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1. The concept of a pitch spelling algorithm

•A pitch spelling algorithm is an algorithm that attempts to compute
the correct pitch names of the notes in a passage of tonal music, when
given only the onset-time, MIDI note number and (possibly) the dura-
tion of each note.

• Practical applications of pitch spelling algorithms:

1. Required for MIDI-to-notation transcription.

2. Required for audio-to-notation transcription.

3. Useful in music information retrieval and musical pattern discovery.



1. The concept of a pitch spelling algorithm

1. I’m going to talk to you for 45 minutes about the problem of constructing a reliable pitch spelling

algorithm—that is, an algorithm that reliably computes the correct pitch names (e.g., C]4, B[5 etc.) of

the notes in a passage of tonal music, when given only the onset-time, MIDI note number and possibly

the duration of each note in the passage.

2. There are good practical and scientific reasons for attempting to develop a reliable pitch spelling algo-

rithm.

3. First, until such an algorithm is devised, it will be impossible to construct a reliable MIDI-to-notation

transcription algorithm—that is, an algorithm that reliably computes a correctly notated score of a

passage when given only a MIDI file of the passage as input.

4. Second, existing audio transcription systems generate not notated scores but MIDI-like representations

as output.

5. So if you want to produce a notated score from a digital audio recording, you need a MIDI-to-notation

transcription algorithm (incorporating a pitch spelling algorithm) in addition to an audio transcription

system.

6. Third, knowing the letter-names of the pitch events in a passage can be extremely useful in music

information retrieval and musical pattern discovery (Meredith, Lemström, and Wiggins, 2002).

7. In particular, the occurrence of a motive on a different degree of a scale might be perceptually significant

even if the corresponding chromatic intervals in the patterns differ. In this extract here, for example,



the three patterns A, B and C are perceived as being three occurrences of the same motive even though

the corresponding chromatic intervals are different in the three patterns. [PLAY EXAMPLES]

8. Note that in this example, one important aspect of the perceived similarity between patterns A, B

and C is nicely represented in the notation by the fact that they all have the same scale-step interval

structure (〈−1, +1, +1〉).

9. In other words, the pitch names of the notes in this passage are chosen so that the scale-step interval

structures of these three patterns are the same.

10. Such matches can be found using fast, exact-matching algorithms if the pitch names of the notes

are encoded, but exact-matching algorithms cannot be used to find such matches if the pitches are

represented using just MIDI note numbers.

11. If a reliable pitch spelling algorithm existed, it could be used to compute the pitch names of the notes

in the tens of thousands of MIDI files of works that are freely available online, allowing these files to be

searched more effectively by a music information retrieval (MIR) system.



2. Pitch spelling in common practice Western tonal music

(Piston, 1978, p. 8)

(Piston, 1978, p. 390)



2. Pitch spelling in common practice Western tonal music

1. In the vast majority of cases, the correct pitch name for a note in a passage of tonal music can be

determined by considering the rôles that the note plays in the harmonic, motivic and voice-leading

structures of the passage.

2. For example, when played in isolation in an equal-tempered tuning system, the first soprano note in

(a) here would sound the same as the first soprano note in (b).

3. However, in (a), this note is spelt as a G]4 because it functions as a leading note in A minor; whereas

in (b), the first soprano note is spelt as an A[4 because it functions as a submediant in C minor.

4. Similarly, the first alto note in (b) would sound the same as the first alto note in (c) in an equal-tempered

tuning system.

5. However, in (b) the first alto note is spelt as an F\4 because it functions in this context as a subdominant

in C minor; whereas, in (c), the first alto note functions as a leading note in F] minor so it is spelt as

an E]4.

6. So, in general, the pitch name assigned to a note in a passage of tonal music is not arbitrary. In most

cases, the pitch name of each note is carefully chosen so that the resulting score represents as well as

possible certain important aspects of the way that the music is intended to be perceived and interpreted.

7. This illustrates the important and more general point that a correctly notated staff notation score of a

passage of Western tonal music is a structural description of the passage that is supposed to represent

certain aspects of the way that the passage is intended to be interpreted by an expert listener. In this



respect, a correctly notated score serves a similar function to, say, a Schenkerian analysis or an analysis

using Lerdahl and Jackendoff’s (1983) Generative Theory of Tonal Music.

8. Of course, there do exist cases where the pitch name of a note cannot be uniquely determined by

considering the harmonic, motivic and voice-leading structures of its context.

9. For example, as Piston (1978, p. 390) observes, the tenor E[4 in the third and fourth bars of the bottom

figure here should be spelt as a D]4 if one perceives the harmonic progression here to be +II2 − I as

proposed by Piston. But spelling the soprano E[5 in the fourth bar as D]5 does not seem to represent

the perceived structure of the melody correctly.

10. Indeed, this E[5 seems to be functioning as the ninth of a supertonic chord whereas the tenor E[4 can

be interpreted as the raised root of a supertonic chord. If one interprets the passage in this way, then

the E[4 should be spelt as a D]4 and the soprano E[5 should be left unchanged, which would lead to

an E[ sounding simultaneously with a D] in the second half of the fourth bar!



3. Computationally modelling the cognitive processes underlying pitch
spelling

•General agreement among experts on how each note should be spelt
within a tonal context.

•Question: What are the cognitive processes involved when a musically
trained individual determines the correct pitch name of a note in a
passage of tonal music?

•Answer : Construct a reliable pitch spelling algorithm that is consistent
with what is known about expert music perception and cognition.

• Evaluate algorithms by comparing output with encodings of authorita-
tive published scores.



3. Computationally modelling the cognitive processes underlying pitch spelling

1. Fortunately, however, such cases where it is difficult to determine the correct pitch name of a note in a

tonal work are relatively rare—particularly in Western tonal music of the so-called ‘common practice’

period (roughly the 18th and 19th centuries).

2. In the vast majority of cases, those who study and perform Western tonal music agree about how a

note should be spelt in a given tonal context.

3. This poses an interesting problem for cognitive science, namely: what are the cognitive processes

involved when a musically trained individual determines the correct pitch name of a note in a passage

of tonal music?

4. A good way of trying to answer this question is to attempt to construct a reliable pitch spelling

algorithm that operates in a way that is consistent with what is known about expert music perception

and cognition.

5. The vast majority of notes in authoritative published editions of scores of common practice tonal works

are generally agreed to be spelt correctly by those who understand Western staff notation.

6. Therefore a pitch spelling algorithm or computational model of pitch spelling can be evaluated quan-

titatively by running it on tonal works and comparing the pitch names it predicts with those of the

corresponding notes in authoritative published editions of scores of the works.

7. In other words, such authoritative scores can provide us with a ‘ground truth’ that we can compare

with the output of a pitch spelling algorithm.



8. However, this can only be done accurately and quickly if one has access to encodings of these authori-

tative scores in the form of computer files that can be compared automatically with the pitch spelling

algorithm’s output.



4. A comparison of three pitch spelling algorithms

• Three pitch spelling algorithms compared:

– Cambouropoulos (1996, 1998, 2000, 2001, 2002)

– Longuet-Higgins (1976, 1987, 1993)

– Temperley (1997, 2001)

• Two test corpora used:

– all pieces in first book of Bach’s Das Wohltemperirte Klavier (BWV
846–869) (41544 notes)

– 1655 movements from works by 9 baroque and classical composers
(Corelli, Vivaldi, Telemann, Bach, Handel, B. Marcello, Haydn, Mozart
and Beethoven) (1729886 notes)

• Corpora derived from MuseData collection of encoded scores
(www.musedata.org).



4. A comparison of three pitch spelling algorithms

1. In order to get a clearer idea of the ‘state of the art’ in the field, I’ve compared the performance of three

pitch spelling algorithms on two test corpora.

2. The algorithms I’ve compared are those of Cambouropoulos (1996, 1998, 2000, 2001, 2002), Longuet-

Higgins (1976, 1987, 1993) and Temperley (1997, 2001).

3. As test corpora, I’ve used the first book of J. S. Bach’s Das Wohltemperirte Klavier (BWV 846–869),

which contains 41544 notes; and a second corpus containing about 1.73 million notes and consisting of

1655 movements from works by 9 baroque and classical composers.

4. Both corpora were derived from the MuseData collection of encoded scores (www.musedata.org).



5. Longuet-Higgins’s (1976, 1987, 1993) algorithm

Pitch name
Sharpness

. . .

. . .
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. . .

• Pitch spelling is one function of the music.p program.

• Input: list of triples,
〈
p, ton, toff

〉
.

•Designed to be used only on monophonic melodies.

•Algorithm does not use 3d ‘tonal pitch space’ model.

•Assumes every note is no more than 6 steps from tonic on line of fifths.

•Assumes first note is tonic or dominant of opening key.

•Assumes consecutive notes always less than 12 steps apart on line of
fifths.

• If two consecutive notes separated by more than 6 steps on line of fifths,
then interpreted as evidence for a modulation.



5. Longuet-Higgins’s (1976, 1987, 1993) algorithm

1. Pitch spelling is one of the tasks performed by Longuet-Higgins’s (1976, 1987, 1993) music.p program.

2. The input to music.p must be in the form of a list of triples,
〈
p, ton, toff

〉
, each triple giving the

“keyboard position” p together with the onset time ton and the offset time toff in centiseconds of each

note.

3. The keyboard position p is just the MIDI note number minus 48. So, for example, the keyboard position

of middle C is 12.

4. Longuet-Higgins (1987, p. 114) intended the music.p program to be used only on monophonic melodies

and explicitly warns against using it on “accompanied melodies” or what he calls “covertly polyphonic”

melodies (i.e., compound melodies).

5. It is perhaps also worth pointing out that the pitch spelling algorithm implemented in music.p does not

use Longuet-Higgins’s well-known three-dimensional ‘tonal space’ model of tonality (Longuet-Higgins,

1987, p. 110–111).

6. However, Longuet-Higgins does actually describe this multi-dimensional model in the paper where the

music.p program is published. This has probably led some readers to assume (incorrectly) that the

program implements Longuet-Higgins’s three-dimensional ‘tonal space’ model.

7. In fact, the only pitch spaces used in the pitch spelling algorithm implemented in music.p are the

circle of fifths and the ‘line of fifths’.

8. The algorithm computes a value of “sharpness” q for each note in the input (Longuet-Higgins, 1987,

p. 111). The sharpness of a note is a number indicating the position of the pitch name of the note



on the line of fifths (as shown here) (Temperley, 2001, p. 117). It is therefore essentially the same as

Temperley’s (2001, p. 118) concept of “tonal pitch class”.

9. Longuet-Higgins’s algorithm tries to spell the notes so that the distance on the line of fifths between each

note and the tonic at the point at which the note occurs is less than or equal to 6 (which corresponds

to a tritone) (Longuet-Higgins, 1987, p. 113).

10. The algorithm assumes at the beginning of the music that the first note is either the tonic or the

dominant of the opening key and chooses between these two possibilities on the basis of the interval

between the first two notes (Longuet-Higgins, 1987, p. 114).

11. The algorithm also assumes that two consecutive notes in the music are never separated by more than

12 steps on the line of fifths (Longuet-Higgins, 1987, p. 111). In fact, if two consecutive notes in the

music are separated by more than 6 steps on the line of fifths, then the algorithm treats this as evidence

of a change of key.



6. Cambouropoulos’s (1996, 1998, 2000, 2001, 2002) algorithm

?

5 9 7 5 4 7 5 2 4 0

•Assumes 3 possible spellings for ‘white note’ pitch classes and 2 possible
spellings for ‘black note’ pitch classes.

• Computes all spellings for each window (on average, over 5000 spellings
per window for a window size of 9).

• Computes penalty score for each spelling in a window and chooses
spelling with least penalty score.



6. Cambouropoulos’s (1996, 1998, 2000, 2001, 2002) algorithm

1. Cambouropoulos’s method involves first converting the input representation into a sequence of pitch

classes in which the pitch classes are in the order in which they occur in the music (the pitch classes of

notes that occur simultaneously being ordered arbitrarily).

2. Having derived an ordered set of pitch classes from the input, Cambouropoulos’s algorithm then pro-

cesses the music a window at a time, each window containing a fixed number of notes (between 9 and

15). Each window is positioned so that the first third of the window overlaps the last third of the

previous window.

3. Cambouropoulos allows ‘white note’ pitch classes (i.e., 0, 2, 4, 5, 7, 9 and 11) to be spelt in three

different ways (e.g., pitch class 0 can be spelt as B], C\ or D[[) and ‘black note’ pitch classes to be

spelt in two different ways (e.g., pitch class 6 can be spelt as F] or G[).

4. Given these restricted sets of possible pitch names for each pitch class, the algorithm computes all

possible spellings for each window. So, on average, if the window size is 9, there will be over 5000

possible spellings for each window.

5. A penalty score is then computed for each of these possible window spellings. The penalty score for

a given window spelling is found by computing a penalty value for the interval between every pair of

notes in the window and summing these penalty values.

6. A given interval in a particular window spelling is penalised more heavily if it is an interval that occurs

less frequently in the major and minor scales.



7. An interval is also penalised if either of the pitch names forming the interval is a double-sharp or a

double-flat.

8. For each window, the algorithm chooses the spelling that has the lowest penalty score.



7. Temperley’s (1997, 2001) algorithm

• Searches for spelling that best satisfies following three preference rules:

TPR 1 (Pitch Variance Rule). Prefer to label nearby events so that they are close
together on the line of fifths.

TPR 2 (Voice-Leading Rule). Given two events that are adjacent in time and a
half-step apart in pitch height: if the first event is remote from the current
center of gravity, it should be spelled so that it is five steps away from the
second on the line of fifths.

TPR 3 (Harmonic Feedback Rule). Prefer TPC representations which result in
good harmonic representations.

• Requires duration of each note.

• Requires tempo (i.e., uses absolute performed duration).

• Cannot deal with cases where two or more notes with the same pitch start at the same
time.

• Needs to compute metrical and harmonic structure in order to compute pitch names.



7. Temperley’s (1997, 2001) algorithm

1. Temperley’s (1997, 2001) pitch spelling algorithm is implemented in his harmony program which forms

one component of his and Sleator’s Melisma system.

2. The input to the harmony program must be in the form of a “note-list” (Temperley, 2001, pp. 9–12)

giving the MIDI note number of each note together with its onset time and duration in milliseconds.

3. Temperley’s (2001, pp. 115–136) pitch spelling algorithm searches for the spelling that best satisfies

three “preference rules”.

(a) The first of these rules stipulates that the algorithm should “prefer to label nearby events so that they

are close together on the line of fifths” (Temperley, 2001, p. 125). This rule bears some resemblance

to the basic principle underlying Longuet-Higgins’s algorithm (see above).

(b) The second rule expresses the principle that if two tones are separated by a semitone and the first

tone is distant from the key centre, then the interval between them should preferably be spelt as a

diatonic semitone rather than a chromatic one (Temperley, 2001, p. 129).

(c) The third preference rule steers the algorithm towards spelling the notes so that what Temperley

calls a “good harmonic representation” results (Temperley, 2001, p. 131).

4. Note, however, that Temperley’s algorithm requires more information in its input than the other algo-

rithms. In particular, it needs to know the duration of each note and the tempo at each point in the

passage. It also needs to perform a full analysis of the metrical and harmonic structure of the passage

in order to generate a high quality result.

5. Also, it cannot deal with cases where two or more notes with the same pitch start at the same time.



8. Results of running algorithms on first book of J. S. Bach’s
Das Wohltemperirte Klavier

Algorithm % notes correct Number of errors

Cambouropoulos 93.74 2599

Longuet-Higgins 99.36 265

Temperley 99.71 122

Total number of notes in corpus = 41544.



8. Results of running algorithms on first book of J. S. Bach’s

Das Wohltemperirte Klavier

1. When these three algorithms were run on the first book of J. S. Bach’s Das Wohltemperirte Klavier,

the results obtained were as shown here.



9. The ps13 algorithm

Step 1 For each note n and each pitch class p, compute CNT(p, n) which is the number
of times that p occurs in a context surrounding n that includes Kpre notes
preceding n and Kpost notes following n.

Step 2 For each note n and each pitch class p, compute the letter name L(p, n) ∈
{A,B,C,D,E,F,G} that n would have if p were the tonic at the point where n
occurs (assuming that the notes are spelt as they are in the harmonic chromatic
scale on p).

Step 3 For each note n and each letter name `, compute the set of tonic pitch classes,
X(n, `), that would lead to n having the letter name `.

Step 4 For each note n and each letter name `, compute the sum, N(`, n), of the values
of CNT(p, n) for all the tonic pitch classes p ∈ X(n, `).

Step 5 Make the letter name of n equal to that value of ` for which N(`, n) is a maxi-
mum.

In Stage 2, neighbour-note and passing-note errors corrected.



9. The ps13 algorithm

1. Having done this comparison and gained a better idea of the ‘state of the art’ in the field, I attempted

to construct a new algorithm that improved on Temperley’s.

2. I experimented with about 30 different algorithms and I’ll now briefly describe the one that performed

best, an algorithm that I call ps13.1

3. At the highest level of description, ps13 can be broken down into two stages, which I’ll call Stage 1

and Stage 2.

4. Stage 1 involves carrying out the following steps: [ SEE SLIDE ]

5. Stage 2 of the algorithm corrects those instances in the output of Stage 1 where a neighbour note or

passing note is erroneously predicted to have the same letter name as either the note preceding it or

the note following it. That is, the second stage of the algorithm corrects errors like these shown on the

staff at the top here.

6. In the first step of Stage 1, the algorithm essentially counts how many times each pitch class occurs

within some specified context surrounding a particular note.

7. Krumhansl (1990, pp. 66–75) showed that there is a high correlation between the frequency with which

a pitch class occurs within a passage and its perceived tonal stability as measured experimentally

(Krumhansl and Kessler, 1982).

8. This suggests that the value CNT(p, n), calculated in the first step of Stage 1, gives an approximate

measure of the perceived tonal stability of the pitch class p at the point in the music where n occurs.
1Patent pending (Meredith, 2003).



9. In ps13 the value CNT(p, n) is used as a measure of the likelihood of p being perceived to be the tonic

at the point where note n occurs.

10. Note that, unlike Temperley’s algorithm, ps13 uses neither duration nor tempo and can deal with

situations where two or more notes with the same pitch start at the same time.



10. Results of running ps13 on the first book of J. S. Bach’s Das
Wohltemperirte Klavier

• when Kpre = 33 and Kpost ∈ {23, 25}, ps13 makes 81 mistakes on

this corpus (i.e., 99.81% notes spelt correctly).



10. Results of running ps13 on the first book of J. S. Bach’s Das Wohltemperirte Klavier

1. In the first step of Stage 1, ps13 counts how many times each pitch class occurs within some specified

context surrounding a particular note, defined by the values of Kpre and Kpost.

2. In order to explore the effect that varying the values of Kpre and Kpost has on the performance of

ps13, I ran the algorithm 2500 times on the test corpus, each time using a different pair of values〈
Kpre, Kpost

〉
chosen from the set

{〈
Kpre, Kpost

〉
| 1 ≤ Kpre ≤ 50 ∧ 1 ≤ Kpost ≤ 50

}
.

3. I found that ps13 made fewer than 122 mistakes (i.e., performed better than Temperley’s algorithm)

on the test corpus for 2004 of the 2500
〈
Kpre, Kpost

〉
pairs tested (i.e., 80.160% of the

〈
Kpre, Kpost

〉
pairs tested).

4. ps13 performed best on the test corpus when Kpre was set to 33 and Kpost was set to either 23 or

25. With these parameter values, ps13 made only 81 errors on the test corpus—that is, it correctly

predicted the pitch names of 99.81% of the notes in the test corpus.

5. The mean number of errors made by ps13 over all 2500
〈
Kpre, Kpost

〉
pairs was 109.082 (i.e., 99.74%

of the notes were correctly spelt on average over all 2500
〈
Kpre, Kpost

〉
pairs). This average value was

better than the result obtained by Temperley’s algorithm for this test corpus. The standard deviation

in the accuracy over all 2500
〈
Kpre, Kpost

〉
pairs was 0.08%.

6. The worst result was obtained when both Kpre and Kpost were set to 1. In this case, ps13 made 1117

errors (97.31% correct).

7. However, provided Kpre was greater than about 14 and Kpost was greater than about 21, ps13

predicted the correct pitch name for over 99.75% of the notes in the test corpus.



11. Structure of the larger test corpus

• Total number of notes in corpus = 1729886

• Total number of movements = 1655



11. Structure of the larger test corpus

1. I then ran all four algorithms on a much larger corpus containing 1729886 notes and consisting of 1655

movements from works by 9 baroque and classical composers (Corelli, Vivaldi, Telemann, Bach, Handel,

B. Marcello, Haydn, Mozart and Beethoven) (1729886 notes).

2. As you can see, about 80% of the music in the corpus is baroque and the remaining 20% is classical.

So the corpus is not very stylistically varied - it contains music written between about 1675 and 1825.

3. Also note that over 60% of the corpus consists of works by Bach and Handel.

4. Finally, note that the corpus is very unevenly distributed between the nine composers.



12. Comparison of algorithms with respect to number of notes spelt
correctly



12. Comparison of algorithms with respect to number of notes spelt correctly

1. If we consider just the number of notes in this corpus spelt correctly by the algorithms, then we get the

results shown here.

2. The bottom row in the top table here gives the number of notes in the corpus spelt incorrectly by each

algorithm.

3. Thus, my ps13 algorithm spells around 12000 of the 1.7 million notes in the corpus incorrectly, while

Cambouropoulos’s algorithm spells over 20000 notes incorrectly and the algorithms of Longuet-Higgins

and Temperley each spell over 40000 notes incorrectly.

4. The bottom row of the second table shows the total percentage of notes in the corpus spelt correctly

by the four algorithms. As you can see, ps13 correctly spells 99.33% of the notes in the corpus,

Cambouropoulos’s algorithm comes second with 98.71%, Temperley’s comes third with 97.67% and

Longuet-Higgins’s comes fourth with 97.65%.

5. I then analysed the results using the McNemar test, to determine whether the differences between the

scores achieved by the algorithms were statistically significant. The results of this analysis are shown

in the bottom row of the bottom table.

6. An entry of 0 in this table indicates a p-value of less than 0.0001. So the bottom row of this table tells

us that my ps13 algorithm performed very significantly better than Cambouropoulos’s algorithm which

in turn performed very significantly better than the algorithms of Temperley and Longuet-Higgins.

7. The p-value for the difference between the scores for Temperley’s and Longuet-Higgins’s algorithm is

greater than .05 indicating that these two scores are not significantly different from each other.



8. The graph here on the left shows the score achieved by each algorithm for each composer, the composers

being placed along the horizontal axis in order of birth year.

9. This graph suggests that the algorithms of Temperley and Longuet-Higgins perform much worse on the

classical composers (Haydn, Mozart and Beethoven) than they do on the baroque composers.

10. The graph also seems to show that my ps13 algorithm seems to perform much more consistently across

the different composers and styles than the other algorithms.



13. Comparison of algorithms with respect to number of intervals spelt
correctly



13. Comparison of algorithms with respect to number of intervals spelt correctly

1. When I looked through the lists of errors generated by the algorithms, I noticed that, in some cases,

many errors were the result of large segments of the music simply being transposed up or down a

diminished second.

2. In other words, a single incorrect interval between two notes resulted in a whole segment of notes

following the incorrect interval being spelt incorrectly. I therefore decided to compare the algorithms

with respect to the number of intervals spelt correctly.

3. As you can see from the graph on the left, the algorithms of Longuet-Higgins and Temperley are

considerably more successful at spelling intervals than they are at spelling notes - particularly in the

music of Haydn, Mozart and Beethoven.

4. Indeed, with respect to the number of intervals spelt correctly, Temperley’s algorithm performs signifi-

cantly better than the other three algorithms.

5. However, as before, all the algorithms seem to perform worse on the classical music than on the baroque

music.



14. Comparison of algorithms with respect to total number of intervals
and notes spelt correctly



14. Comparison of algorithms with respect to total number of intervals and notes spelt correctly

1. Finally, I evaluated the algorithms in terms of the total number of notes and intervals spelt correctly

and the results are shown here.

2. As you can see, when evaluated in this way, ps13 performs significantly better than the other algorithms

overall. Its performance also seems to be less affected than the other algorithms by the style and period

of the music.



15. Conclusions and further work

Notes ps13 (99.33%) > Camb (98.71%) > Temp (97.67%) ' LH (97.65%)

Intervals Temp (99.45%) > ps13 (99.17%) ' LH (99.16%) > Camb (98.65%)

Ints and notes ps13 (99.25%) > Camb (98.68%) > Temp (98.56%) > LH (98.41%)

• Algorithms based on circle of fifths (Temperley and Longuet-Higgins) mis-spelt many
more notes in the classical music than the other algorithms.

• Need to test these and other algorithms on a stylistically more varied corpus.

• Krumhansl (1990, p. 79) claims that “once a key (or key region) has been determined,
the correct spellings of the tones will be able to be determined in most cases”.

• What is the best key-finding algorithm to use for pitch spelling?

• Mistakes made by the algorithms need to be studied in detail.

• Need to determine whether or not algorithms are consistent with what is know about
perception and cognition of pitch structure in tonal music.



15. Conclusions and further work

1. To sum up, four pitch spelling algorithms were run on a large corpus of baroque and classical music.

2. When the algorithms were evaluated in terms of the number of notes they spelt correctly, it was found

that my ps13 algorithm performed best, correctly spelling 99.33% of the notes in the corpus correctly.

3. While all four algorithms performed well on the baroque music, it was found that the algorithms that

were based on the circle of fifths (i.e., those of Temperley and Longuet-Higgins) performed significantly

less well than the other algorithms on the classical music in the corpus.

4. However, when the algorithms were evaluated in terms of the number of intervals spelt correctly, it

was found that all the algorithms performed very well across all styles, with Temperley’s algorithm

performing best, correctly spelling 99.45% of the intervals in the corpus correctly.

5. When the notes and intervals were taken together, it was found that ps13 performed best overall,

correctly spelling 99.25% of the notes and intervals correctly.

6. It would be interesting to extend this study by testing these and other algorithms on other corpora

containing works in a wider variety of tonal styles including, e.g., romantic, impressionist, rock and

jazz.

7. Krumhansl (1990, p. 79) claims that “once a key (or key region) has been determined, the correct

spellings of the tones will be able to be determined in most cases”.

8. Both Longuet-Higgins’s algorithm and my ps13 algorithm (implicitly) perform something a bit like key-

finding as part of the pitch-spelling process. However, the two algorithms give quite different results



when run on the same test corpora. This demonstrates that there are various plausible ways of using

the key-structure of a passage to determine pitch names and it is not at all obvious which of these

methods will give the best results.

9. Krumhansl’s claim needs to be tested by building complete pitch spelling algorithms based on various

key-finding algorithms and comparing the performance of these algorithms with those that I’ve just

described.

10. The mistakes made by the algorithms in these experiments also need to be analysed in more depth in

order to determine if any further improvements can be made.

11. Finally, an in-depth study needs to be done to determine whether or not the algorithms are consistent

with what is known about the perception and cognition of pitch structure in tonal music.
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