low-level beat’ (Temperley, 2001, p. 331). His discussion of motivic structure culminates
with the following hypothesis:

for two segments to be recognized as motivically related, they must be (1) related in pitch
pattern (in the way specified by Deutsch [and Feroe]), (2) identical in rhythm (that is, they must
have the same series of quantized inter-onset intervals), and (3) metrically parallel.

(Temperley, 2001, p. 333)

Temperley points out that this hypothesis is only intended to apply to ‘motivic relations that are recognized in a
direct, automatic way’ (Temperley, 2001, p 380). For example, it does not account for melodic diminutions
(Forte and Gilbert, 1982, Chapter 1). However, anyone who has taught music analysis will vouch for the fact that
some individuals automatically recognize relationships that are not at all obvious to others. Another weakness in
Temperley’s discussion is his failure to review the closely related work of Cambouropoulos and his co-workers
(Cambouropoulos, 1998a,b; Cambouropoulos and Smaill, 1995; Cambouropoulos et al., 1999a,b,c, 2000).

Conclusions

This book is a worthy heir to GTTM that avoids some of the failings of its ancestor through computer
implementation and objective, quantitative testing. For the most part, both the breadth and depth of coverage in
the book is very impressive. Temperley convincingly argues that the preference rule approach can be used not
only to explain aspects of musical listening, but also features of musical style perception, composition and
performance. He also makes a praiseworthy effort to apply his theory to musical styles other than common
practice music.

However, the book does suffer from certain weaknesses. First, there is some question as to whether the input
representation Temperley employs is strictly appropriate for his purposes. Second, he fails to review some
important and highly relevant recent work. Third, the notion that pitch spelling is used to determine harmony and
key seems to be the reverse of what happens in perception. Fourth, his melodic phrase structure model is under-
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developed and ad hoc. Finally, he does not compare the performance of his models of metre, phrasing,
counterpoint, pitch-spelling and harmony with that of other systems.

Nevertheless, I believe this book will (deservedly) become a standard text in computational music cognition and
analysis.
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Temperley GTTM

MWFR1 = MWFR2

MWFR2 = MWFR3
MPR1 = MPR3
MPR2 =  MPR 5a
MPR3 » MWFR4
MPR 4 » MPR 2
MPRS5 = MPR 10
MPR6 » MPR 5f
MPR7 = MPRA4
MPR 8 -
MPR9 » MPR1

Table 1. Correspondence between rules in Temperley's theory of metrical structure and those in the metrical
structure component of GTTM (see Lerdahl and Jackendoff, 1983, pp. 345—347 and Temperley, 2001, pp.
357—358). The symbol ‘=" indicates that the two rules are the same; the symbol ‘»’ indicates that Temperley's
rule is a modification of the rule in GTTM; the symbol ‘—* indicates that there is no equivalent of Temperley's

rule in GTTM.
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Key Score  Key Score
C major 0.274 C minor -0.013
C sharp major -0.559 C sharp minor -0.332
D major 0.543 D minor 0.149
E flat major -0.130 E flat minor -0.398
E major -0.001 E minor 0.447
F major 0.003  F minor -0.431
F sharp major -0.381 F sharp minor 0.012
G major 0.777 G minor 0.443
A flat major -0.487 A flat minor -0.106
A major 0.177 A minor 0.251
B flat major -0.146 B flat minor -0.513
B major -0.069 B minor 0.491

Table 2. Correction of Temperley’s Table 7.1 (Temperley, 2001, p. 175) showing key-profile scores for opening
bar of ‘Yankee-Doodle’ (see Figure 6).
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Figure 1. Opening bars of Beethoven’s Piano Sonata in F minor, Op.2, No.1, first movement.
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Figure 2. Bars 3642 of the fourth movement of Beethoven’s Piano Sonata in F minor, Op.2, No.1.
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Figure 3. The spelling of the upper note in the final chord cannot be determined. (From Temperley, 2001, p.
121.)
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Figure 4. The spelling of the upper note in the last chord in the second bar depends on what follows.
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Figure 5. Example of ambiguous pitch spelling. (From Piston, 1978, p. 390.)
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Figure 6. The opening of “Yankee-Doodle’.
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