
Algorithms for discovering repeated patterns in

multidimensional representations of polyphonic music∗

David Meredith
Department of Computing, City University, London,

Northampton Square, London, EC1V 0HB, United Kingdom.

Tel./Fax: +44 (0)1945 870999.

dave@titanmusic.com http://www.titanmusic.com

Kjell Lemström
University of Helsinki, Department of Computer Science,

P.O.Box 26 (Teollisuuskatu 23), FIN-00014 Univ. of Helsinki, Finland.

Tel.: +358 9 191 44209. Fax: +358 9 191 44441.

klemstro@cs.helsinki.fi http://www.cs.Helsinki.fi/u/klemstro

Geraint A. Wiggins
Department of Computing, City University, London,

Northampton Square, London, EC1V 0HB, United Kingdom.

Tel.: +44 (0)20 7040 8848. Fax: +44 (0)20 7040 8587.

geraint@soi.city.ac.uk http://www.soi.city.ac.uk/~geraint/

Address for correspondence:
David Meredith, The Barn, Middle Broad Drove, Tydd St. Giles, Wisbech,

Cambs., PE13 5PA, UK. Tel./Fax: +44 (0)1945 870999. dave@titanmusic.com

Running head title: Discovering Repeated Patterns in Music

May 9, 2002

∗The algorithms described in this paper are the subject of an active patent application submitted on 23 May 2001
(Meredith et al., 2001).

1

Discovering Repeated Patterns in Music 2

Abstract

In previous approaches to repetition discovery in music, the music to be analysed has been

represented using strings. However, there are certain types of interesting musical repetitions that

cannot be discovered using string algorithms. We propose a geometric approach to repetition

discovery in which the music is represented as a multidimensional dataset . Certain types of

interesting musical repetition that cannot be found using string algorithms can efficiently be

found using algorithms that process multidimensional datasets. Our approach allows polyphonic

music to be analysed as efficiently as monophonic music and it can be used to discover polyphonic

repeated patterns ‘with gaps’ in the timbre, dynamic and rhythmic structure of a passage as

well as its pitch structure. We present two new algorithms: SIA and SIATEC. SIA computes

all the maximal repeated patterns in a multidimensional dataset and SIATEC computes all the

occurrences of all the maximal repeated patterns in a dataset. For a k-dimensional dataset of

size n, the worst-case running time of SIA is O(kn2 log2 n) and the worst-case running time of

SIATEC is O(kn3).

1 Repetition in music

In this paper we address the problem of designing an algorithm for discovering repetitions in music.

Such an algorithm would have both scientific and engineering applications. For example, it could

form an important component in a computational model of expert music cognition and it could also

be used to build useful software tools for music analysts and composers. A music analyst might find

such an algorithm useful for discovering characteristic structural features in the works of a particular

composer or for analysing the structure of a work into its elemental ‘building blocks’. A composer

who is suffering from writer’s block could use such an algorithm to find significant repeated structures

in an unfinished work thus discovering a fresh perspective that might stimulate further progress on

the work. Another important practical use for such an algorithm is for music database indexing

(Lemström et al., 1998; Lincoln, 1967).

Many music analysts and music psychologists (see, for example, Bent and Drabkin, 1987; Lerdahl

and Jackendoff, 1983; Nattiez, 1975; Ruwet, 1972; Schenker, 1954) have stressed that the identification

of perceptually significant repetitions is an essential step in the process by which an expert listener

interprets a musical work. Heinrich Schenker, for example, claimed that repetition ‘is the basis of

music as an art’ (Schenker, 1954, p. 5). Bent and Drabkin (1987, p. 5) observed that ‘the central

analytical act’ in all forms of music analysis is ‘the test for identity’ and Lerdahl and Jackendoff state

that

the importance of parallelism [i.e., repetition] in musical structure cannot be overesti-

mated. The more parallelism one can detect, the more internally coherent an analysis

becomes, and the less independent information must be processed and retained in hearing

or remembering a piece.

(Lerdahl and Jackendoff, 1983, p. 52)

Discovering Repeated Patterns in Music 3

However, the vast majority of exact repetitions in music are not perceptually significant (see

section 8 below). Therefore, the task of developing an algorithm that isolates perceptually significant

repetitions in music involves formally characterising what it is about these interesting repetitions that

distinguishes them from the many repetitions that the listener does not notice and the analyst does

not consider to be important.

Unfortunately, the class of perceptually significant repetitions in music is a very diverse set. There

are at least two reasons for this. First, the patterns involved in such repetitions vary widely in their

structural characteristics. Second, there are many different ways in which a pattern can be modified

to give a second pattern that is perceived to be a version of it.

A perceptually significant repeated pattern may be a small motif consisting of just a few notes (see

Figure 1) or it might be a whole section of a work (e.g., the exposition of a sonata-form movement).

In voiced music, a repeated pattern may only contain notes from one voice (e.g., a fugal subject)

or it may contain notes from two or more voices. The occurrences of a pattern may overlap in

time as they do, for example, in stretto passages in baroque contrapuntal works; or they may occur

consecutively, as often happens, for example, in Debussy’s music (Ruwet, 1972, pp. 70–99); or they

may be widely separated in time as they are in the case of the exposition and recapitulation of a

sonata-form movement.

PLEASE INSERT FIGURE 1 ABOUT HERE.

A significant repeated pattern may be temporally compact—that is, it may contain all the notes

in the music that occur within the time interval spanned by the pattern. On the other hand, in a

fugue, each statement of the subject only contains all the notes in a single voice that occur within

the time interval that it spans.

In baroque and renaissance music, it was common for singers and instrumentalists to embellish

their parts by replacing a long note with a sequence of shorter notes. This technique is called

diminution (Forte and Gilbert, 1982, Chapter 1). For example, in Figure 2, pattern B is a diminution

of pattern A: notes 1, 5, 9 and 13 in B form a modifed restatement of A. This suggests that a pattern

involved in a perceptually significant repetition may not even contain all the notes in a single voice

that occur within the time interval spanned by the pattern.

PLEASE INSERT FIGURE 2 ABOUT HERE.

The term diminution is also (confusingly) used to signify a contrapuntal technique in which the

durations of the notes in a theme are divided by some constant value. Bach uses this technique

in Contrapunctus VI from Die Kunst der Fuge (Figure 3) where the first alto entry of the subject

is obtained from the opening bass entry by halving the note durations. Bach uses the inverse of

diminution—augmentation—in Contrapunctus VII of Die Kunst der Fuge where the first bass entry

is obtained from the alto entry by multiplying the note durations by 4. If a piece is represented

as a set of points in a two-dimensional space where the dimensions are pitch and time and each

point represents a note (see section 4 below), then the musical transformations of augmentation

Discovering Repeated Patterns in Music 4

and diminution correspond to the geometrical transformation of central dilatation (see Borowski and

Borwein, 1989, p. 162, s.v. dilatation).

PLEASE INSERT FIGURE 3 ABOUT HERE.

Figure 3 also illustrates the contrapuntal technique of inversion: the first alto entry of the subject

in Figure 3 is an inversion of the soprano entry. If a musical passage is represented as a set of points

in a two-dimensional space where the dimensions represent time and pitch, then musical inversion

corresponds to geometrical reflection about an axis parallel to the time axis. The techniques of

augmentation/diminution and inversion were sometimes used in combination in baroque music. For

example, the soprano entry in Figure 3 is an inverted diminution of the bass entry.

It is also possible to find perceptually significant repetitions in which one pattern involved in

the repetition is the reverse (or retrograde) of the other. This occurs, for example, in the ‘Canon

cancrizans’ from Bach’s Musikalisches Opfer. If we represent a musical passage as a set of points

in a two-dimensional space in which the dimensions represent pitch and time, then the musical

transformation of reversal corresponds to a geometrical transformation of reflection about an axis

parallel to the pitch axis.

There are many other ways in which a musical pattern may be modified to give a second pattern

that is perceived to be a version of it but even from the foregoing discussion it should be clear that

the class of perceptually significant musical repetitions is a very diverse set. We have also shown that

if the music to be analysed is appropriately represented as a set of points in a multidimensinal space,

then certain types of thematic modification (e.g., diminution, augmentation, inversion, reversal and

transposition) correspond directly to geometrical transformations within such a multidimensional

representation.

2 Representing music using strings

In section 6 we present two new algorithms, SIA and SIATEC, that can be used for discovering types of

musical repetition that cannot be discovered using other existing algorithms. In previous approaches

to repetition discovery in music, the music to be analysed has been represented using strings. There

are many different meaningful and potentially useful ways of representing a piece of music as a string

(or as a set of strings). However, each of the string-based music representations that have been

proposed in the literature falls into one of the following two categories:

1. Event strings : Each symbol in the string x = x1 . . . xn represents a musical event. In this case,

if xi and xj are symbols in x, then j > i if and only if the event represented by xj occurs later

in the music than xi.

2. Interval strings : Each symbol xk represents the transformation required to transform an event

e1(xk) into an event e2(xk) that follows it in the music. If xi, xj are any two symbols in such a

string x, then j > i if and only if e1(xi) ≺ e2(xi) � e1(xj) ≺ e2(xj) where ≺ means ‘precedes’

and � means ‘precedes or is equal to’.

Discovering Repeated Patterns in Music 5

Perhaps the most obvious example of an event string representation is one in which each symbol

represents the pitch of a note event.1 A rhythm can be encoded using an event string consisting

simply of a sequence of durations. A monophonic melody can be represented as a string in which

each symbol represents both the pitch and duration of a single note. A set of such event strings

could be used to represent a polyphonic piece, each string representing a different voice. A passage

of homorhythmic music can be represented by a single event string in which each symbol represents a

single chord. A polyphonic passage can also crudely be represented as a single event string in which

each symbol represents the set of pitches starting at a given instant in the music (Dovey, 1999; Dovey

and Crawford, 1999, 2000; Lemström, 2000). This method of representation often suffices for music

information retrieval purposes.

Conklin and Anagnostopoulou (2001) describe a pattern discovery technique based on multiple

viewpoints (Conklin and Witten, 1995). In this approach, a number of different strings are used to

represent any given passage of music, each string representing a particular viewpoint. For example,

one of Conklin and Anagnostopoulou’s representations describes melodic contour, another represents

pitch, a third represents the inter-onset intervals between consecutive events and so on. Conklin

and Anagnostopoulou also use event strings to represent, in a rudimentary way, musical structure

on hierarchical levels higher than the note level. For example, in one of their representations, only

the first note in each crotchet beat is represented; and in another, only the first note in each bar is

represented.

The most obvious example of an interval string representation is where each symbol represents

the pitch interval between two consecutive notes in a single voice. It is usually (but not always—see

Lemström and Ukkonen, 2000) easier to find transposition-invariant occurrences of a pattern in such

a representation than it is in an event string in which each symbol represents the pitch of a note

(Lemström, 2000, p. 24). Such a representation may be augmented by adding duration information

and a polyphonic piece could be encoded as a set of such interval strings. Indeed, the pitch interval

and rational duration information of a note may be encoded using a single value allowing both

transposition and tempo invariances to be obtained using linear strings (Lemström et al., 1999).

Lemström and Tarhio (2000) describe how a piece of polyphonic music may be represented as a

string of bitvectors, each bitvector representing the intervals between the pitches that occur at an

instant and the pitches that occur at the next instant at which a new pitch is sounded. There are

many other interval systems on which one could base an interval string music representation. Lewin

(1987, Chapter 2) gives a number of examples of Generalized Interval Systems (GIS s) on which such

representations could be based. There is thus a multiplicity of ways in which one can represent

musical passages using event strings and interval strings.
1The pitch of the note may be represented in various ways. For example, one may use diatonic or chromatic pitch,

MIDI number, pitch class, or some more complex pitch representation such as Cambouropoulos’s (1996) GPIR or one

of Meredith’s (1999; 2001) or Brinkman’s (1986; 1990) representations.

Discovering Repeated Patterns in Music 6

3 A survey of algorithms for discovering repetitions in music

One component of Cambouropoulos’s (1998) General Computational Theory of Musical Structure is

a ‘Sequential Pattern Induction Algorithm’ (SPIA) that identifies repetitions in a musical surface.

Cambouropoulos (1998, pp. 88–90) claims that his SPIA can profitably be used on various different

event string and interval string representations. The original version of Cambouropoulos’s SPIA was

an implementation of a pattern induction algorithm described by Crow and Smith (1992, pp. 46–52).

This algorithm computes all the maximal repeated factors in a string: if x = x1 . . . xn is a string

then w is a factor of x if and only if there exist i and j such that w = xi . . . xj . In other words, a

factor is a pattern that does not contain any ‘gaps’. In a later version of his SPIA, Cambouropoulos

replaced the Crow-Smith algorithm with a more efficient algorithm based on a partitioning technique

for refinements of equivalence relations described by Cardon and Crochemore (1982) and Crochemore

(1981). The algorithm is given in full and analysed by Iliopoulos and Mouchard (1999, pp. 265–267).

This algorithm finds all occurrences of all the distinct factors in a string in a worst-case running time

of O(n log n) for a string of length n.

This partitioning algorithm and Crow and Smith’s (1992) algorithm are two examples of string-

processing algorithms that can be used for discovering various classes of repeated factors in strings.

Other algorithms of this type include Crochemore’s (1981) O(n log n)–time algorithms for finding the

maximal periodic factors in a string: a string w is a periodic factor of another string x if and only if w

is a factor of x and w can be formed by concatenating two or more copies of some string y. Apostolico

and Preparata (1983) give another algorithm that computes the same as Crochemore’s partitioning

algorithm but uses more complex data structures. Apostolico and Ehrenfeucht (1993) described

an algorithm based on that of Apostolico and Preparata (1983) for computing all the maximal

quasiperiodicities in a string in time O(n log2 n): a string w is a quasiperiodicity in another string

x if and only if w is a factor of x and there exists another string y �= w such that every position

of w falls within some occurrence of y in w. Iliopoulos and Mouchard (1999) give an O(n log n)

algorithm that computes all the maximal quasiperiodicities in a string. Their algorithm shadows

Crochemore’s (1981) algorithm. It is faster by a factor of O(log n) than the algorithm described by

Apostolico and Ehrenfeucht (1993) for solving the same problem. Iliopoulos and Mouchard (1999,

p. 263) claim that the computation of maximal quasiperiodicities ‘has direct application in music

analysis’. For example, they suggest that one might want to find all repeated factors in a piece that

are at most k positions apart or find all repeated non-overlapping factors of length greater than k

for some given integer k.

A factor w of a string x is called a cover of x if and only if every position in x falls within an

occurrence of w in x. For example, abca is a cover of abcabcaabca. The shortest-cover problem (also

known as the superprimitivity test) is that of computing the shortest cover of a string. The all-covers

problem is that of computing all the covers of a string. Apostolico et al. (1991) and Breslauer (1992)

have presented linear-time algorithms for solving the shortest-cover problem. Breslauer (1994) also

presented a parallel algorithm that computes the shortest-cover of a string in O(log log n) time using

Discovering Repeated Patterns in Music 7

an
(

n log n
log log n

)
–processor concurrent-read-concurrent-write parallel random access machine (CRCW

PRAM). Iliopoulos and Park presented optimal O(log log n)–time (thus work-time optimal) parallel

algorithms for the shortest-cover problem (Iliopoulos and Park, 1994) and the all-covers problem

(Iliopoulos and Park, 1996). Moore and Smyth (1994) presented a linear-time algorithm for the

all-covers problem and Li and Smyth (1999) gave a linear-time on-line algorithm for computing all

the covers of all prefixes of a string. Iliopoulos et al. (1993) introduced the idea of a seed: a factor

w of a string x is called a seed of x if x is a factor of a string z which is covered by w. For example,

w = abca is a seed of x = abcabcaabc because x is a factor of z = abcabcaabca and w covers z.

Iliopoulos et al. (1993) gave an O(n log n)–time algorithm for computing all the seeds in a string.

A parallel algorithm for solving the same problem was presented by Ben-Amram et al. (1994) that

requires O(log n) time and O(n log n) work.

Hsu et al. (1998) used a dynamic programming technique to find repeating factors in strings

representing monophonic melodies. Though having an O(n4) worst case time complexity, it works

much more efficiently in practice. In their study, Hsu et al. did not consider transposition invariance,

but this can be obtained straightforwardly by using an interval string representation instead of an

event string representation. First they use a correlative matrix, whose processing takes O(n2) time.

The output of this phase is a candidate set containing all the factors in the input string (even those

that appear only once), together with their frequency. In a second phase, each candidate which is a

factor of another candidate c (and whose frequency does not exceed the frequency of c) is removed

from the candidate set. In a pathological case the number of required operations for this phase can

be O(n4). However, there are rather fewer candidates to be considered in practice.

These and other algorithms for finding repeated factors in strings can be used to find a restricted

(but nonetheless important) class of repetitions in music. For example, if a fugal work is represented

as a set of pitch interval strings, each string representing a voice and each symbol in each string

representing the diatonic interval between two consecutive notes in a voice, then all the occurrences of

the fugal subject could be discovered using an algorithm that only found the exactly repeated factors

in a string. The repetition in Figure 2 could be discovered using an algorithm for discovering exactly

repeated factors if one were to adopt one of Conklin and Anagnostopoulou’s (2001) suggestions and

represent the music as a string in which each symbol represents the pitch of the first note in a crotchet

beat.

In baroque contrapuntal keyboard works, the voice structure of the music is often very clearly

indicated in the score by cues such as the directions of note stems (see, for example, Figure 3).

However, in nineteenth and twentieth century piano music, the voicing is often ambiguous and not

explicitly represented in the score. If one wants a ‘neutral’ representation of a score that does not

represent just one particular encoder’s interpretation of the score, then one should omit information

that is not explicitly represented in the score. A neutral representation of a keyboard work will

therefore often contain no information about voicing. A symbolic representation of what a listener

hears when he or she listens to a performance of a work for piano or harpsichord must also not contain

any explicit voicing information. Such a representation might be used, for example, as input to a

Discovering Repeated Patterns in Music 8

repetition-discovery algorithm forming one part of a computational model of expert listening. Many

music databases contain music in the form of MIDI files but a MIDI representation of a polyphonic

keyboard work is often structured so that all the notes are in a single channel. Such a file therefore

contains no voicing information. In such situations it might be useful to have an algorithm that can

discover repetitions in music representations that contain no information about voicing.

Figure 4 shows one natural way of partitioning the notes in the passage in Figure 1 into mono-

phonic voices. The music in Figure 4 could be represented using four pitch interval strings, each

string representing the sequence of pitch intervals in one of the four monophonic parts shown. If the

music were represented in this way, then a string processing algorithm for finding exactly repeated

factors might discover the ten statements of pattern B1 shown in Figure 4 but no algorithm for find-

ing exactly repeated factors would discover the five occurrences (A1–A5) of the rising bass pattern

in Figure 1. If we want to use an algorithm that only finds exactly repeated factors for discovering

the set of patterns A1–A5 in Figure 1, then we have to allow the ‘voices’ or ‘streams’ into which

we partition the music to be polyphonic. Figure 5 shows a natural way of partitioning the notes in

the passage into three parts, one of which is polyphonic. If each of the three polyphonic ‘streams’

in Figure 5 is represented by an interval string in which each symbol represents the transformation

required to convert a chord into the next chord that occurs in the part then the five occurrences of

the boxed pattern would be represented by identical factors in the interval string representation of

the part written on the lowest staff in Figure 5.

PLEASE INSERT FIGURE 4 ABOUT HERE.

PLEASE INSERT FIGURE 5 ABOUT HERE.

However, before analysing a work, the user has no idea which particular ways of partitioning it

into polyphonic ‘streams’ will result in the discovery of perceptually significant repetitions. To be

sure of discovering all such repetitions, the user would therefore have to consider all possible ways

of partitioning the music into polyphonic streams which would require 2n representations for a piece

with n voices. This would be completely impractical for any work with more than, say, four or five

parts.

The foregoing discussion demonstrates that the class of perceptually significant musical repetitions

that can be discovered using an algorithm that computes the exactly repeated factors in a string

is heavily dependent upon the particular type of string representation used. To discover all those

repetitions in which the repeated patterns can be represented as identical factors in a string, one has

to use not only a variety of algorithms but also a multitude of distinct representations.

So far we have only discussed algorithms that discover exactly repeated factors in strings. There

also exist algorithms for discovering various types of approximately repeated patterns. For example,

Cambouropoulos et al. (1999, pp. 137–140) give two O(n2)–time algorithms for computing certain

types of approximately repeating patterns in a string.

Two strings are said to be k-approximately similar if one can be obtained from the other by using

k or fewer editing operations (e.g., deletion, insertion, substitution) (Crochemore and Rytter, 1994).

Discovering Repeated Patterns in Music 9

The minimum number of edit operations required to transform one string into another is called the

edit distance between the two strings.

In order to be able to measure the overall similarity between two strings representing (mono-

phonic) musical passages, Mongeau and Sankoff (1990) modified the well-known dynamic program-

ming approach for calculating the edit distance between two strings (Ukkonen, 1985). In addition to

the traditional tool-box of editing operations (containing insertion, deletion, and substitution) they

introduced two novel musically motivated operations called fragmentation and consolidation. By

limiting the number of notes that can be involved in a fragmentation or consolidation with suitably

selected constants, the original time complexity of the dynamic programming approach (i.e., O(mn),

m and n denoting the lengths of the two strings being compared) can be preserved. They also showed

that the problem of finding local similarities in any two monophonic musical passages given to the

algorithm as arguments can be solved by a straightforward modification of their method. Thus, by

making both arguments of the algorithm the same, all the k–approximately similar repeated patterns

can be discovered.

Another approach to discovering approximately repeated patterns in music is presented by Rol-

land (1999). Like Mongeau and Sankoff (1990), Rolland used an extended toolbox of editing opera-

tions. In his method, the length of the patterns involved in the discovered repetitions is limited by

setting a minimal and maximal length for them.2 Then, all the patterns falling in the allowed range

are extracted from the musical string. Having created a node for a pattern, it is compared against

other patterns (whose length is close enough to that of the considered pattern). If their similarity

exceeds a given threshold value, an arc between the two nodes corresponding to these patterns is

created and the weight of this arc is set according to their similarity. In this way, the related pat-

terns form stars in a similarity graph. Finally, the patterns are sorted by their prominence: for every

pattern in the similarity graph, the weights of the arcs by which they are connected to other nodes

are accumulated. Then, the patterns are listed in descending order according to the accumulations.

Rolland claims an overall time complexity of O(n2). However, if the algorithm is required to find

patterns of any size, this time complexity rises to (at least) O(n4), making it less efficient in the

worst case than SIATEC. Also, unlike SIATEC and SIA, Rolland’s algorithm is currently limited to the

discovery of patterns in monophonic sources.

It was mentioned above (p. 7) that an algorithm for finding exactly repeated factors could be used

to find the repetition in Figure 2 but only if the music were represented as a string in which only the

first note in each crotchet beat were represented. However, such an ad hoc expedient would not suffice

for detecting the fact that pattern B in Figure 6 is an embellished restatement of pattern A. This is

because the notes in pattern A do not all fall on the beat. It might be suggested that a repetition

like this could be discovered using an algorithm such as Rolland’s that discovers k–approximately

similar patterns.

PLEASE INSERT FIGURE 6 ABOUT HERE.

2In SIA and SIATEC there are no such bounds—the patterns discovered may be of any size.

Discovering Repeated Patterns in Music 10

Recall that such an algorithm judges two patterns to be ‘similar’ if and only if the number of edit

operations required to transform one into the other is less than some threshold k. However, for the

two patterns in Figure 6 to be judged ‘similar’ by such an algorithm, this threshold k would have to

be set to at least 14 to allow for the 14 insertions required to transform pattern A into B. But this

threshold is far too high in general, because, with such a high threshold, the algorithm would judge

many highly dissimilar patterns to be ‘similar’. An algorithm for discovering k–approximately similar

patterns therefore cannot be used to find repetitions in which one pattern is a highly embellished

version of the other. However, such an algorithm can be used to find repetitions in which the two

patterns differ by only one or two notes.

So far, we have only considered algorithms that discover repeated factors and repetitions in

which the patterns are k-approximately similar. We now briefly review algorithms that discover

repeated subsequences—that is, patterns with an arbitrary number of ‘gaps’. Formally, a string w is

a subsequence of another string x if and only if x can be transformed into w by deleting zero or more

symbols in x. The problem of discovering repeated patterns within a string is closely related to the

following well-known string-processing problem: given a finite set W of words, find a pattern, p, that

is the longest substructure (i.e., factor or subsequence) of every word in W . Note, that W may have

been obtained from a long string S that has been divided into |W | factors. It is known (Crochemore

and Rytter, 1994, p. 25), that if |W | is not constant and the substructures to be considered are

subsequences, the problem becomes NP-complete. However, if factors instead of subsequences are

considered, the problem is solvable in polynomial time. This illustrates that finding repetitions in

which the patterns can have an arbitrary number of ‘gaps’ (i.e., repeated subsequences) is much more

complex than finding repetitions without gaps (i.e., repeated factors).

Very little effort has been made so far to solve the problem of discovering repeated subsequences

in strings. However, an algorithm for discovering subsequences might be able to discover repetitions

such as the one shown in Figure 6 without also computing many spurious instances of repetition. This

is closely related to the bioinformatics problem of DNA and protein sequence alignment. However,

in some respects, the discovery of repeated subsequences in DNA and proteins is simpler than the

discovery of musically significant patterns in polyphonic music. This is because DNA and proteins

can, at least at the primary level of structure, be appropriately modelled as 1-dimensional strings

of symbols taken from a highly restricted alphabet; whereas much polyphonic music cannot even be

appropriately represented as a set of 1-dimensional strings and the musical ‘alphabets’ used are (at

least in principle if not generally in practice) infinite and multidimensional.

Nevertheless, we shall outline, as an example, a string matching approach to the discovery of

repeated subsequences in 1-dimensional strings given by Floratos and Rigoutsos (2000). The idea is

to start with initial patterns of a given length (possibly containing also ‘don’t care’ characters), and

proceed recursively to generate longer and longer patterns appearing in the data set. Floratos and

Rigoutsos attempt to avoid the inherent NP-hardness of the problem by limiting the length of the

considered patterns. With the aid of two suffix structures, they attempt to extend the considered

patterns both backwards (by assigning a prefix to the pattern) and forwards (by assigning a suffix).

Discovering Repeated Patterns in Music 11

Finally, the generated patterns representing exactly the same subsequences in a different way, are

combined in a maximal pattern.

4 Representing music using multidimensional datasets

Previous approaches to repetition-discovery in music have been based on the assumption that the

music to be analysed is represented using strings. As shown above, there exist string-processing

algorithms for discovering repeated factors as well as various types of approximately repeated patterns

and subsequences. However, to find all the interesting repetitions in a musical passage using a string-

based approach, one has to run various algorithms on a multitude of different representations of the

passage. Moreover, when the music to be analysed is polyphonic, there are certain types of repetition

that cannot be discovered if the music is represented using strings.

We have avoided these problems by developing a new approach in which the music to be anal-

ysed is represented as a multidimensional dataset . This allows many different types of interesting

repetition to be discovered efficiently by running appropriately designed algorithms (such as SIA and

SIATEC) on just a small number of orthogonal projections of a single multidimensional representa-

tion of the music. Repetitions such as the one in Figure 6 can easily be found using this approach

as can repeated polyphonic patterns in unvoiced polyphonic music such as keyboard music (i.e.,

‘unstructured repetitions’—see Crawford et al., 1998, p. 88). The so-called ‘distributed matching’

problem (Crawford et al., 1998, p. 84) can also be solved using this new geometric approach. By

representing music using multidimensional datasets we can dispense with the need for using a mul-

titude of different representations, analyse complex polyphonic music as efficiently as monophonic

music and discover repetitions in the timbre, dynamic and rhythmic structure of a passage as well as

its pitch structure. We can also discover repeated patterns that would, in a string-based approach,

be represented as subsequences—i.e., ‘patterns with gaps’.

Informally, a multidimensional dataset can be visualized as a set of points in a multidimensional

space. Before giving a formal definition, we need to define some basic concepts. A vector is a k-tuple

of real numbers viewed as a member of a k-dimensional Euclidean space (Borowski and Borwein,

1989, p. 624, s.v. vector, sense 2). A vector in a k-dimensional Euclidean space will be represented

here as an ordered set of k real numbers. An object is a k-dimensional vector if and only if it is

a k-tuple of real numbers (i.e., an ordered set of real numbers with cardinality k). An object is a

vector set if and only if it is a set of vectors. An object is a k-dimensional vector set if and only if

it is a vector set in which every vector has cardinality k. An object may be called a pattern or a

dataset if and only if it is a k-dimensional vector set. An object may be called a datapoint if and only

if it is a vector in a pattern or a dataset. We usually reserve the term dataset for a k-dimensional

vector set that represents some complete set of data that we are interested in processing. We usually

reserve the term pattern for a k-dimensional vector set that is a subset of some specified dataset or

a transformation of some subset of a dataset. Also, if we have two k-dimensional vector sets P and

D and we wish to search for occurrences of P in D then we would usually refer to P as a pattern

Discovering Repeated Patterns in Music 12

and D as a dataset.

There are many different appropriate ways of representing a passage of music as a multidimensional

dataset. Figure 8 shows a 5-dimensional dataset that represents the music in Figure 7. Each data-

point in Figure 8 represents a single note in Figure 7. The first element in each datapoint represents

the onset time of the note in terms of the number of semiquavers that have elapsed by the time

the note occurs. The second element in each datapoint represents the chromatic pitch of the note

as defined by Meredith (1999, 2001). The chromatic pitch of a note can be understood to be a

numerical representation of the key on a normal piano keyboard that would have to be pressed to

play the note. The chromatic pitch of A�0 which is usually the lowest note on a piano keyboard, is

defined to be 0. The chromatic pitch of B�0, the note one semitone above A�0, is therefore 1 and the

chromatic pitch of middle C (C�4) is 39. An increase in pitch of one semitone results in an increase

of 1 in chromatic pitch. The concept of chromatic pitch is similar to Brinkman’s continuous pitch

code (Brinkman, 1990, p. 122). The third element in each datapoint represents the morphetic pitch

of the note as defined by Meredith (1999, 2001). The morphetic pitch of a note indicates the position

of the notehead of the note on the staff—a rise of one step on a staff increases the morphetic pitch

by one. The morphetic pitch of A�0 is defined to be 0. The morphetic pitch of middle C (C�4) is

therefore 23, D above middle C has a morphetic pitch of 24 and so on. The concept of morphetic

pitch is similar to Brinkman’s continuous name code (Brinkman, 1990, p. 126). The fourth element

in each datapoint represents the duration of the note measured in semiquavers and the fifth element

represents the voice in which the note occurs (here, a value of 1 indicates the upper voice and a value

of 2 indicates the lower voice).

PLEASE INSERT FIGURE 7 ABOUT HERE.

PLEASE INSERT FIGURE 8 ABOUT HERE.

Each orthogonal projection of a multidimensional dataset is itself a multidimensional dataset.

This implies that if one has a rich multidimensional dataset representation D of a musical passage

and a repetition-discovery algorithm such as SIA or SIATEC that can process datasets of any dimen-

sionality, then one is equipped for discovering repeated structures not only in the original complete

dataset D but also any orthogonal projection of D. This can be useful. For example, it is undoubtedly

true that most listeners would consider patterns B and C in Figure 7 to be perceptually significant

repetitions of pattern A. If one considers only the first two elements in each datapoint in Figure 8

then one gets the projection shown in Figure 9 which represents the onset time and chromatic pitch

of each note. We say that two patterns P1 and P2 are translationally equivalent if and only if there

exists a vector v such that P1 translated by v gives P2. Note that patterns B and C in Figure 9

(which correspond to patterns B and C respectively in Figure 7) are not translationally equivalent to

A. This implies that an algorithm such as SIA or SIATEC that only discovers instances of repetition

in which the two patterns are translationally equivalent, would not discover the repetitions indicated

in Figure 9. However, if one considers only the first and third element in each datapoint in Figure 8

then one gets the 2-dimensional projection shown in Figure 10. Patterns A, B and C in Figure 10

Discovering Repeated Patterns in Music 13

are translationally equivalent and therefore would be discovered by an algorithm that only finds

instances of repetition in which the repeated patterns are translationally equivalent. This example

also shows that instances of approximate repetition in one projection of a dataset might correspond

to instances of exact repetition in some other projection of the dataset.

PLEASE INSERT FIGURE 9 ABOUT HERE.

PLEASE INSERT FIGURE 10 ABOUT HERE.

Multidimensional datasets can also be used to represent multi-channel digital audio data. For

example, a PCM audio file can be represented as a dataset in which each datapoint represents a

single sample as an ordered triple in which the first element represents time, the second represents

sample magnitude and the third represents the audio channel. Indeed, the only difference between

such a representation and the way that this information is typically represented in uncompressed

PCM audio files such as AIFF and WAV format files, is that in the latter, to save space, the time

and channel of each sample are represented implicitly by the position of the sample within the file.

A time-varying audio frequency spectrum can be represented as a multidimensional dataset in

which each datapoint is an ordered triple such that the first element represents time, the second

represents frequency or log-frequency and the third represents amplitude or power. If log-frequency

is chosen for the second dimension, tones with similar timbres (and thus similar spectra) correspond

to approximately translationally equivalent patterns in the two-dimensional projection of the repre-

sentation onto the plane containing the log-frequency and time axes. This suggests that an algorithm

such as SIATEC that discovers sets of translationally equivalent patterns might find use in a system

for separating out instrumental parts in digital audio data (cf. Tanguiane, 1993, p. 16–18).

The algorithms described below can be used to process any multidimensional dataset whatsoever

regardless of whether the dataset represents a digital audio recording, a score or ‘performance activity

information’ (Huron, 1992, p. 13) such as MIDI data derived from a human performance on a MIDI-

enabled instrument. In this paper, however, we focus on the problem of discovering repeated patterns

in scores and ‘piano-roll’-like representations.

5 The functions computed by SIA and SIATEC

In this section we develop mathematical expressions for the functions computed by the SIA and

SIATEC algorithms. Let D be a dataset and let d1 and d2 be any two datapoints in D. The vector

from d1 to d2 is given by d2−d1 where the minus sign denotes vector subtraction. For example, in the

dataset in Figure 11, the vector from a = 〈1, 1〉 to f = 〈3, 2〉 is 〈3, 2〉− 〈1, 1〉 = 〈3− 1, 2− 1〉 = 〈2, 1〉.
If v = d2−d1 then d2 = v+d1 which expresses the fact that the datapoint d1 can be translated by

the vector v to give the datapoint d2. If A is an ordered set or a vector then we denote the cardinality

of A by |A| and the ith element of A by A[i]. If u and v are two vectors such that |u| = |v| = k

then we say that u is less than v, denoted by u < v, if and only if there exists an integer i such that

1 ≤ i ≤ k and u[i] < v[i] and u[j] = v[j] for 1 ≤ j < i. For example, 〈1, 1〉 < 〈1, 2〉 < 〈2, 1〉.

Discovering Repeated Patterns in Music 14

PLEASE INSERT FIGURE 11 ABOUT HERE.

We say that a pattern P is translatable by a vector v in a dataset D if and only if P can be

translated by v to give a pattern that is a subset of D. For example, in the dataset shown in

Figure 11, the pattern {a, c} is only translatable by the vectors 〈1, 1〉 and 〈0, 2〉.
The maximal translatable pattern (MTP) for a vector v in a dataset D, denoted by MTP (v, D),

is the largest pattern translatable by v in D. Formally,

MTP (v, D) = {d |d ∈ D ∧ d + v ∈ D} . (1)

For example, if we consider the dataset in Figure 11, then the MTP for the vector 〈1, 0〉 is {a,b,d}
and the MTP for 〈1, 1〉 is {a, c}.

In music, MTPs often correspond to the patterns involved in perceptually significant repetitions.

For example, each of the patterns A, B, C and D in Figure 12 corresponds to an MTP in the two-

dimensional dataset representation shown in Figure 13. Our goal in developing SIA was to design an

efficient algorithm for computing all the non-empty MTPs in a dataset. The MTP for a vector v in

a dataset D is non-empty if and only if there exist at least two datapoints d1 and d2 in D such that

v = d2 − d1. This implies that the complete set of non-empty MTPs for a dataset D is given by

P(D) = {MTP (d2 − d1, D) |d1,d2 ∈ D} . (2)

PLEASE INSERT FIGURE 12 ABOUT HERE.

PLEASE INSERT FIGURE 13 ABOUT HERE.

In the dataset in Figure 13, pattern A is the MTP for the vector 〈16,−12〉. If we translate pattern

A by the vector 〈16,−12〉 we get pattern D which is the MTP for the vector 〈−16, 12〉. Let us denote

by τ(P,v) the pattern that results when the pattern P is translated by the vector v. Formally,

τ(P,v) = {d + v |d ∈ P} . (3)

We will now prove that, in general, if the MTP for v is translated by v, the resulting pattern is the

MTP for the vector −v.

Lemma 1 If D is a dataset and v is a vector then

τ(MTP (v, D),v) = MTP (−v, D). (4)

Proof

From Eq.3 we deduce that

τ (MTP (v, D), v) = {d1 + v |d1 ∈ MTP (v, D)} . (5)

Substituting Eq.1 into Eq.5, we find that

τ (MTP (v, D),v) = {d1 + v |d1 ∈ {d2 |d2 ∈ D ∧ d2 + v ∈ D}}
= {d2 + v |d2 ∈ D ∧ d2 + v ∈ D} . (6)

Discovering Repeated Patterns in Music 15

If we let d3 = d2 + v and substitute this into Eq.6, we deduce that

τ (MTP (v, D), v) = {d3 |d3 − v ∈ D ∧ d3 ∈ D} . (7)

Eqs.7 and 1 together imply

τ (MTP (v, D), v) = MTP (−v, D).

�

Lemma 1 tells us that if we compute MTP (d2 − d1, D) then we can find MTP (d1 − d2, D) simply

by translating MTP (d2 − d1, D) by d2 − d1. It is also clear that MTP (0, D) = D where 0 is the

zero vector. These two facts imply that our MTP-discovery algorithm only really needs to compute

the set

P′(D) = {MTP (d2 − d1, D) |d1,d2 ∈ D ∧ d1 < d2} . (8)

However, if SIA simply generated the set P′(D), then it would not be possible to determine the vector

for which any given pattern in P′(D) was the MTP. Therefore, SIA actually computes the set

S(D) = {〈d2 − d1,MTP (d2 − d1, D)〉 |d1,d2 ∈ D ∧ d1 < d2}. (9)

Each member of S(D) is an ordered pair in which the first element is a vector v and the second

element is the MTP for v in D. Figure 14 shows S(D) for the dataset in Figure 11.

PLEASE INSERT FIGURE 14 ABOUT HERE.

Figure 16 is a 2-dimensional dataset representation of the music in Figure 15. In this represen-

tation only the morphetic pitch and onset time of each note event are represented. Patterns A–H

in Figure 15 correspond to patterns A–H in Figure 16. SIA tells us that pattern A in Figure 16 is

the MTP in this dataset for the vector 〈28,−10〉. In other words, SIA discovers that a repetition

of pattern A in Figure 15 occurs 28 semiquavers later, diatonically transposed down an eleventh

(pattern H). However, SIA tells us nothing about all the other transposed occurrences of pattern A

(i.e., patterns B–G) in this two-bar passage. Ideally, we would like to know not only that pattern

A in Figure 16 is an MTP but also all the other patterns in the dataset that are translationally

equivalent to A.

PLEASE INSERT FIGURE 15 ABOUT HERE.

PLEASE INSERT FIGURE 16 ABOUT HERE.

If P is a pattern in a dataset D then we say that the translational equivalence class (TEC) of

P in D, denoted by TEC (P, D), is the set that contains all and only those patterns in D that are

translationally equivalent to P . For example, in Figure 16 the TEC of pattern A is the set of patterns

labelled A–H. Formally, we say that two patterns P1 and P2 are translationally equivalent, denoted

by P1 ≡τ P2, if and only if there exists a vector v such that τ(P1,v) = P2. The TEC of a pattern

P in a dataset D is then given by

TEC (P, D) = {Q |Q ≡τ P ∧Q ⊆ D} . (10)

Discovering Repeated Patterns in Music 16

Our goal in developing SIATEC was to design an efficient algorithm for computing the set

T(D) = {TEC (MTP (d2 − d1, D), D) |d1,d2 ∈ D} . (11)

It can be shown that the translational equivalence relation is a true equivalence relation in the math-

ematical sense—that is, it is reflexive, transitive and symmetric (Meredith et al., 2001). This implies

that the translational equivalence relation partitions the power set of a dataset into translational

equivalence classes. This means that every pattern in a dataset is a member of exactly one TEC.

However, from Lemma 1 we know that

τ(MTP (d2 − d1, D),d2 − d1) = MTP (d1 − d2, D).

Therefore

TEC (MTP (d2 − d1, D), D) = TEC (MTP (d1 − d2, D), D).

Moreover, we know that MTP (0, D) = D and therefore TEC (MTP (0, D), D) = {D} which is a

trivial translational equivalence class. Therefore, instead of computing T(D) as defined in Eq.11,

SIATEC actually computes the set

T′(D) = {TEC (MTP (d2 − d1, D), D) |d1,d2 ∈ D ∧ d1 < d2}. (12)

It can be shown that T(D) = T′(D) ∪ {{D}} (Meredith et al., 2001).

If P is a pattern in a dataset D then we say that v is a translator of P in D if and only if P is

translatable by v in D. The set of translators for P in D, which we denote by T (P, D), is the set

that only contains all vectors by which P is translatable. Formally,

T (P, D) = {v | τ(P,v) ⊆ D} . (13)

For example, in Figure 11 the set of translators for the pattern {a, c} is {〈0, 0〉 , 〈1, 1〉 , 〈0, 2〉} and the

set of translators for the pattern {a,b,d} is {〈0, 0〉 , 〈1, 0〉}.
The TEC of a pattern P in a dataset D can therefore be represented efficiently by the ordered pair

〈P, T (P, D)〉. For any given TEC, E, there are |E| such representations, one for each pattern in E. In

general, this ordered-pair representation for a TEC can be much more space-efficient than explicitly

writing out every member pattern of the TEC in full. For example, if there are 20 patterns in a

dataset that are translationally equivalent to a pattern P1 containing 10 datapoints then printing out

the TEC for P1 in full would involve printing 200 datapoints. However, if this TEC were represented

as the ordered pair 〈P, T (P, D)〉 then only 10+20 = 30 vectors would need to be printed. Incidentally,

this example illustrates how an algorithm such as SIATEC that discovers TECs can be used as the

basis of an algorithm for compressing multidimensional data.

In the output of SIATEC, each distinct TEC, E, in T′(D) is therefore represented as an ordered

pair 〈P, T (P, D)〉 where P is a member of E and T (P, D) is the set of translators for P in D. Figure 17

shows T′(D) for the dataset shown in Figure 11.

PLEASE INSERT FIGURE 17 ABOUT HERE.

Discovering Repeated Patterns in Music 17

6 The SIA and SIATEC algorithms

In this section we describe the SIA and SIATEC algorithms. Meredith et al. (2001) provide a more

complete description and analysis of these algorithms.

6.1 The SIA algorithm

When given a multidimensional dataset, D, as input, SIA efficiently computes S(D) as defined in

Eq.9 above. For a k-dimensional dataset containing n datapoints, the worst-case running time of

SIA is O(kn2 log2 n) and its worst-case space complexity is O(kn2). The algorithm consists of the

following four steps.

SIA: Step 1 – Sorting the dataset The first step in SIA is to sort the dataset D to give an

ordered set D that contains all and only the datapoints in the dataset in increasing order. For the

dataset in Figure 11, the result of this first step would be the ordered set

D = 〈〈1, 1〉 , 〈1, 3〉 , 〈2, 1〉 , 〈2, 2〉 , 〈2, 3〉 , 〈3, 2〉〉 . (14)

For a k-dimensional dataset of size n, this can be done using merge sort (Cormen et al., 1990,

pp. 12–15) in a worst-case running time of O(kn log2 n).3

SIA: Step 2 – Computing the vector table The second step in SIA is to compute the set

V = {〈D[j]−D[i], i〉 | 1 ≤ i < j ≤ |D|} . (15)

Note that each member of V is an ordered pair in which the first element is the vector from datapoint

D[i] to datapoint D[j] and the second element is the index of the ‘origin’ datapoint, D[i], in D. For

the dataset in Figure 11, V contains all the elements below the leading diagonal in Table 1.

PLEASE INSERT TABLE 1 ABOUT HERE.

We call a table like the one in Table 1 a vector table. Each element in this table is an ordered pair

〈v, i〉 where i gives the number of the column in which the element occurs and v is the vector from

the datapoint at the head of the column in which the element occurs to the datapoint at the head

of the row in which the element occurs. For a k-dimensional dataset of size n, this second step of

the algorithm involves computing n(n−1)
2 vector subtractions. It can be accomplished in a worst-case

running time of O(kn2).

3When merge sort is implemented using arrays, it requires linear extra memory and the additional work spent

copying to and from the temporary array throughout the algorithm has the effect of slowing down the sort considerably.

However, we use a special implementation of merge sort that employs linked lists and in this implementation no extra

memory is required and no copying of data is performed.

Discovering Repeated Patterns in Music 18

SIA: Step 3 – Sorting the vectors If 〈u, i〉 and 〈v, j〉 are any two elements in the set V computed

in the second step of the algorithm (Eq.15) then we define that 〈u, i〉 is less than 〈v, j〉, denoted by

〈u, i〉 < 〈v, j〉, if and only if u < v or u = v and i < j.

The third step in SIA is to sort V to give an ordered set V that contains the elements of V

in increasing order. For example, the column headed V[i] in Table 2 gives V for the dataset in

Figure 11. An examination of Table 1 reveals that the vectors increase as one descends a column

and decrease as one goes from left to right along a row. In our implementation of SIA we use a

two-dimensional linked list to represent V as a vector table like the one in Table 1. We then use

a modified version of merge sort, that exploits the fact that the columns and rows in this vector

table are already sorted, to accomplish this third step of the algorithm more rapidly than would be

achievable using plain merge sort on the completely unsorted set V . The worst-case running time of

this step of the algorithm is O(kn2 log2 n).

PLEASE INSERT TABLE 2 ABOUT HERE.

SIA: Step 4 – Printing out S(D) If A is an ordered set of ordered sets then A[i, j] denotes the

jth element of the ith element of A. For example, if A = 〈〈a, b, c〉 , 〈d, e〉 , 〈f〉〉 then A[1, 3] = c,

A[2, 1] = d and A[3, 1] = f . As pointed out above, the column headed V[i] in Table 2 gives V for

the dataset in Figure 11. For each of these ordered pairs, V[i], the datapoint D[V[i, 2]] is printed

next to it in the third column in Table 2. For example, V[1] = 〈〈0, 1〉 , 3〉 in Table 2, so V[1, 2] = 3

and D[V[1, 2]] = 〈2, 1〉, the third datapoint in the ordered set D for the dataset shown in Figure 11.

As indicated on the right-hand side of the third column in Table 2, the MTP for a vector v is the

set of consecutive datapoints D[V[i, 2]] in the third column that corresponds to the set of consecutive

ordered pairs V[i] in the second column for which V[i, 1] = v. The complete set S(D) as defined

in Eq.9 can be printed out using the algorithm in Figure 18. In our pseudocode, block structure

is indicated by indentation and the symbol ‘←’ indicates assignment. Figure 19 shows the output

generated by this algorithm for the dataset in Figure 11.

PLEASE INSERT FIGURE 18 ABOUT HERE.

PLEASE INSERT FIGURE 19 ABOUT HERE.

SIA discovers the set P′(D) of non-empty MTPs defined in Eq.8 and from Table 2 it can easily

be seen that SIA accomplishes this simply by sorting the set V defined in Eq.15. It is clear from

Table 1 that, for a dataset of size n, the number of elements in V is n(n−1)
2 . Therefore, if we use P

to denote an MTP in P′(D), ∑
P∈P′(D)

|P | = n(n− 1)
2

.

Therefore the total number of vectors that have to be printed when S(D) is printed is n(n−1)
2 plus

one vector for each MTP in P′(D). Since |P′(D)| ≤ n(n−1)
2 , the total number of vectors to be printed

out is certainly less than or equal to n(n− 1). Therefore, for a k-dimensional dataset containing n

datapoints, S(D) can be printed out in a worst-case running time of O(kn2).

Discovering Repeated Patterns in Music 19

6.2 The SIATEC algorithm

When given a multidimensional dataset, D, as input, our second algorithm, SIATEC, efficiently com-

putes T′(D) as defined in Eq.12 above. For a k-dimensional dataset containing n datapoints, the

worst-case running time of SIATEC is O(kn3) and its worst-case space complexity is O(kn2). The

algorithm consists of the following seven steps.

SIATEC: Step 1 – Sorting the dataset This is exactly the same as Step 1 of SIA as described on

page 17 above.

SIATEC: Step 2 – Computing W The second step in SIATEC is to compute the ordered set of

ordered sets

W = 〈〈W[1, 1], . . .W[1, |D|]〉 , . . . 〈W[|D|, 1], . . .W[|D|, |D|]〉〉

where

W[i, j] = 〈D[j]−D[i], i〉 . (16)

W can be visualized as a vector table like Table 3 (which shows W for the dataset in Figure 11). The

only difference between the vector table (W) computed by SIATEC and the vector table computed

in Step 2 of SIA (see Table 1) is that in SIATEC, all the elements in this table are filled in; whereas

in SIA, only those elements below the leading diagonal are computed. Computing the whole table

rather than just the region below the leading diagonal allows us to compute more efficiently the set

of translators for each MTP (see Step 7 below).

PLEASE INSERT TABLE 3 ABOUT HERE.

Computing W for a k-dimensional dataset of size n involves computing n2 vector subtractions.

Each of these vector subtractions involves carrying out k scalar subtractions so the overall worst-case

running time of this step is O(kn2).

SIATEC: Step 3 – Computing V The third step of SIATEC is to compute the set V as defined

in Eq.15. This is the same set as that computed in Step 2 of SIA. In SIATEC, V can be computed

directly from W since

V = {W[i, j] | 1 ≤ i < j ≤ |D|} . (17)

In fact, in our implementation of SIATEC, V is computed at the same time as W.

SIATEC: Step 4 – Sorting V to produce V This step is exactly the same as Step 3 of SIA.

SIATEC: Step 5 – ‘Vectorizing’ the MTPs V is effectively a sorted representation of S(D) (Eq.9)

(see Step 4 of SIA and Table 2). The purpose of SIATEC is to compute T′(D) (Eq.12) which is the

set that only contains every TEC that is the TEC of an MTP in P′(D). P′(D) can be obtained from

V but it is possible for two or more MTPs in P′(D) to be translationally equivalent. For example,

the MTPs in the dataset in Figure 11 for the vectors 〈0, 2〉, 〈1,−1〉 and 〈1, 1〉 are translationally

Discovering Repeated Patterns in Music 20

equivalent (see Table 2). If two patterns are translationally equivalent then they are members of

the same TEC. Therefore, if we näıvely compute the TEC of each MTP in P′(D), we run the risk

of computing the same TEC more than once which is inefficient. We therefore partition P′(D) into

translational equivalence classes and then select just one MTP from each of these classes, discarding

the others.

If P is a pattern then let SORT (P) be the function that returns the ordered set that only contains

all the datapoints in P sorted into increasing order. If P is an ordered set of datapoints then let

VEC (P) be the function that returns the ordered set of vectors

VEC (P) = 〈P[2]−P[1],P[3]−P[2], . . .P[|P |]−P[|P | − 1]〉. (18)

If P1 and P2 are two patterns in a dataset, then

VEC (SORT (P1)) = VEC (SORT (P2)) ⇐⇒ P1 ≡τ P2. (19)

We say that VEC (SORT (P)) is the vectorized representation of the pattern P . In the ordered set V

computed in step 4 of SIATEC, each MTP, P , is represented in its sorted form as SORT (P) = P (see

Table 2). Therefore, if we want to use Eq.19 to partition P′(D) we first have to compute VEC (P)

for each of the sorted MTPs, P, in V. Step 5 of SIATEC is therefore to compute

X = {〈i,VEC (SORT (P))〉 | 〈v, P 〉 ∈ S(D) ∧V[i, 1] = v ∧ (i = 1 ∨V[i− 1, 1] �= v)}. (20)

If V[i] and V[j] are two distinct elements of V and V[i] < V[j] but V[i, 1] = V[j, 1] (i.e.,

the vectors in V[i] and V[j] are the same) then V[i, 2] < V[j, 2] which implies that D[V[i, 2]] <

D[V[j, 2]]. This means that the datapoints within each MTP in the V representation of S(D) are

sorted in increasing order, as can be seen in the output of SIA (Figure 19) generated by the algorithm

in Figure 18.

X can be efficiently computed directly from V and D using the algorithm in Figure 20 which

exploits the fact that the MTPs in V are already sorted. In Figure 20, the set X is actually

represented as an ordered set X. When the algorithm in Figure 20 has terminated, the ordered set

X only contains all the elements of X (with no duplicates). In Figure 20, 〈 〉 denotes the empty

ordered set and the symbol ⊕ denotes concatenation: if A and B are two ordered sets such that

A = 〈a1, . . . am〉 and B = 〈b1, . . . bn〉 then

A⊕B = 〈a1, . . . am, b1, . . . bn〉 .

PLEASE INSERT FIGURE 20 ABOUT HERE.

Figure 21 shows the state of X for the dataset in Figure 11 at the termination of Step 5 of SIATEC.

For a k-dimensional dataset of size n, the worst-case running time of the algorithm in Figure 20 is

O(kn2).

PLEASE INSERT FIGURE 21 ABOUT HERE.

Discovering Repeated Patterns in Music 21

SIATEC: Step 6 – Sorting X Let Q1 and Q2 be any two ordered sets in which each element is a

k-dimensional vector. We define that Q1 is less than Q2, denoted by Q1 < Q2 if and only if one of

the following two conditions is satisfied:

1. |Q1| < |Q2|.

2. |Q1| = |Q2| and there exists an integer 1 ≤ i ≤ |Q1| such that Q1[i] < Q2[i] and Q1[j] = Q2[j]

for all 1 ≤ j < i.

(See page 13 for a definition of the expression u < v when u and v are vectors.) In Step 6 of SIATEC,

the ordered set X generated by the algorithm in Figure 20 is sorted to produce the ordered set Y

which satisfies the following two conditions:

1. Y only contains all the elements of X.

2. If Y[i] and Y[j] are any two distinct elements of Y then i < j if and only if

Y[i, 2] < Y[j, 2] ∨ (Y[i, 2] = Y[j, 2] ∧Y[i, 1] < Y[j, 1]).

Figure 22 shows Y for the dataset in Figure 11. For a k-dimensional dataset of size n, this step of

the algorithm can be accomplished in a worst-case running time of O(kn2 log2 n) using merge sort.

PLEASE INSERT FIGURE 22 ABOUT HERE.

We know that

MTP (V[Y[i, 1], 1], D) ≡τ MTP (V[Y[j, 1], 1], D) ⇐⇒ Y[i, 2] = Y[j, 2].

So Figure 22 tells us, for example, that the MTPs for the vectors V[3, 1] = 〈0, 2〉, V[6, 1] = 〈1,−1〉
and V[11, 1] = 〈1, 1〉 are translationally equivalent since the vectorized representation of each of these

patterns is 〈〈1, 0〉〉. This implies that we only have to compute the TEC of one of these patterns and

the other two can be disregarded.

SIATEC: Step 7 – Printing out T′(D) The final step of SIATEC is to print out T′(D). This can be

done using the algorithm in Figure 23. Recall that each TEC in T′(D) is represented as an ordered

pair 〈P, T (P, D)〉 where P is an MTP and T (P, D) is the set of translators for P in the dataset D (see

Eq.13 and discussion on page 16 above). In Figure 23, each MTP is printed out using the algorithm

PRINT PATTERN called in line 14. This algorithm is given in Figure 24.

PLEASE INSERT FIGURE 23 ABOUT HERE.

PLEASE INSERT FIGURE 24 ABOUT HERE.

The set of translators for each TEC is printed out using the algorithm PRINT SET OF TRANSLATORS

called in line 16 of Figure 23. This algorithm, which is given in Figure 25, exploits the fact that

T ({D[i]} , D) =
|D|⋃
j=1

{W[i, j, 1]} .

Discovering Repeated Patterns in Music 22

That is, the set of translators for a datapoint D[i] is the set that only contains every vector that

occurs as the first element in an ordered pair in the ith column in the vector table computed in Step

2 of SIATEC (see Table 3). In Figure 23, each MTP is represented as a set of indices, I: the pattern

represented by I is simply {D[i] | i ∈ I}. The set of translators for the pattern represented by I is

therefore ⋂
i∈I

T ({D[i]} , D) =
⋂
i∈I


 |D|⋃

j=1

{W[i, j, 1]}

 . (21)

In other words, the set of translators for a pattern is the set that only contains those vectors that occur

in all the columns in the vector table corresponding to the datapoints in the pattern. For example,

if D is the dataset in Figure 11, the set of translators for the pattern {a, c} = {〈1, 1〉 , 〈2, 1〉} is the

set that only contains all the vectors that occur in both the first and third columns in Table 3:

T ({〈1, 1〉 , 〈2, 1〉} , D) = {〈0, 0〉 , 〈0, 2〉 , 〈1, 0〉 , 〈1, 1〉 , 〈1, 2〉 , 〈2, 1〉}
∩ {〈−1, 0〉 , 〈−1, 2〉 , 〈0, 0〉 , 〈0, 1〉 , 〈0, 2〉 , 〈1, 1〉}

= {〈0, 0〉 , 〈0, 2〉 , 〈1, 1〉}

The algorithm PRINT SET OF TRANSLATORS is an efficient algorithm for computing the expression on

the right-hand side of Eq.21.

PLEASE INSERT FIGURE 25 ABOUT HERE.

Using the algorithms in Figures 23, 24 and 25, Step 7 can be accomplished in a worst-case running

time of O(kn3) for a k-dimensional dataset of size n. Figure 26 shows the output generated by the

algorithm in Figure 23 for the dataset in Figure 11.

PLEASE INSERT FIGURE 26 ABOUT HERE.

7 Running SIA and SIATEC on music data

SIA and SIATEC have been implemented in ANSI C (Kernighan and Ritchie, 1988), compiled using

the GNU C compiler and run on a 500MHz Sparc machine with 1GB RAM. The algorithms have

been tested on 52 datasets ranging in dimensionality from 2 to 5 and in size from 6 to nearly 3500

datapoints. (Many of these datasets are multidimensional representations of complete works from

J. S. Bach’s Das Wohltemperirte Klavier.)

Figure 27 shows the running times obtained using our implementation of SIA on 33 2-dimensional

datasets. The smooth curve in this graph represents the function t = cSIAkn2 log2 n where k is the

dimensionality of the input dataset (in this case 2) and cSIA is the average over all the test datasets

of t
kn2 log2 n where t is the running time and n is the size of the input dataset. The results support

our claim that the worst-case running time of SIA is O(kn2 log2 n). This particular implementation

takes less than 2 minutes of processor time to analyse a 2-dimensional dataset containing nearly 3500

datapoints (i.e., a piece of music containing 3500 notes).

Discovering Repeated Patterns in Music 23

PLEASE INSERT FIGURE 27 ABOUT HERE.

Figure 28 shows the running times obtained using our implementation of SIATEC on the same 2-

dimensional datasets. The smooth curve in this graph represents the function t = cSIATECkn3 where

k is again the dimensionality of the input dataset and cSIATEC is the average value over all the test

datasets of t
kn3 where t is the running time and n is the size of the input dataset. These results support

our claim that the worst-case running time of SIATEC is O(kn3). This particular implementation takes

about 13 minutes of processor time to analyse a 2-dimensional dataset containing 2000 datapoints

(i.e., a piece of music containing 2000 notes).

PLEASE INSERT FIGURE 28 ABOUT HERE.

8 Isolating perceptually significant repetitions

The power set of a dataset D contains 2|D| distinct patterns. On the other hand, the number of

MTPs generated by SIA for a dataset D is less than |D|2
2 . Therefore, for all but the very smallest

datasets, the set of non-empty MTPs computed by SIA contains only a tiny proportion of all the

patterns in the dataset. Moreover, our experiments suggest that many of the patterns involved

in perceptually significant repetitions in music are MTPs and are therefore discovered by SIA and

SIATEC. For example, as we have already pointed out (see page 14 above) each of the patterns A, B,

C and D in Figure 12 corresponds to an MTP in the two-dimensional dataset representation shown

in Figure 13. If the extract in Figure 1 is represented as a two-dimensional dataset in which the

dimensions represent chromatic pitch and onset time, then the pattern A1 in this figure is an MTP.

If the examples in Figures 2 and 6 are represented in the same way, then the patterns labelled A

in these examples are both MTPs. Figure 29 shows the first five bars of Bach’s two-part Invention

in C major (BWV 772). The set of patterns indicated by boxes in the figure corresponds to one of

the TECs discovered by SIATEC for this dataset. These examples demonstrate that it is possible to

use SIA and SIATEC to discover perceptually significant musical repetitions that are difficult to find

using string-based algorithms.

PLEASE INSERT FIGURE 29 ABOUT HERE.

However, SIATEC typically discovers tens of thousands of TECs even in relatively short pieces

such as those in Bach’s Das Wohltemperirte Klavier and usually only a very small proportion of

these TECs are perceptually significant or analytically interesting. We are therefore currently exper-

imenting with systems that evaluate the output generated by SIATEC and isolate those TECs that

correspond to particular classes of perceptually significant repetition.

However, it seems that there are various ways in which a repeated musical structure might be

perceptually significant or analytically interesting. In other words, it seems that there are various

interesting types of structural feature that a repeated musical pattern might be able to tell us

something about. For example, the TEC shown in Figure 29 obviously corresponds to the statements

Discovering Repeated Patterns in Music 24

of the opening subject and therefore tells us something interesting about the thematic structure of

the music. On the other hand, the largest MTP in the Prelude in C major from Book II of Bach’s

Das Wohltemperirte Klavier tells us that there are 115 occasions in the piece when a note is followed

precisely one bar later by a note that is a major second lower. At first, this might not seem significant.

However, it reflects the interesting fact that there are many occasions in the piece when a bar-long

fragment is immediately repeated one tone lower—an example of the baroque contrapuntal technique

known as sequence.

This suggests that there is probably no single set of rules or heuristics that is capable of isolating

all and only those TECs computed by SIATEC that correspond to perceptually significant musical

repetitions. We therefore need to develop various algorithms, each one designed to isolate repetitions

of a particular type.

We are currently in the early stages of developing algorithms for isolating TECs that contain

theme-like or motif-like patterns, since it seems likely that these are the patterns that one would

wish to include in the index of a music database. Most of the perceptually significant repeated

patterns shown in the musical examples in this paper are theme-like or motif-like (see Figures 1, 2,

6, 7, 12, 15 and 29). Each of these patterns can be unambiguously specified by drawing a horizontal

rectangle around it in the score. In other words, each of these theme-like or motif-like patterns

contains all the notes that occur within the smallest horizontal rectangle that contains the pattern.

In geometry, the smallest hypercuboid with edges parallel to the co-ordinate axes that contains a

set of points is called the bounding box of that set of points (Cormen et al., 1990, p. 889). In two

dimensions, the bounding box of a set of points S is simply the smallest rectangle with edges parallel

to the x and y axes that contains S (see Figure 30). We say that a pattern P in a dataset is bounding-

box compact (BBC) if and only if it contains all the datapoints in the dataset that occur within the

bounding box of P . We have designed and implemented an algorithm that when given a dataset D

and the set T′(D) as input, outputs the set

{E |E ∈ T′(D) ∧ (∃P |P ∈ E ∧ P is BBC)} .

That is, it searches the set of MTP TECs generated by SIATEC and selects all and only those

TECs that contain BBC patterns. The set of patterns shown in Figure 29 corresponds to a TEC

that contains a BBC MTP. This algorithm can also be used to isolate repetitions such as those in

Figures 2 and 6 in which at least one occurrence of the pattern is compact.

PLEASE INSERT FIGURE 30 ABOUT HERE.

Preliminary observations suggest that compactness is one important feature that is common to

most theme-like patterns. However, there are certainly theme-like patterns that are not BBC and

there are also BBC patterns that are not theme-like. The MTP labelled A in Figure 13 is an example

of a theme-like pattern that is not BBC and the pattern labelled Z in Figure 16 is an example of a

BBC pattern that is not theme-like.

Although pattern A in Figure 13 is not BBC, it does contain all the points in the dataset that

occur within the smallest convex polygon that can be drawn around it. In geometry, the convex

Discovering Repeated Patterns in Music 25

hull of a set Q of points in a two-dimensional Euclidean space is the smallest convex polygon P for

which each point in Q is either on the boundary of P or in its interior (Cormen et al., 1990, p. 898).

More generally, the convex hull of a subset A of a real vector space is the intersection of all convex

sets containing A (Borowski and Borwein, 1989, p. 123, s.v. convex hull). Figure 31 shows the

convex hull of a set of points in two dimensions. We say that a pattern P in a dataset is convex hull

compact if and only if it contains all and only those datapoints in the dataset that occur within the

convex hull of P . Cases like pattern A in Figure 13 suggest that it might be interesting to develop

an algorithm that searches the MTP TECs generated by SIATEC and selects all and only those TECs

that contain convex-hull compact patterns. Alternatively one could isolate those TECs that contain

temporally compact patterns (see page 3 above).

PLEASE INSERT FIGURE 31 ABOUT HERE.

Instead of simply eliminating those TECs in the output of SIATEC that do not satisfy certain

conditions, one can, instead, use a set of heuristics to calculate a value Q for each TEC that is

designed to be an indication of how theme-like the patterns in the TEC are. One can then sort the

TECs into decreasing order of Q and output this sorted list. Q might depend upon factors such as

frequency of occurrence, pattern size, overlap between pattern occurrences, compactness and so on.4

We have designed and implemented algorithms along these lines and preliminary experiments have

yielded promising results. For example, we designed an algorithm that computes a value of Q for each

TEC based on measures of pattern size, frequency of occurrence, compactness and pattern overlap.

When this algorithm was run on a two-dimensional dataset representing the passage in Figure 29,

the TEC shown in this figure achieved the highest value of Q. Also, when the same algorithm was

run on the dataset shown in Figure 13, the TEC containing pattern A was assigned one of the highest

values of Q.

The choice of dataset projection can also have a significant effect on the repetitions that are

discovered. For example, if one is only interested in repetitions in which each pattern is wholly

contained within a single voice, then it may be possible to exclude many MTPs that do not satisfy this

condition simply by using an orthogonal projection of the dataset that contains voicing information.

One important difference between our approach and that adopted in most previous work is that

we generate a superset of the interesting repetitions and then use heuristics or algorithms to iso-

late particular classes of repetition. In previous approaches (e.g., Cambouropoulos, 1998; Conklin

and Anagnostopoulou, 2001; Rolland, 1999), the investigators have tried hard to avoid generating

unwanted patterns at any stage by using more specific algorithms and less flexible representations.

However, our approach allows us to develop any number of different ‘filtering methods’ to isolate

repetitions of any type that can be formally defined. This is a much more flexible approach than

using more restrictive representations and algorithms that set severe limits right from the outset on

the classes of repetition that can be discovered.
4cf. Cambouropoulos’s (1998, p. 89) ‘Selection Function’.

Discovering Repeated Patterns in Music 26

We are only in the early stages of experimenting with heuristics for isolating particular classes of

perceptually significant repetition. However, our preliminary results suggest that by using SIATEC

in conjunction with carefully chosen heuristics it may be possible to isolate various types of per-

ceptually significant repetition directly from a multidimensional representation of a musical score or

performance.

9 Summary

Music analysts and psychologists have stressed that identifying important repetitions in music is an

essential part of the process by which an expert listener achieves a rich interpretation of a musical

work. However, the vast majority of exact repetitions that occur within a musical work are not

perceptually significant. Moreover, the class of perceptually significant repetitions is a very diverse

set that is difficult to characterise formally.

In previous approaches to repetition discovery in music it has been assumed that the music to

be analysed is represented using strings. However, there are certain types of interesting repetition in

music that cannot be discovered using these string-based approaches. Also, if one wishes to discover

many different types of repetition using a string-based approach, then one typically has to run a

variety of algorithms on a multitude of different representations of the music.

We propose a geometric approach to repetition discovery in which the music to be analysed is

represented as a multidimensional dataset (a set of points in a multidimensional Euclidean space).

Certain types of perceptually significant musical repetition that cannot be discovered using string-

processing algorithms can easily be discovered using appropriately designed algorithms that process

multidimensional datasets.

By adopting this new geometric approach, we dispense with the need for using a multitude

of different representations because the same repetition discovery algorithms can be run on just a

small number of orthogonal projections of a single rich multidimensional representation of a musical

passage. This new approach allows complex polyphonic music to be analysed as efficiently as mono-

phonic music and allows for the discovery of repeated patterns in the timbre, dynamic and rhythmic

structure of a passage as well as its pitch structure.

We do not propose our approach as a replacement for string-based approaches. We only claim that

it offers a useful alternative approach that can be used to discover types of repeated structure that

are hard or even practically impossible to compute using string-based approaches (e.g., polyphonic

patterns ‘with gaps’). We believe that our geometric approach can also be used to compute many

of the types of repetition that can be discovered using string-based approaches. However, there may

be certain classes of repetition (e.g., those in which the patterns can be represented as factors) that

can be more efficiently computed using string algorithms.

We introduce the concept of a maximal translatable pattern (MTP). Given a multidimensional

dataset D a pattern P is the MTP for a vector v if and only if it is the largest pattern in D that

can be translated by v to give another pattern in D.

Discovering Repeated Patterns in Music 27

We also introduce the concept of a translational equivalence class (TEC). Two patterns P1 and

P2 are translationally equivalent if and only if P2 can be obtained by translating P1. Given a

multidimensional dataset D, and a pattern P , then the TEC of P in D contains all and only those

patterns in D that are translationally equivalent to P .

We present two new algorithms: SIA and SIATEC. SIA takes a multidimensional dataset D as input

and computes all the non-empty MTPs in D. SIATEC takes a dataset D as input and computes the set

of TECs that contain non-empty MTPs in D. For a k-dimensional dataset of size n, the worst-case

running time of SIA is O(kn2 log2 n) and the worst-case running time of SIATEC is O(kn3).

SIA and SIATEC have been implemented in C and compiled on a variety of platforms. The

programs have been run on datasets ranging in dimensionality from 2 to 5 and in size from 6 to

nearly 3500 datapoints. When run on a 500MHz Sparc machine, SIA takes less than 2 minutes of

processor time to analyse a dataset containing 3500 two-dimensional datapoints and SIATEC takes

around 13 minutes of processor time to analyse a dataset containing 2000 two-dimensional datapoints.

Typically, the number of MTPs computed by SIA is a very tiny fraction of all the patterns in a

dataset. Moreover, many interesting repeated patterns in music are MTPs that can be discovered

using SIA and SIATEC. Nevertheless, SIATEC typically discovers tens of thousands of TECs even in

relatively short pieces such as those in Bach’s Das Wohltemperirte Klavier and usually only a very

small proportion of these TECs are perceptually significant. We are currently in the early stages

of developing heuristics and algorithms for isolating those TECs that correspond to perceptually

significant or analytically interesting repetitions. Our preliminary experiments suggest that, by

using SIATEC in conjunction with carefully chosen heuristics, it may be possible to isolate various

types of interesting repetition directly from multidimensional representations of musical scores or

performances.

10 Future work

There are many ways in which the ideas reported here could be developed further. For example, the

SIA and SIATEC algorithms could be used as the basis for new computational models and software

tools for repeated pattern discovery, database indexing and compression. These models and tools

could be used on data representing images, audio recordings, video, 3d-molecular models and, in

general, anything that can appropriately be represented as a multidimensional dataset.

SIA and SIATEC currently only discover exactly repeated patterns in multidimensional datasets.

Versions of these algorithms need to be developed that can discover approximately repeated patterns

such as those that would occur, for example, in a MIDI file representation of an expressive perfor-

mance of a musical work. This is not difficult to achieve. It involves modifying the notions of MTP

and TEC. For example, the concept of an MTP defined in Eq.1 would have to be modified to:

MTP ′(v, D) = {d1 |d1 ∈ D ∧ (∃d2 | d2 ∈ D ∧ d1 + v � d2)} (22)

where ‘�’ denotes approximate equality.

Discovering Repeated Patterns in Music 28

In section 4 above we noted that multidimensional datasets could be used to represent both PCM

audio data and time-varying audio frequency spectra. We also mentioned the possibility of using

SIATEC to help with identifying instrumental parts in audio data. However, the algorithms described

above would have to be modified in various ways before they could be used for processing audio

data. For example, the algorithms would have to be capable of finding instances of approximate

repetition. Also, the algorithms are too slow as they stand to process complete uncompressed audio

files. It would therefore be necessary to modify them so that they can process large files in chunks or

‘windows’ (in which case the expected time complexity would become linear in the size of the file).

Alternatively, feature extraction could be used to reduce the size of the audio file to be processed

(see, for example, Kurth and Clausen, 2001).

We are also currently investigating the possibility of using SIA and SIATEC as the basis of a system

for indexing music databases (Lemström et al., 2001).

Algorithms and heuristics (possibly based on SIA and SIATEC) need to be developed for discovering

and isolating various classes of perceptually significant repetition (e.g., theme-like repeated patterns,

inversions, retrograde repetitions, augmentations, diminutions etc.).

Finally, there may be ways of improving the running times of SIA and SIATEC. In particular,

it might be possible to achieve much faster running times by developing parallel versions of the

algorithms or by exploiting techniques such as word-level parallelism (see, for example, Rahman and

Raman, 1998).

Discovering Repeated Patterns in Music 29

Acknowledgements

David Meredith is supported by grant GR/N08049/01 from the EPSRC. Kjell Lemström was partially

supported by grant number 48313 from the Academy of Finland and by grant GR/R25316 from the

EPSRC. The authors would like to thank Marcus Pearce, Darrell Conklin and an anonymous reviewer

for their helpful comments on earlier drafts of this paper.

Discovering Repeated Patterns in Music 30

References

Apostolico, A. and Ehrenfeucht, A. (1993). Efficient detection of quasiperiodicities in strings. Theo-

retical Computer Science, 119(2), 247–265.

Apostolico, A. and Preparata, F. P. (1983). Optimal off-line detection of repetitions in a string.

Theoretical Computer Science, 22(3), 297–315.

Apostolico, A., Farach, M., and Iliopoulos, C. S. (1991). Optimal superprimitivity testing for strings.

Information Processing Letters , 39(1), 17–20.

Ben-Amram, A., Berkman, O., Iliopoulos, C. S., and Park, K. (1994). The subtree max gap prob-

lem with application to parallel string covering. In Proceedings of the 5th ACM-SIAM Annual

Symposium on Discrete Algorithms, Arlington, VA., pages 501–510.

Bent, I. and Drabkin, W. (1987). Analysis . New Grove Handbooks in Music. Macmillan.

Borowski, E. J. and Borwein, J. M. (1989). Dictionary of Mathematics. Collins.

Breslauer, D. (1992). An on-line string superprimitivity test. Information Processing Letters , 44(6),

345–347.

Breslauer, D. (1994). Testing string superprimitivity in parallel. Information Processing Letters ,

49(5), 235–241. Available online at http://citeseer.nj.nec.com/301674.html.

Brinkman, A. R. (1986). A binomial representation of pitch for computer processing of musical data.

Music Theory Spectrum, 8, 44–57.

Brinkman, A. R. (1990). PASCAL Programming for Music Research. The University of Chicago

Press, Chicago and London.

Cambouropoulos, E. (1996). A general pitch interval representation: Theory and applications. Jour-

nal of New Music Research, 25, 231–251.

Cambouropoulos, E. (1998). Towards a General Computational Theory of Musical Structure. Ph.D.

thesis, University of Edinburgh.

Cambouropoulos, E., Crochemore, M., Iliopoulos, C. S., Mouchard, L., and Pinzon, Y. J. (1999).

Algorithms for computing approximate repetitions in musical sequences. In R. Raman and

J. Simpson, editors, Proceedings of the 10th Australasian Workshop on Combinatorial Algorithms

(AWOCA’99), pages 129–144, Perth, WA, Australia.

Cardon, A. and Crochemore, M. (1982). Partitioning a graph in O(|A| log2 |V |). Theoretical Computer

Science, 19(1), 85–98.

Conklin, D. and Anagnostopoulou, C. (2001). Representation and discovery of multiple viewpoint

patterns. In Proceedings of the International Computer Music Conference, 2001, Havana Cuba.

Discovering Repeated Patterns in Music 31

Conklin, D. and Witten, I. (1995). Multiple viewpoint systems for music prediction. Journal of New

Music Research, 24(1), 51–73.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1990). Introduction to Algorithms . M.I.T. Press,

Cambridge, Mass.

Crawford, T., Iliopoulos, C. S., and Raman, R. (1998). String matching techniques for musical

similarity and melodic recognition. Computing in Musicology, 11, 73–100.

Crochemore, M. (1981). An optimal algorithm for computing the repetitions in a word. Information

Processing Letters , 12(5), 244–250.

Crochemore, M. and Rytter, W. (1994). Text Algorithms . Oxford University Press, Oxford.

Crow, D. and Smith, B. (1992). DB Habits: Comparing minimal knowledge and knowledge-based

approaches to pattern recognition in the domain of user-computer interactions. In R. Beale and

J. Finlay, editors, Neural Networks and Pattern Recognition in Human-Computer Interaction,

pages 39–63. Ellis Horwood, New York and London.

Dovey, M. (1999). An algorithm for locating polyphonic phrases within a polyphonic musical piece.

In Proceedings of the AISB’99 Symposium on Musical Creativity, pages 48–53, Edinburgh.

Dovey, M. and Crawford, T. (1999). Heuristic models of relevance ranking in searching polyphonic

music. In DIDEROT FORUM on Mathematics and Music: Computational and Mathematical

Methods in Music, pages 111–123.

Dovey, M. and Crawford, T. (2000). Heuristic models of relevance ranking in searching polyphonic

music. Presented at the London Strings Days 2000 workshop.

Floratos, A. and Rigoutsos, I. (2000). Method and apparatus for pattern discovery in 1-dimensional

event streams. U.S. Patent no. 6,108,666.

Forte, A. and Gilbert, S. E. (1982). Introduction to Schenkerian Analysis . Norton, New York.

Hsu, J.-L., Liu, C.-C., and Chen, A. L. (1998). Efficient repeating pattern finding in music databases.

In Proceedings of the 1998 ACM 7th International Conference on Information and Knowledge

Management , pages 281–288. Association of Computing Machinery.

Huron, D. (1992). Design principles in computer-based music representation. In A. Marsden and

A. Pople, editors, Computer Representations and Models in Music, pages 5–39. Academic Press,

London.

Iliopoulos, C. S. and Mouchard, L. (1999). An O(n log n) algorithm for computing all maximal

quasiperiodicities in strings. In Proceedings of CATS’99: ‘Computing: Australasian Theory Sympo-

sium’ , volume 213 of Lecture Notes in Computer Science, pages 262–272, Auckland, New Zealand.

Springer-Verlag.

Discovering Repeated Patterns in Music 32

Iliopoulos, C. S. and Park, K. (1994). An optimal O(log log n)–time algorithm for parallel super-

primitivy testing. Journal of the Korean Information Science Society, 21(8), 1400–1404.

Iliopoulos, C. S. and Park, K. (1996). A work-time optimal algorithm for computing all string covers.

Theoretical Computer Science, 164(1–2), 299–310.

Iliopoulos, C. S., Moore, D. W., and Park, K. (1993). Covering a string. In A. Apostolico,

M. Crochemore, Z. Galil, and U. Manber, editors, Proceedings of the 4th Annual Symposium

on Combinatorial Pattern Matching, Padova, Italy, volume 684 of Lecture Notes in Computer

Science, pages 54–62. Springer.

Kernighan, B. W. and Ritchie, D. M. (1988). The C Programming Language. Prentice-Hall Interna-

tional, London.

Krumhansl, C. L. (1990). Cognitive Foundations of Musical Pitch, volume 17 of Oxford Psychology

Series . Oxford University Press, Oxford.

Kurth, F. and Clausen, M. (2001). Full-text indexing of very large audio data bases. In Proceedings

of the 110th AES Convention, Amsterdam, The Netherlands.

Lemström, K. (2000). String Matching Techniques for Music Retrieval . Ph.D. thesis, University of

Helsinki, Faculty of Science, Department of Computer Science. Report A-2000-4.

Lemström, K. and Tarhio, J. (2000). Searching monophonic patterns within polyphonic sources. In

Content-Based Multimedia Information Access Conference Proceedings (RIAO’2000), April 12–14,

2000 , volume 2, pages 1261–1279, Collége de France, Paris.

Lemström, K. and Ukkonen, E. (2000). Including interval encoding into edit distance based music

comparison and retrieval. In Proceedings of the AISB 2000 Symposium on Creative and Cultural

Aspects and Applications of AI and Cognitive Science (April 17–18), pages 53–60, University of

Birmingham.

Lemström, K., Haapaniemi, A., and Ukkonen, E. (1998). Retrieving music—to index or not to index.

In ACM Multimedia 98:—Art Demos—Technical Demos—Poster Papers—, Bristol.

Lemström, K., Laine, P., and Perttu, S. (1999). Using relative interval slope in music information

retrieval. In Proceedings of the 1999 International Computer Music Conference, pages 317–320,

Beijing.

Lemström, K., Wiggins, G. A., and Meredith, D. (2001). A three-layer approach for music retrieval

in large databases. In Second Annual International Symposium on Music Information Retrieval

(ISMIR 2001), Indiana University, Bloomington, Indiana.

Lerdahl, F. and Jackendoff, R. (1983). A Generative Theory of Tonal Music. M.I.T. Press, Cam-

bridge, Mass. Cited by Krumhansl (1990).

Discovering Repeated Patterns in Music 33

Lewin, D. (1987). Generalized Musical Intervals and Transformations . Yale University Press, New

Haven and London.

Li, Y. and Smyth, W. (1999). Computing the cover array in linear time. To appear.

Lincoln, H. (1967). Some criteria and techniques for developing computerized thematic indices. In

Heckman, editor, Electronische Datenverarbeitung in der Musikwissenschaft . Regensburg.

Meredith, D. (1999). The computational representation of octave equivalence in the Western staff

notation system. In Cambridge Music Processing Colloquium, September 1999. Available online

at http://www-sigproc.eng.cam.ac.uk/music proc/submissions/meredith.pdf.

Meredith, D. (2001). MIPS: A formal language for the mathematical investigation of pitch systems

(version 2001-09-10). Available online at http://www.titanmusic.com/papers/public/mips20010910.pdf.

Meredith, D., Lemström, K., and Wiggins, G. A. (2001). SIA and SIATEC: Effi-

cient algorithms for translation-invariant pattern discovery in multi-dimensional datasets.

Document submitted to UK Patent Office on May 23, 2001. Available online at

http://www.titanmusic.com/papers/public/patent.pdf.

Mongeau, M. and Sankoff, D. (1990). Comparison of musical sequences. Computers and the Human-

ities , 24, 161–175.

Moore, D. W. and Smyth, W. (1994). Computing the covers of a string in linear time. In Proceedings

of the 5th ACM-SIAM Symposium on Discrete Algorithms, pages 511–515.

Nattiez, J.-J. (1975). Fondements d’une sémiologie de la musique. Union Générale d’Éditions, Paris.

Rahman, N. and Raman, R. (1998). An experimental study of word-level parallelism in some sorting

algorithms. Available online at http://citeseer.nj.nec.com/rahman98experimental.html .

Rolland, P.-Y. (1999). Discovering patterns in musical sequences. Journal of New Music Research,

28(4), 334–350.

Ruwet, N. (1972). Langage, Musique, Poésie. Éditions du seuil, 27, rue Jacob, Paris VI.

Schenker, H. (1954). Harmony. University of Chicago Press, London. Edited by Oswald Jonas and

translated by Elisabeth Mann Borgese from the 1906 German edition. Cited by Krumhansl (1990).

Tanguiane, A. S. (1993). Artificial Perception and Music Recognition. Number 746 in Lecture Notes

in Artificial Intelligence. Springer-Verlag, Berlin.

Ukkonen, E. (1985). Algorithms for approximate string matching. Information and Control , 64,

100–118.

Discovering Repeated Patterns in Music 34

&

?

b

b

b

b

b

b

b

b

b

b

b

b

c

c

‰ .
r

œ œ .œ œn .œ œ

‰ .
r

œ

œ

.

.

œ

œ

œ

œ

n

n

. .

. .

œ

œ

r

œ

œ

.œb
œ œ .œ œn

.œ œ

.

.

œ

œ

œ

œ

n

n

œ

œ

.

.

œ

œ
œ

œ

.

.

œ

œ

œ

œ

&

?

b

b

b

b

b

b

b

b

b

b

b

b

3

.œn

œb œ .œ œ∫ œ

‰ .

R

œ
. .œ

R

œ∫

.

.

œ

œ

œ

œ

b

b

.

.

œ

œ

œ

œ

n

n

˙

˙

b

b

.œ œ∫

3

œ œ

‰

3

œ∫ œ œn œb œn
œ

3

‰
œ œn œb

.

.

œ

œ
œ

œ

.

.

œ

œ

œ

œ

n

n

˙

˙

b

b

œb œn œb

3

A1 A2 A3

A4 A5A3 (cont.)

Figure 1: Measures 1–4 of Barber’s Sonata for Piano, Op.26, showing 5 occurrences of the rising bass
pattern A1–A5.

Discovering Repeated Patterns in Music 35

& 4

3

œ
œ

œ

.˙

œ œ œ œ œ œ œ œ œ œ œ
œ .˙

A B

1 2 3 4 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 2: Example of a pattern being embellished using the technique of diminution.

Discovering Repeated Patterns in Music 36

&

?

b

b

c

c

∑

˙

.œ

J

œ

œ

.œ œ
.œ œ œ

.œ

J

œ ˙

œ .œ œ œ œ œ œ œ

Ó œ

.œ œ

˙#
.œ

J

œ

&

?

b

b

4 .œ œ œ œ œ œ œ œ
.œ œ œ œ# .œ œ

˙ .œ œ .œ œ

.œ œn œ .œ œ .œ# œ

œ œ œ œ œ œ .
œ œ

.œ

œ
.œ œ

.œ œ .œ œ

Figure 3: Measures 1–5 of Contrapunctus VI from Die Kunst der Fuge by J. S. Bach.

Discovering Repeated Patterns in Music 37

&

&

?

?

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

c

c

c

c

‰ .
r

œ œ .œ œn .œ œ

∑

‰ .
r

œ

.œ œn
. .œ r

œ

‰ .
r

œ
.œ œn

. .œ

r

œ

.œb
œ œ .œ œn

.œ œ

∑

.œ œn
œ .œ

œ

.œ œ

.œ œn
œ .œ

œ
.œ œ

.œn

œb œ .œ œ∫ œ

Œ ‰ .
r

œ
. .œ

r

œ∫

.œ
œb

.œ œn
˙b

.œ
œb

.œ œn
˙b

.œ œ∫

3

œ œ

‰
3

œ∫ œ œn œb œn

œ

3
‰

œ œn

3

œb œ œn œb

.œ

œ
.œ œn

˙b

.œ

œ

.œ œn
˙b

B1 B2 B4 B5

B6 B7 B8 B9 B10

B3

Figure 4: Measures 1–4 of Barber’s Sonata for Piano, Op. 26, showing one natural way of partitioning
the notes into monophonic voices.

Discovering Repeated Patterns in Music 38

&

&

?

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

c

c

c

‰ .
r

œ œ .œ œn .œ œ

∑

‰ .
r

œ

œ

.

.

œ

œ

œ

œ

n

n

. .

. .

œ

œ

r

œ

œ

.œb
œ œ .œ œn

.œ œ

∑

.

.

œ

œ

œ

œ

n

n

œ

œ

.

.

œ

œ
œ

œ

.

.

œ

œ

œ

œ

&

&

?

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

3

.œn

œb œ .œ œ∫ œ

Œ ‰ .
r

œ
. .œ

r

œ∫

.

.

œ

œ

œ

œ

b

b

.

.

œ

œ

œ

œ

n

n

˙

˙

b

b

.œ œ∫

3

œ œ

‰

3

œ∫ œ œn œb œn

œ

3
‰

œ œn

3

œb œ œn œb

.

.

œ

œ
œ

œ

.

.

œ

œ

œ

œ

n

n

˙

˙

b

b

A1 A2 A3

A3 (cont.) A4 A5

Figure 5: Measures 1–4 of Barber’s Sonata for Piano, Op. 26, showing one natural way of partitioning
the notes into polyphonic ‘streams’.

Discovering Repeated Patterns in Music 39

& 4

3

. .œ

r

œ œ œ

˙ œ

&

œ

œ œ œ œ
œ œ œ œ

œ œ
œ

œ

3
œ œ œ œ œ œ œ

A

B

Figure 6: Pattern B is an embellished repetition of pattern A.

Discovering Repeated Patterns in Music 40

&

?

b

b

b

b

b

b

c

c

≈
œ œ œ œ

œ œ œ œ
œ œ œ œ

œ œ œ

œ

œ

œ

œ

œ

œ

œ

œn

œ

œ

œ

œ

œ

œ

œ

œn

œ

œ œ œ œ
œ œ œ œ

œ œ œ œ
œ œ œ

A B C

Figure 7: The first two measures of the Prelude in C minor from Book 2 of J. S. Bach’s Das
Wohltemperirte Klavier, BWV 871/1.

Discovering Repeated Patterns in Music 41

{ 〈0, 27, 16, 2, 2〉, 〈1, 46, 27, 1, 1〉, 〈2, 39, 23, 2, 2〉,
〈2, 44, 26, 1, 1〉, 〈3, 46, 27, 1, 1〉, 〈4, 32, 19, 2, 2〉,
〈4, 47, 28, 1, 1〉, 〈5, 44, 26, 1, 1〉, 〈6, 39, 23, 2, 2〉,
〈6, 42, 25, 1, 1〉, 〈7, 44, 26, 1, 1〉, 〈8, 30, 18, 2, 2〉,
〈8, 46, 27, 1, 1〉, 〈9, 42, 25, 1, 1〉, 〈10, 39, 23, 2, 2〉,
〈10, 41, 24, 1, 1〉, 〈11, 42, 25, 1, 1〉, 〈12, 29, 17, 2, 2〉,
〈12, 44, 26, 1, 1〉, 〈13, 41, 24, 1, 1〉, 〈14, 38, 22, 2, 2〉,
〈14, 39, 23, 1, 1〉, 〈15, 41, 24, 1, 1〉, 〈16, 27, 16, 1, 2〉,
〈16, 42, 25, 2, 1〉, 〈17, 34, 20, 1, 2〉, 〈18, 32, 19, 1, 2〉,
〈18, 51, 30, 2, 1〉, 〈19, 34, 20, 1, 2〉, 〈20, 35, 21, 1, 2〉,
〈20, 44, 26, 2, 1〉, 〈21, 32, 19, 1, 2〉, 〈22, 30, 18, 1, 2〉,
〈22, 51, 30, 2, 1〉, 〈23, 32, 19, 1, 2〉, 〈24, 34, 20, 1, 2〉,
〈24, 42, 25, 2, 1〉, 〈25, 30, 18, 1, 2〉, 〈26, 29, 17, 1, 2〉,
〈26, 51, 30, 2, 1〉, 〈27, 30, 18, 1, 2〉, 〈28, 32, 19, 1, 2〉,
〈28, 41, 24, 2, 1〉, 〈29, 29, 17, 1, 2〉, 〈30, 27, 16, 1, 2〉,
〈30, 50, 29, 2, 1〉, 〈31, 29, 17, 1, 2〉 }

Figure 8: A 5-dimensional dataset representation of the music in Figure 7.

Discovering Repeated Patterns in Music 42

Figure 9: A two-dimensional orthogonal projection of the dataset in Figure 8 onto the plane defined
by the onset time and chromatic pitch dimensions.

Discovering Repeated Patterns in Music 43

Figure 10: A two-dimensional orthogonal projection of the dataset in Figure 8 onto the plane defined
by the onset time and morphetic pitch dimensions.

Discovering Repeated Patterns in Music 44

0

1

2

3

0 1 2 3

×

×

×
×
×
×

a

b

c

d

e

f

y

x

Figure 11: A simple two-dimensional dataset containing 6 datapoints.

Discovering Repeated Patterns in Music 45

&

?

b

b

b

b

b

b

c

c

≈
œ œ œ œ

œ œ œ œ
œ œ œ œ

œ œ œ

œ

œ

œ

œ

œ

œ

œ

œn

œ

œ

œ

œ

œ

œ

œ

œn

œ

œ œ œ œ
œ œ œ œ

œ œ œ œ
œ œ œ

A
B

C D

Figure 12: The first two measures of the Prelude in C minor from Book 2 of J. S. Bach’s Das
Wohltemperirte Klavier, BWV 871/1.

Discovering Repeated Patterns in Music 46

Figure 13: A two-dimensional orthogonal projection of the dataset in Figure 8 onto the plane defined
by the onset time and chromatic pitch dimensions.

Discovering Repeated Patterns in Music 47

{ 〈 〈0, 1〉, {〈2, 1〉, 〈2, 2〉} 〉,
〈 〈0, 2〉, {〈1, 1〉, 〈2, 1〉} 〉,
〈 〈1,−2〉, {〈1, 3〉} 〉,
〈 〈1,−1〉, {〈1, 3〉, 〈2, 3〉} 〉,
〈 〈1, 0〉, {〈1, 1〉, 〈1, 3〉, 〈2, 2〉} 〉,
〈 〈1, 1〉, {〈1, 1〉, 〈2, 1〉} 〉,
〈 〈1, 2〉, {〈1, 1〉} 〉,
〈 〈2,−1〉, {〈1, 3〉} 〉,
〈 〈2, 1〉, {〈1, 1〉} 〉 }

Figure 14: The set S(D) for the dataset in Figure 11.

Discovering Repeated Patterns in Music 48

&

?

b

b

b

b

b

b

c

c

≈
œ œ œ œ

œ œ œ œ
œ œ œ œ

œ œ œ

œ

œ

œ

œ

œ

œ

œ

œn

œ

œ

œ

œ

œ

œ

œ

œn

œ

œ œ œ œ
œ œ œ œ

œ œ œ œ
œ œ œ

œ
œ

œ

œ

œ
œ

A B C
D

E F G H

Figure 15: The opening measures of the Prelude in C minor from Book 2 of J. S. Bach’s Das
Wohltemperirte Klavier, BWV 871/1.

Discovering Repeated Patterns in Music 49

Figure 16: A two-dimensional dataset representation of the music in Figure 15 showing the onset
time and morphetic pitch of each note.

Discovering Repeated Patterns in Music 50

{ 〈{〈1, 1〉, 〈1, 3〉, 〈2, 2〉}, {〈0, 0〉, 〈1, 0〉}〉,
〈{〈1, 1〉, 〈2, 1〉}, {〈0, 0〉, 〈0, 2〉, 〈1, 1〉}〉,
〈{〈2, 1〉, 〈2, 2〉}, {〈0, 0〉, 〈0, 1〉}〉,
〈{〈1, 1〉}, {〈0, 0〉, 〈0, 2〉, 〈1, 0〉, 〈1, 1〉, 〈1, 2〉, 〈2, 1〉}〉 }

Figure 17: The set T′(D) for the dataset in Figure 11.

Discovering Repeated Patterns in Music 51

1 m← |V|
2 i← 1
3 PRINT NEW LINE

4 PRINT(‘{’)
5 while i ≤ m

6 PRINT(‘〈’)
7 PRINT VECTOR(V[i, 1])
8 PRINT(‘, {’)
9 PRINT VECTOR(D[V[i, 2]])
10 j ← i + 1
11 while j ≤ m and V[j, 1] = V[i, 1]
12 PRINT(‘,’)

13 PRINT VECTOR(D[V[j, 2]])
14 j ← j + 1
15 PRINT(‘}〉’)
16 if j ≤ m

17 PRINT(‘,’)

18 PRINT NEW LINE

19 i← j

20 PRINT(‘}’)

Figure 18: An algorithm for printing out S(D) using V and D.

Discovering Repeated Patterns in Music 52

{〈〈0, 1〉, {〈2, 1〉, 〈2, 2〉}〉,
〈〈0, 2〉, {〈1, 1〉, 〈2, 1〉}〉,
〈〈1,−2〉, {〈1, 3〉}〉,
〈〈1,−1〉, {〈1, 3〉, 〈2, 3〉}〉,
〈〈1, 0〉, {〈1, 1〉, 〈1, 3〉, 〈2, 2〉}〉,
〈〈1, 1〉, {〈1, 1〉, 〈2, 1〉}〉,
〈〈1, 2〉, {〈1, 1〉}〉,
〈〈2,−1〉, {〈1, 3〉}〉,
〈〈2, 1〉, {〈1, 1〉}〉}

Figure 19: The output of the algorithm in Figure 18 for the dataset in Figure 11.

Discovering Repeated Patterns in Music 53

1 m← |V|
2 i← 1
3 X← 〈 〉
4 while i ≤ m

5 Q← 〈 〉
6 j ← i + 1
7 while j ≤ m and V[j, 1] = V[i, 1]
8 Q← Q⊕ 〈D[V[j, 2]] −D[V[j − 1, 2]]〉
9 j ← j + 1
10 X← X⊕ 〈〈i,Q〉〉
11 i← j

Figure 20: An algorithm for computing X using V and D.

Discovering Repeated Patterns in Music 54

〈 〈 1, 〈〈0, 1〉〉 〉,
〈 3, 〈〈1, 0〉〉 〉,
〈 5, 〈 〉 〉,
〈 6, 〈〈1, 0〉〉 〉,
〈 8, 〈〈0, 2〉 , 〈1,−1〉〉 〉,
〈 11, 〈〈1, 0〉〉 〉,
〈 13, 〈 〉 〉,
〈 14, 〈 〉 〉,
〈 15, 〈 〉 〉 〉

Figure 21: The ordered set X for the dataset in Figure 11.

Discovering Repeated Patterns in Music 55

〈 〈 5, 〈 〉 〉,
〈 13, 〈 〉 〉,
〈 14, 〈 〉 〉,
〈 15, 〈 〉 〉,
〈 1, 〈〈0, 1〉〉 〉,
〈 3, 〈〈1, 0〉〉 〉,
〈 6, 〈〈1, 0〉〉 〉,
〈 11, 〈〈1, 0〉〉 〉,
〈 8, 〈〈0, 2〉 , 〈1,−1〉〉 〉 〉

Figure 22: The ordered set Y for the dataset in Figure 11.

Discovering Repeated Patterns in Music 56

1 r← |Y|
2 m← |V|
3 i← 1
4 PRINT NEW LINE

5 PRINT(‘{’)
6 if r > 0
7 repeat

8 j ← Y[i, 1]
9 I← 〈 〉
10 while j ≤ m and V[j, 1] = V[Y[i, 1], 1]
11 I← I⊕ 〈V[j, 2]〉
12 j ← j + 1
13 PRINT(‘〈’)
14 PRINT PATTERN(I)
15 PRINT(‘,’)

16 PRINT SET OF TRANSLATORS(I)
17 PRINT(‘〉’)
18 repeat

19 i← i + 1
20 until i > r or Y[i, 2] �= Y[i− 1, 2]
21 if i ≤ r

22 PRINT(‘,’)

23 PRINT NEW LINE

24 until i > r

25 PRINT(‘}’)

Figure 23: An algorithm for printing out T′(D).

Discovering Repeated Patterns in Music 57

PRINT PATTERN(I)
1 p← |I|
2 PRINT(‘{’)
3 PRINT VECTOR(D[I[1]])
4 for k← 2 to p

5 PRINT(‘,’)

6 PRINT VECTOR(D[I[k]])
7 PRINT(‘}’)

Figure 24: The PRINT PATTERN algorithm.

Discovering Repeated Patterns in Music 58

PRINT SET OF TRANSLATORS(I)

1 p← |I|
2 n← |D|
3 if p = 1

4 PRINT(‘{’)
5 PRINT VECTOR(W[I[1], 1, 1])

6 for k ← 2 to n

7 PRINT(‘,’)

8 PRINT VECTOR(W[I[1], k, 1])

9 PRINT(‘}’)
10 else

11 PRINT(‘{’)
12 J← 〈 〉
13 for k ← 1 to p

14 J← J⊕ 〈1〉
15 FINISHED ← FALSE

16 FIRST VECTOR ← TRUE

17 k ← 2

18 while not FINISHED

19 if J[k] ≤ J[k− 1]

20 J[k]← J[k − 1] + 1

21 while J[k] ≤ n− p + k and W[I[k],J[k],1] < W[I[k − 1],J[k − 1], 1]

22 J[k]← J[k] + 1

23 if J[k] > n− p + k

24 FINISHED ← TRUE

25 else if W[I[k],J[k],1] > W[I[k − 1],J[k − 1], 1]

26 k ← 2

27 J[1]← J[1] + 1

28 if J[1] > n− p + 1

29 FINISHED ← TRUE

30 else if k = p

31 if not FIRST VECTOR

32 PRINT(‘,’)

33 else

34 FIRST VECTOR← FALSE

35 PRINT VECTOR(W[I[k], J[k],1])

36 k ← 1

37 while k ≤ p

38 J[k]← J[k] + 1

39 if J[k] > n− p + k

40 FINISHED ← TRUE

41 k ← p

42 k ← k + 1

43 k ← 2

44 else

45 k ← k + 1

46 PRINT(‘}’)

Figure 25: The PRINT SET OF TRANSLATORS algorithm.

Discovering Repeated Patterns in Music 59

{〈{〈1, 3〉}, {〈0,−2〉, 〈0, 0〉, 〈1,−2〉, 〈1,−1〉, 〈1, 0〉, 〈2,−1〉}〉,
〈{〈2, 1〉, 〈2, 2〉}, {〈0, 0〉, 〈0, 1〉}〉,
〈{〈1, 1〉, 〈2, 1〉}, {〈0, 0〉, 〈0, 2〉, 〈1, 1〉}〉,
〈{〈1, 1〉, 〈1, 3〉, 〈2, 2〉}, {〈0, 0〉, 〈1, 0〉}〉}

Figure 26: The output of the algorithm in Figure 23 for the dataset in Figure 11.

Discovering Repeated Patterns in Music 60

Figure 27: Graph of running time against dataset size for SIA.

Discovering Repeated Patterns in Music 61

Figure 28: Graph of running time against dataset size for SIATEC.

Discovering Repeated Patterns in Music 62

&

?

c

c

≈

œ œ œ œ
œ œ

œ

œ

œ œ œ

Ó ≈ œ œ œ œ
œ œ

œ

œ

œ œ œ œ
œ œ

œ

œ

œ œ œ

œ

œ

Œ ≈

œ œ œ œ
œ œ

œ

œ

œ œ œ œ
œ œ

œ œ œ œ œ œ
œ œ

œ

œ œ œ œ œ

œ œ œ

&

?

4

œ œ œ œ œ
œ œ

œ œ œ œ œ œ#
œ œ

œ

œ

œ œ# œ œ œ œ

œ

œ

.œ œ
œ œ œ œ# œ

œ œ
œ

œ

œ œ œ# œ
œ œ

œ

œ

œ œ œ

Figure 29: Bars 1–5 of Bach’s two-part Invention in C major (BWV 772) showing one of the TECs
discovered by SIATEC.

Discovering Repeated Patterns in Music 63

�

�

×

×

×

×

×
×

y

x

Figure 30: An example of a bounding box.

Discovering Repeated Patterns in Music 64

�

�

×

×

×

×

×
×

y

x

�
�
�
�
�
���

�
�

�
�

�
��
�

�
�

�
�

�
�

���
�

�
�

�
�

Figure 31: An example of a convex hull.

Discovering Repeated Patterns in Music 65

From
〈1, 1〉 〈1, 3〉 〈2, 1〉 〈2, 2〉 〈2, 3〉 〈3, 2〉

〈1, 1〉
〈1, 3〉 〈〈0, 2〉 , 1〉
〈2, 1〉 〈〈1, 0〉 , 1〉 〈〈1,−2〉 , 2〉

To 〈2, 2〉 〈〈1, 1〉 , 1〉 〈〈1,−1〉 , 2〉 〈〈0, 1〉 , 3〉
〈2, 3〉 〈〈1, 2〉 , 1〉 〈〈1, 0〉 , 2〉 〈〈0, 2〉 , 3〉 〈〈0, 1〉 , 4〉
〈3, 2〉 〈〈2, 1〉 , 1〉 〈〈2,−1〉 , 2〉 〈〈1, 1〉 , 3〉 〈〈1, 0〉 , 4〉 〈〈1,−1〉 , 5〉

Table 1: A vector table showing the set V for the dataset shown in Figure 11.

Discovering Repeated Patterns in Music 66

i V[i] D[V[i, 2]]

1
2

〈〈0, 1〉 , 3〉
〈〈0, 1〉 , 4〉

〈2, 1〉
〈2, 2〉

}
= MTP for 〈0, 1〉

3
4

〈〈0, 2〉 , 1〉
〈〈0, 2〉 , 3〉

〈1, 1〉
〈2, 1〉

}
= MTP for 〈0, 2〉

5 〈〈1,−2〉 , 2〉 〈1, 3〉
}

= MTP for 〈1,−2〉
6
7

〈〈1,−1〉 , 2〉
〈〈1,−1〉 , 5〉

〈1, 3〉
〈2, 3〉

}
= MTP for 〈1,−1〉

8
9
10

〈〈1, 0〉 , 1〉
〈〈1, 0〉 , 2〉
〈〈1, 0〉 , 4〉

〈1, 1〉
〈1, 3〉
〈2, 2〉


 = MTP for 〈1, 0〉

11
12

〈〈1, 1〉 , 1〉
〈〈1, 1〉 , 3〉

〈1, 1〉
〈2, 1〉

}
= MTP for 〈1, 1〉

13 〈〈1, 2〉 , 1〉 〈1, 1〉
}

= MTP for 〈1, 2〉
14 〈〈2,−1〉 , 2〉 〈1, 3〉

}
= MTP for 〈2,−1〉

15 〈〈2, 1〉 , 1〉 〈1, 1〉
}

= MTP for 〈2, 1〉

Table 2: Reading the second column from top to bottom gives V for the dataset shown in Figure 11.
The third column gives D[V[i, 2]] for each element V[i] in the second column. The right-hand side
of the third column shows how the non-empty MTPs may be derived directly from V.

Discovering Repeated Patterns in Music 67

From
〈1, 1〉 〈1, 3〉 〈2, 1〉 〈2, 2〉 〈2, 3〉 〈3, 2〉

〈1, 1〉 〈〈0, 0〉 , 1〉 〈〈0,−2〉 , 2〉 〈〈−1, 0〉 , 3〉 〈〈−1,−1〉 , 4〉 〈〈−1,−2〉 , 5〉 〈〈−2,−1〉 , 6〉
〈1, 3〉 〈〈0, 2〉 , 1〉 〈〈0, 0〉 , 2〉 〈〈−1, 2〉 , 3〉 〈〈−1, 1〉 , 4〉 〈〈−1, 0〉 , 5〉 〈〈−2, 1〉 , 6〉
〈2, 1〉 〈〈1, 0〉 , 1〉 〈〈1,−2〉 , 2〉 〈〈0, 0〉 , 3〉 〈〈0,−1〉 , 4〉 〈〈0,−2〉 , 5〉 〈〈−1,−1〉 , 6〉

To 〈2, 2〉 〈〈1, 1〉 , 1〉 〈〈1,−1〉 , 2〉 〈〈0, 1〉 , 3〉 〈〈0, 0〉 , 4〉 〈〈0,−1〉 , 5〉 〈〈−1, 0〉 , 6〉
〈2, 3〉 〈〈1, 2〉 , 1〉 〈〈1, 0〉 , 2〉 〈〈0, 2〉 , 3〉 〈〈0, 1〉 , 4〉 〈〈0, 0〉 , 5〉 〈〈−1, 1〉 , 6〉
〈3, 2〉 〈〈2, 1〉 , 1〉 〈〈2,−1〉 , 2〉 〈〈1, 1〉 , 3〉 〈〈1, 0〉 , 4〉 〈〈1,−1〉 , 5〉 〈〈0, 0〉 , 6〉

Table 3: A vector table showing W for the dataset shown in Figure 11.

