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1. The concept of a pitch spelling algorithm

•A pitch spelling algorithm is an algorithm that attempts to compute
the correct pitch names of the notes in a passage of tonal music, when
given only the onset-time, MIDI note number and (possibly) the dura-
tion of each note.

• Practical applications of pitch spelling algorithms:

1. Required for MIDI-to-notation transcription.

2. Required for audio-to-notation transcription.

3. Useful in music information retrieval and musical pattern discovery.
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1. The concept of a pitch spelling algorithm

1. I’m going to talk to you about the problem of constructing and evaluating a reliable pitch spelling

algorithm—that is, an algorithm that reliably computes the correct pitch names (e.g., C]4, B[5 etc.) of

the notes in a passage of tonal music, when given only the onset-time, MIDI note number and possibly

the duration of each note in the passage.

2. Such algorithms are obviously required for automatically generating correctly notated scores from MIDI

and audio files.

3. Less obviously, knowing the letter-names of the pitch events in a passage can be extremely useful in

music information retrieval and musical pattern discovery (Meredith, Lemström, and Wiggins, 2002).

4. For example, the three patterns A, B and C here are heard as being three occurrences of the same

motive even though the corresponding chromatic intervals are different in the three patterns.

5. Fast exact-matching algorithms can be used to find such occurrences if the pitch names of the notes

are encoded, but not if the pitches are represented using just MIDI note numbers.
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2. Pitch spelling in common practice Western tonal music

(Piston, 1978, p. 8)
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2. Pitch spelling in common practice Western tonal music

1. In the vast majority of cases, the correct pitch name for a note in a passage of tonal music can be

determined by considering the rôles that the note plays in the harmonic, motivic and voice-leading

structures of the passage.

2. For example, when played in isolation in an equal-tempered tuning system, the first soprano note in

(a) here would sound the same as the first soprano note in (b).

3. However, in (a), this note is spelt as a G] because it functions as a leading note in A minor; whereas in

(b), the first soprano note is spelt as an A[ because it functions as a submediant in C minor.

4. This illustrates the fact that the pitch name assigned to a note in a passage of tonal music is generally

not arbitrary. In most cases, the pitch name of each note is carefully chosen so that the resulting score

represents as well as possible certain important aspects of the way that the music is intended to be

perceived and interpreted.
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3. A comparison of three pitch spelling algorithms

• Three pitch spelling algorithms compared:

– Cambouropoulos (1996, 1998, 2001, 2003)

– Longuet-Higgins (1976, 1987, 1993)

– Temperley (1997, 2001)

• Two test corpora used:

– all pieces in first book of Bach’s Das Wohltemperirte Klavier (BWV
846–869) (41544 notes)

– 1655 movements from works by 9 baroque and classical composers
(Corelli, Vivaldi, Telemann, Bach, Handel, B. Marcello, Haydn, Mozart
and Beethoven) (1729886 notes)

• Corpora derived from MuseData collection of encoded scores
(www.musedata.org).
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3. A comparison of three pitch spelling algorithms

1. In order to get a clearer idea of the ‘state of the art’ in the field of pitch spelling algorithms, I compared

the performance of three algorithms on two test corpora.

2. The algorithms compared were those of Cambouropoulos (1996, 1998, 2001, 2003), Longuet-Higgins

(1976, 1987, 1993) and Temperley (1997, 2001).

3. I first carried out a pilot study in which I ran the algorithms on the first book of J. S. Bach’s Das

Wohltemperirte Klavier (BWV 846–869), which contains 41544 notes.

4. I then carried out a larger-scale study in which I ran the algorithms on a much larger corpus containing

about 1.73 million notes and consisting of 1655 movements from works by 9 baroque and classical

composers.

5. Both corpora were derived by automatic conversion from the MuseData collection of encoded scores

(www.musedata.org).
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5. Longuet-Higgins’s (1976, 1987, 1993) algorithm

Pitch name
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• Pitch spelling is one function of the music.p program.

•Designed to be used only on monophonic melodies.

• Computes value of sharpness for each note.

• Spells notes so they are as close as possible to tonic on line of fifths.

•Disallows consecutive chromatic intervals.

• Special rule for dealing with ascending semitones.
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5. Longuet-Higgins’s (1976, 1987, 1993) algorithm

1. Pitch spelling is one of the tasks performed by Longuet-Higgins’s (1976, 1987, 1993) music.p program.

2. Longuet-Higgins (1987, p. 114) intended the music.p program to be used only on monophonic melodies

and explicitly warns against using it on “accompanied melodies” or what he calls “covertly polyphonic”

melodies (i.e., compound melodies).

3. The input to Longuet-Higgins’s pitch spelling algorithm is essentially just a sequence of MIDI note

numbers in the order in which they appear in the music.

4. The algorithm computes a value of “sharpness” q for each note in the input (Longuet-Higgins, 1987,

p. 111). The sharpness of a note is a number indicating the position of the pitch name of the note

on the line of fifths (as shown here) (Temperley, 2001, p. 117). It is therefore essentially the same as

Temperley’s (2001, p. 118) concept of “tonal pitch class” and Regener’s (1973, p. 33) concept of quint.

5. Longuet-Higgins’s algorithm tries to spell the notes so that they are as close as possible to the local

tonic on the line of fifths (Longuet-Higgins, 1987, p. 113).

6. The algorithm also disallows consecutive chromatic intervals (Longuet-Higgins, 1987, p. 113) and in-

corporates a special rule for dealing with ascending semitones (Longuet-Higgins, 1987, p. 114).
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6. Cambouropoulos’s (1996, 1998, 2001, 2003) algorithm

r r r r r r r r r r r r r r r r r r r r

• Input converted into a sequence of MIDI note numbers.

•Uses “shifting overlapping windowing technique” to improve running
time and avoid errors at window boundaries.

•Allows 3 spellings for ‘white note’ pitch classes and 2 for ‘black note’
pitch classes.

• Computes all spellings for each window that do not contain both double-
sharps and double-flats (128 spellings for each 9-note window).

• For each window spelling, computes penalty score based on principles
of interval optimisation and notational parsimony.

• Chooses spelling with least penalty score and retains pitch names for
middle third of the window.
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6. Cambouropoulos’s (1996, 1998, 2001, 2003) algorithm

1. The input to Cambouropoulos’s method is again a sequence of MIDI note numbers in the order in

which they occur in the music.

2. The algorithm uses a “shifting overlapping windowing technique” (Cambouropoulos, 2003, p. 420), as

illustrated here, in which each window contains a certain number of contiguous elements in the input

sequence.

3. On each step, the window position advances by a third of the window size, as you can see here.

4. Windowing improves the running time of the algorithm and overlapping the windows avoids certain

types of errors at window boundaries.

5. Cambouropoulos allows ‘white note’ pitch classes (i.e., 0, 2, 4, 5, 7, 9 and 11) to be spelt in three ways.

For example, pitch class 0 can be spelt as B], C\ or D[[. ‘Black note’ pitch classes can be spelt in two

ways. For example, pitch class 6 can be spelt as F] or G[ (see, for example, Cambouropoulos, 1996,

p. 242).

6. Given these restricted pitch name possibilities for each note, Cambouropoulos’s method computes all

the spellings for each window that do not contain both double-sharps and double-flats.

7. So, because the spelling for the first third of each window is retained from the previous window, there

would be 128 different spellings for a 9-note window.

8. A penalty score is then computed for each of these possible window spellings. The penalty score for a

given window spelling is found by computing a penalty value for each pitch interval in the window and

summing these interval penalty values.
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9. A given interval in a particular window spelling is penalised if it occurs infrequently in the major and

minor scales, a principle that Cambouropoulos (2003, p. 421) calls interval optimization.

10. It is also penalised if either of the pitch names forming the interval is a double-sharp or a double-flat,

a principle that Cambouropoulos (2003, p. 421) calls notational parsimony.

11. For each window, the algorithm chooses the spelling that has the lowest penalty score and retains the

pitch names for the middle third of this best window spelling.
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7. Temperley’s (1997, 2001) algorithm

• Searches for spelling that best satisfies following three preference rules:

TPR 1 (Pitch Variance Rule). Prefer to label nearby events so that they are close
together on the line of fifths.

TPR 2 (Voice-Leading Rule). Given two events that are adjacent in time and a
half-step apart in pitch height: if the first event is remote from the current
center of gravity, it should be spelled so that it is five steps away from the
second on the line of fifths.

TPR 3 (Harmonic Feedback Rule). Prefer TPC representations which result in
good harmonic representations.

• Requires duration of each note.

• Requires tempo (i.e., uses absolute performed duration).

• Cannot deal with cases where two or more notes with the same pitch start at the same
time.

• Needs to compute metrical and harmonic structure in order to compute pitch names.
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7. Temperley’s (1997, 2001) algorithm

1. Temperley’s (1997, 2001) pitch spelling algorithm is implemented in the harmony program which forms

one component of his and Sleator’s Melisma system.

2. The input to the harmony program must be in the form of a “note list” (Temperley, 2001, pp. 9–12)

giving the MIDI note number of each note together with its onset time and duration in milliseconds.

3. This note list must be accompanied by a representation of the metrical structure of the passage in the

form of a “beat-list” of the type generated by Temperley and Sleator’s meter program.

4. Temperley’s (2001, pp. 115–136) pitch spelling algorithm searches for the spelling that best satisfies

three “preference rules”.

(a) The first of these rules stipulates that the algorithm should “prefer to label nearby events so that they

are close together on the line of fifths” (Temperley, 2001, p. 125). This rule bears some resemblance

to the basic principle underlying Longuet-Higgins’s algorithm (see above).

(b) The second rule expresses the principle that if two tones are separated by a semitone and the first

tone is distant from the key centre, then the interval between them should preferably be spelt as

a diatonic semitone rather than a chromatic one (Temperley, 2001, p. 129). This rule is also very

similar to one of the rules used in Longuet-Higgins’s algorithm.

(c) The third preference rule steers the algorithm towards spelling the notes so that what Temperley

calls a “good harmonic representation” results (Temperley, 2001, p. 131).

5. Note, however, that Temperley’s algorithm requires more information in its input than the other algo-

rithms. In particular, it needs to know the duration of each note and the tempo at each point in the
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passage. It also needs to perform a full analysis of the metrical and harmonic structure of the passage

in order to generate a high quality result.

6. Also, it cannot deal with cases where two or more notes with the same pitch start at the same time.
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8. Results of running algorithms on first book of J. S. Bach’s
Das Wohltemperirte Klavier

Algorithm % notes correct Number of errors

Cambouropoulos 93.74 2599

Longuet-Higgins 99.36 265

Temperley 99.71 122

Total number of notes in corpus = 41544.
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8. Results of running algorithms on first book of J. S. Bach’s

Das Wohltemperirte Klavier

1. When these three algorithms were run on the first book of J. S. Bach’s Das Wohltemperirte Klavier,

the results obtained were as shown here.
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9. The ps13 algorithm

Step 1 For each note n and each pitch class p, compute CNT(p, n) which is the number
of times that p occurs in a context surrounding n that includes Kpre notes
preceding n and Kpost notes following n.

Step 2 For each note n and each pitch class p, compute the letter name L(p, n) ∈
{A,B,C,D,E,F,G} that n would have if p were the tonic at the point where n
occurs (assuming that the notes are spelt as they are in the harmonic chromatic
scale on p).

Step 3 For each note n and each letter name `, compute the set of tonic pitch classes,
X(n, `), that would lead to n having the letter name `.

Step 4 For each note n and each letter name `, compute the sum, N(`, n), of the values
of CNT(p, n) for all the tonic pitch classes p ∈ X(n, `).

Step 5 Make the letter name of n equal to that value of ` for which N(`, n) is a maxi-
mum.

In Stage 2, neighbour-note and passing-note errors corrected.
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9. The ps13 algorithm

1. Having done this comparison and gained a better idea of the ‘state of the art’ in the field, I attempted

to construct a new algorithm that improved on Temperley’s.

2. I experimented with about 30 different algorithms and I’ll now briefly describe the one that performed

best, an algorithm that I call ps13.1

3. At the highest level of description, ps13 can be broken down into two stages, which I’ll call Stage 1

and Stage 2.

4. Stage 1 involves carrying out the following steps: [ SEE SLIDE ]

5. Stage 2 of the algorithm corrects those instances in the output of Stage 1 where a neighbour note or

passing note is erroneously predicted to have the same letter name as either the note preceding it or

the note following it. That is, the second stage of the algorithm corrects errors like these shown on the

staff at the top here.

1Patent pending (Meredith, 2003).
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10. Results of running ps13 on the first book of J. S. Bach’s Das
Wohltemperirte Klavier

•When Kpre = 33 and Kpost ∈ {23, 25}, ps13 makes 81 mistakes on

this corpus (i.e., 99.81% notes spelt correctly).
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10. Results of running ps13 on the first book of J. S. Bach’s Das Wohltemperirte Klavier

1. In the first step of Stage 1, ps13 counts how many times each pitch class occurs within some specified

context surrounding a particular note, defined by the values of Kpre and Kpost.

2. This value is supposed to give an approximate measure of how tonally stable the pitch class is in that

context.

3. In order to find the optimal values of Kpre and Kpost, I ran the algorithm 2500 times on the first book

of Bach’s 48, each time using a different pair of values for the Kpre and Kpost chosen so that both

were between 1 and 50.

4. I found that ps13 performed better than Temperley’s algorithm for just over 80% of the
〈
Kpre, Kpost

〉
pairs tested.

5. ps13 performed best on the test corpus when Kpre was set to 33 and Kpost was set to either 23 or

25. With these parameter values, ps13 made only 81 errors on the test corpus—that is, it correctly

predicted the pitch names of 99.81% of the notes in the test corpus.

6. Over all 2500
〈
Kpre, Kpost

〉
pairs tested, ps13 made on average only 109 note spelling errors (that is,

it spelt 99.74% of the notes correctly).

7. Note that this average value was better than the result obtained by Temperley’s algorithm for this test

corpus.
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11. Structure of the larger test corpus

• Total number of notes in corpus = 1729886

• Total number of movements = 1655
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11. Structure of the larger test corpus

1. I then ran all four algorithms on a much larger corpus containing about 1.7 million notes and consisting

of 1655 movements from works by 9 baroque and classical composers (Corelli, Vivaldi, Telemann, Bach,

Handel, B. Marcello, Haydn, Mozart and Beethoven).

2. The values of Kpre and Kpost for ps13 were set to 33 and 23, respectively, these being the values that

produced the best results when the algorithm was run on the smaller corpus in the pilot study.

3. These pie charts show the percentage and number of notes in this larger corpus in works by each

composer.

4. As you can see, about 80% of the music in the corpus is baroque and the remaining 20% is classical.

So the corpus is not very stylistically varied—it contains music written between about 1675 and 1825.

5. Also, note that the corpus is very unevenly distributed between the nine composers.

6. Unfortunately, a more varied and balanced collection of encoded scores of a comparable size does not

seem to be currently available.
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12. Comparison of algorithms with respect to number of notes spelt
correctly:

Number of notes spelt incorrectly

Cam LH ps13 Tem
Corelli 148 120 30 6
Vivaldi 1816 5518 1497 4900

Telemann 604 665 481 111
Bach 13347 13022 3450 1166

Handel 1929 3342 2339 1309
Marcello 1 4 14 5

Haydn 1497 6174 823 6391
Mozart 2300 10147 2250 19832

Beethoven 600 1703 727 6525
Complete test corpus 22242 40695 11611 40245
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12. Comparison of algorithms with respect to number of notes spelt correctly:

Number of notes spelt incorrectly

1. This table shows the number of notes spelt incorrectly by each algorithm for each composer in the

corpus.

2. The bottom row in this table gives the total number of notes in the corpus spelt incorrectly by each

algorithm.

3. As you can see, ps13 made about half as many errors as Cambouropoulos’s algorithm which made

about half as many errors as the algorithms of Longuet-Higgins and Temperley.
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13. Comparison of algorithms with respect to number of notes spelt
correctly:

Percentage of notes spelt correctly

Cam LH ps13 Tem
Corelli 99.53% 99.62% 99.90% 99.98%
Vivaldi 99.19% 97.53% 99.33% 97.81%

Telemann 99.33% 99.26% 99.46% 99.88%
Bach 97.87% 97.92% 99.45% 99.81%

Handel 99.57% 99.26% 99.48% 99.71%
Marcello 99.97% 99.86% 99.53% 99.83%

Haydn 98.23% 92.71% 99.03% 92.45%
Mozart 98.66% 94.10% 98.69% 88.48%

Beethoven 98.77% 96.50% 98.51% 86.59%
Complete test corpus 98.71% 97.65% 99.33% 97.67%
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13. Comparison of algorithms with respect to number of notes spelt correctly:

Percentage of notes spelt correctly

1. This table shows the percentage of notes spelt correctly by each algorithm for each composer.

2. The bottom row shows the total percentage of notes in the corpus spelt correctly by each algorithm.

3. As you can see, ps13 did best with 99.33% of the notes spelt correctly.
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14. Comparison of algorithms with respect to number of notes spelt
correctly:

Significance of differences between numbers of errors

Composer Best p-value 2nd best p-value 3rd best p-value Worst

Corelli Tem < 0.0001 ps13 < 0.0001 LH 0.0765 Cam

Vivaldi ps13 < 0.0001 Cam < 0.0001 Tem < 0.0001 LH

Telemann Tem < 0.0001 ps13 < 0.0001 Cam 0.0736 LH

Bach Tem < 0.0001 ps13 < 0.0001 LH 0.0352 Cam

Handel Tem < 0.0001 Cam < 0.0001 ps13 < 0.0001 LH

Marcello Cam 0.1797 LH 0.7388 Tem 0.0389 ps13

Haydn ps13 < 0.0001 Cam < 0.0001 LH 0.0348 Tem

Mozart ps13 0.3665 Cam < 0.0001 LH < 0.0001 Tem

Beethoven Cam < 0.0001 ps13 < 0.0001 LH < 0.0001 Tem

Complete test corpus ps13 < 0.0001 Cam < 0.0001 Tem 0.0954 LH
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14. Comparison of algorithms with respect to number of notes spelt correctly:

Significance of differences between numbers of errors

1. I then used McNemar’s test (Dietterich, 1998; McNemar, 1969) to determine whether the differences

between the scores achieved by the algorithms were statistically significant.

2. The results of this analysis are shown here.

3. In this table, each value in a column headed ‘p-value’ gives the statistical significance (expressed as a

probability computed using McNemar’s test) of the difference in performance between the algorithms

to the left and right of the value in the table.

4. For example, the value in the seventh column and first row of this table indicates that if the algorithms

of Longuet-Higgins and Cambouropoulos would actually make an equal number of note errors when

run over the whole population of works represented by the works by Corelli in the test corpus, then

the probability of getting a difference in scores at least as great as that observed in this study would be

0.0765.

5. In psychological experiments, a p-value less than 0.05 is usually considered significant.

6. The bottom row of this table shows that, overall, ps13 spelt very significantly more notes correctly

than Cambouropoulos’s algorithm (p < 0.0001), which in turn spelt very significantly more notes

correctly than Temperley’s algorithm (p < 0.0001). However, the percentage of notes spelt correctly by

Temperley’s algorithm (97.67%) and Longuet-Higgins’s algorithm (97.65%) did not differ significantly

(p = 0.0954).
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15. Comparison of algorithms with respect to number of notes spelt
correctly:

Accuracy depends on style of music analysed

30



15. Comparison of algorithms with respect to number of notes spelt correctly:

Accuracy depends on style of music analysed

1. This graph shows the percentage of notes spelt correctly by each algorithm for each composer, the

composers being placed along the horizontal axis in order of birth year.

2. This graph suggests that the algorithms of Temperley and Longuet-Higgins perform significantly worse

on the classical composers (Haydn, Mozart and Beethoven) than they do on the baroque composers.

3. The graph also seems to show that ps13 performs more consistently across the different composers and

styles than the other algorithms.
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16. Comparison of algorithms with respect to number of intervals spelt
correctly:

Number of intervals spelt incorrectly

Cam LH ps13 Tem
Corelli 288 92 60 12
Vivaldi 2064 1264 1937 941

Telemann 727 450 788 204
Bach 12697 5852 4507 2074

Handel 2518 1703 2030 822
Marcello 2 8 26 8

Haydn 1750 1700 1298 1579
Mozart 2596 2734 2955 2874

Beethoven 736 772 695 933
Complete test corpus 23378 14575 14296 9447
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16. Comparison of algorithms with respect to number of intervals spelt correctly:

Number of intervals spelt incorrectly

1. When the lists of errors generated by the algorithms were examined, it was observed that, in some

cases, many errors were the result of large segments of the music simply being transposed up or down

by a diminished second.

2. In other words, a single incorrect interval between two notes resulted in a whole segment of notes

following the incorrect interval being spelt incorrectly.

3. The algorithms were therefore also compared with respect to the number of intervals spelt correctly.

4. This table shows the number of intervals spelt incorrectly by each algorithm for each composer.

5. As you can see, Temperley’s algorithm performed best followed by ps13 and Longuet-Higgins algorithm

which both made about 50% more errors. Cambouropoulos’s algorithm performed worst making more

than twice as many interval errors as Temperley’s algorithm.
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17. Comparison of algorithms with respect to number of intervals spelt
correctly:

Percentage of intervals spelt correctly

Cam LH ps13 Tem
Corelli 99.08% 99.71% 99.81% 99.96%
Vivaldi 99.08% 99.43% 99.13% 99.58%

Telemann 99.19% 99.50% 99.12% 99.77%
Bach 97.97% 99.07% 99.28% 99.67%

Handel 99.44% 99.62% 99.55% 99.82%
Marcello 99.93% 99.73% 99.12% 99.73%

Haydn 97.93% 97.99% 98.47% 98.13%
Mozart 98.49% 98.41% 98.28% 98.33%

Beethoven 98.49% 98.41% 98.57% 98.08%
Complete test corpus 98.65% 99.16% 99.17% 99.45%
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17. Comparison of algorithms with respect to number of intervals spelt correctly:

Percentage of intervals spelt correctly

1. This table shows the percentage of intervals spelt correctly by each algorithm for each composer.

2. As you can see, Temperley’s algorithm correctly spelt 99.45% of the intervals correctly and ps13’s score

differed from that of Longuet-Higgins’s algorithm by only 0.01%.
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18. Comparison of algorithms with respect to number of intervals spelt
correctly:

Significance of differences between numbers of errors

Composer Best p-value 2nd best p-value 3rd best p-value Worst

Corelli Tem < 0.0001 ps13 0.0068 LH < 0.0001 Cam

Vivaldi Tem < 0.0001 LH < 0.0001 ps13 0.1077 Cam

Telemann Tem < 0.0001 LH < 0.0001 Cam 0.0029 ps13

Bach Tem < 0.0001 ps13 < 0.0001 LH < 0.0001 Cam

Handel Tem < 0.0001 LH < 0.0001 ps13 < 0.0001 Cam

Marcello Cam 0.0577, 0.0577 LH,Tem 0.001, 0.002 ps13

Haydn ps13 < 0.0001 Tem 0.0028 LH 0.2416 Cam

Mozart Cam 0.0584 LH 0.0143 Tem 0.2459 ps13

Beethoven ps13 0.041 Cam 0.0252 LH < 0.0001 Tem

Complete test corpus Tem < 0.0001 ps13 0.0637 LH < 0.0001 Cam
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18. Comparison of algorithms with respect to number of intervals spelt correctly:

Significance of differences between numbers of errors

1. Again, the statistical significance of the differences between the performances of the algorithms were

analysed using McNemar’s test and the results are shown here.

2. The bottom line of this table reveals that, with respect to the number of intervals spelt correctly, Tem-

perley’s algorithm performs very significantly better on this test corpus than the other three algorithms.
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19. Comparison of algorithms with respect to number of intervals spelt
correctly:

Dependence of accuracy on musical style
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19. Comparison of algorithms with respect to number of intervals spelt correctly:

Dependence of accuracy on musical style

1. This graph shows the percentage of intervals spelt correctly by each algorithm for each composer, with

the composers arranged along the horizontal axis in order of birth year.

2. From this graph it is clear that the algorithms of Longuet-Higgins and Temperley were noticeably better

at spelling intervals correctly than they were at spelling notes correctly.

3. In particular, this graph shows that most of the note spelling errors made by Longuet-Higgins and

Temperley’s algorithms on the music of Haydn, Mozart and Beethoven were due to whole segments

being spelt a diminished second away from the correct spelling.

4. Nonetheless, we can see that, even in terms of the number of intervals spelt correctly, all the algorithms

perform worse on the classical music than on the baroque music.
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20. Conclusions and further work

Notes ps13 (99.33%) > Camb (98.71%) > Temp (97.67%) ' LH (97.65%)

Intervals Temp (99.45%) > ps13 (99.17%) ' LH (99.16%) > Camb (98.65%)

• The algorithms of Temperley and Longuet-Higgins mis-spelt many more notes in the
classical music than the other algorithms.

• Need to test these and other algorithms (e.g. Chew and Chen, 2003) on a stylistically
more varied corpus.

• Could also build complete pitch-spelling algorithms from various different key-finding
algorithms (e.g. Holtzmann, 1977; Krumhansl, 1990; Vos and van Geenen, 1996).
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20. Conclusions and further work

1. To sum up, four pitch spelling algorithms were run on a large corpus of baroque and classical music.

2. When the algorithms were evaluated in terms of the number of notes they spelt correctly, it was found

that my ps13 algorithm performed best, correctly spelling 99.33% of the notes in the corpus correctly.

3. While all four algorithms performed well on the baroque music, it was found that the algorithms of

Temperley and Longuet-Higgins performed noticeably less well than the other algorithms on the classical

music in the corpus.

4. However, when the algorithms were evaluated in terms of the number of intervals spelt correctly, it

was found that all the algorithms performed very well across all styles, with Temperley’s algorithm

performing best, correctly spelling 99.45% of the intervals in the corpus correctly.

5. It would be interesting to extend this study by testing these and other algorithms (e.g. Chew and Chen,

2003) on other corpora containing works in a wider variety of tonal styles including, e.g., romantic,

impressionist, rock and jazz.

6. Krumhansl (1990, p. 79) claims that “once a key (or key region) has been determined, the correct

spellings of the tones will be able to be determined in most cases”.

7. ps13 and the algorithms of Temperley and Longuet-Higgins all perform something a bit like key-finding

as part of the pitch-spelling process. However, the algorithms give significantly different results when

run on the same test corpora. This demonstrates that there are various plausible ways of using the

key-structure of a passage to determine pitch names and it is not at all obvious which of these methods

will give the best results.
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8. Krumhansl’s claim needs to be tested by building complete pitch spelling algorithms based on vari-

ous key-finding algorithms (e.g. Holtzmann, 1977; Krumhansl, 1990; Vos and van Geenen, 1996) and

comparing the performance of these algorithms with those that I’ve just described.
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