
METHOD OF PATTERN DISCOVERY

PCT Patent application submitted on 23 May 2002

(Final draft)

David Meredith

dave@titanmusic.com

Geraint A. Wiggins

geraint@soi.city.ac.uk

Kjell Lemström

klemstro@cs.helsinki.fi

23 May 2002

1/82

0

1

2

3

0 1 2 3

×

×

×
×
×
×

y

x

(a)

0

1

2

3

0 1 2 3

×

×

×
×
×
×

y

x

(b)

0

1

2

3

0 1 2 3

×

×

×
×
×
×

y

x

A

(c)

0

1

2

3

0 1 2 3

×

×

×
×
×
×

y

x

(d)

0

1

2

3

0 1 2 3

×

×

×
×
×
×

y

x

(e)

0

1

2

3

0 1 2 3

×

×

×
×
×
×

y

x

�
�� �

�
�

�
�

❅
❅❅

❅
❅

❅
❅

❅

�
�� �

�
�

�
�

❅
❅❅

❅
❅

❅
❅

❅
(f)

0

1

2

3

0 1 2 3

×

×

×
×
×
×

y

x

A

(g)

0

1

2

3

0 1 2 3

×

×

×
×
×
×

y

x

(h)

0

1

2

3

0 1 2 3

×

×

×
×
×
×

y

x

(i)

0

1

2

3

0 1 2 3

×

×

×
×
×
×

y

x

(j)

Figure 1: (a) shows a simple 2-dimensional dataset. (b)–(j) show the maximal repeated
patterns found by SIA in the dataset in (a).

2/82

0

1

2

3

0 1 2 3

×

×

×
×
×
×

y

x

(a)

0

1

2

3

0 1 2 3

×

×

×
×
×
×

y

x

(b)

0

1

2

3

0 1 2 3

×

×

×
×
×
×

y

x

A

(c)

0

1

2

3

0 1 2 3

×

×

×
×
×
×

y

x

�
�� �

�
�

�
�

❅
❅❅

❅
❅

❅
❅

❅

�
�� �

�
�

�
�

❅
❅❅

❅
❅

❅
❅

❅
(d)

Figure 2: The sets of patterns discovered by SIATEC in the dataset in Figure 1(a).

3/82

0

1

2

3

4

0 1 2 3

y

x

×
×
×
×

(a)

0

1

2

3

4

0 1 2 3

y

x

×
×
×
×
×
×
×
×(b)

0

1

2

3

4

0 1 2 3

y

x

×
×
×
×
×
×
×
×(c)

0

1

2

3

4

0 1 2 3

y

x

×
×
×
×
×
×
×
×(d)

Figure 3: When SIAME searches for occurrences of the query pattern (a) in the dataset
(b), it finds the exact matches shown in (c). It also finds the closest incomplete matches
shown in (d).

4/82

0

1

2

3

0 1 2 3 4 5

y

x

×

×

×
×
×

×
×
×

×
×
×
×

(a)

×

×
×

0

1

2

3

0 1 2 3 4 5

y

x

✲ ✲ ✲

(b)

Figure 4: (b) shows the compressed representation generated by COSIATEC for the dataset
(a). The dataset in (a) can be generated by translating the three-point pattern in (b) by
the three vectors represented by arrows.

5/82

{ 〈 〈0, 1〉, {〈2, 1〉, 〈2, 2〉} 〉,
〈 〈0, 2〉, {〈1, 1〉, 〈2, 1〉} 〉,
〈 〈1,−2〉, {〈1, 3〉} 〉,
〈 〈1,−1〉, {〈1, 3〉, 〈2, 3〉} 〉,
〈 〈1, 0〉, {〈1, 1〉, 〈1, 3〉, 〈2, 2〉} 〉,
〈 〈1, 1〉, {〈1, 1〉, 〈2, 1〉} 〉,
〈 〈1, 2〉, {〈1, 1〉} 〉,
〈 〈2,−1〉, {〈1, 3〉} 〉,
〈 〈2, 1〉, {〈1, 1〉} 〉 }

Figure 5: The set S(D) for the dataset in Figure 1(a).

6/82

{ 〈{〈1, 1〉, 〈1, 3〉, 〈2, 2〉}, {〈1, 0〉}〉,
〈{〈1, 1〉, 〈2, 1〉}, {〈0, 2〉, 〈1, 1〉}〉,
〈{〈2, 1〉, 〈2, 2〉}, {〈0, 1〉}〉,
〈{〈1, 1〉}, {〈0, 2〉, 〈1, 0〉, 〈1, 1〉, 〈1, 2〉, 〈2, 1〉}〉 }

Figure 6: The set T′(D) for the dataset in Figure 1(a).

7/82

1 m← |V|
2 i← 1

3 PRINT NEW LINE

4 PRINT(‘{’)
5 while i ≤ m

6 PRINT(‘〈’)
7 PRINT VECTOR(V[i, 1])

8 PRINT(‘, {’)
9 PRINT VECTOR(D[V[i, 2]])

10 j ← i+ 1

11 while j ≤ m and V[j, 1] = V[i, 1]

12 PRINT(‘,’)

13 PRINT VECTOR(D[V[j, 2]])

14 j ← j + 1

15 PRINT(‘}〉’)
16 if j ≤ m

17 PRINT(‘,’)

18 PRINT NEW LINE

19 i← j

20 PRINT(‘}’)

Figure 7: An algorithm for printing out S(D) using V and D.

8/82

{〈〈0, 1〉, {〈2, 1〉, 〈2, 2〉}〉,
〈〈0, 2〉, {〈1, 1〉, 〈2, 1〉}〉,
〈〈1,−2〉, {〈1, 3〉}〉,
〈〈1,−1〉, {〈1, 3〉, 〈2, 3〉}〉,
〈〈1, 0〉, {〈1, 1〉, 〈1, 3〉, 〈2, 2〉}〉,
〈〈1, 1〉, {〈1, 1〉, 〈2, 1〉}〉,
〈〈1, 2〉, {〈1, 1〉}〉,
〈〈2,−1〉, {〈1, 3〉}〉,
〈〈2, 1〉, {〈1, 1〉}〉}

Figure 8: The output of the algorithm in Figure 7 for the dataset in Figure 1(a).

9/82

1 m← |V|
2 i← 1

3 X← 〈 〉
4 while i ≤ m

5 Q← 〈 〉
6 j ← i+ 1

7 while j ≤ m and V[j, 1] = V[i, 1]

8 Q← Q⊕ 〈D[V[j, 2]]−D[V[j − 1, 2]]〉
9 j ← j + 1

10 X← X⊕ 〈〈i,Q〉〉
11 i← j

Figure 9: An algorithm for computing X using V and D.

10/82

〈 〈 1, 〈〈0, 1〉〉 〉,
〈 3, 〈〈1, 0〉〉 〉,
〈 5, 〈 〉 〉,
〈 6, 〈〈1, 0〉〉 〉,
〈 8, 〈〈0, 2〉 , 〈1,−1〉〉 〉,
〈 11, 〈〈1, 0〉〉 〉,
〈 13, 〈 〉 〉,
〈 14, 〈 〉 〉,
〈 15, 〈 〉 〉 〉

Figure 10: The ordered set X for the dataset in Figure 1(a).

11/82

〈 〈 5, 〈 〉 〉,
〈 13, 〈 〉 〉,
〈 14, 〈 〉 〉,
〈 15, 〈 〉 〉,
〈 1, 〈〈0, 1〉〉 〉,
〈 3, 〈〈1, 0〉〉 〉,
〈 6, 〈〈1, 0〉〉 〉,
〈 11, 〈〈1, 0〉〉 〉,
〈 8, 〈〈0, 2〉 , 〈1,−1〉〉 〉 〉

Figure 11: The ordered set Y for the dataset in Figure 1(a).

12/82

1 r ← |Y|
2 m← |V|
3 i← 1

4 PRINT NEW LINE

5 PRINT(‘{’)
6 if r > 0

7 repeat

8 j ← Y[i, 1]

9 I← 〈 〉
10 while j ≤ m and V[j, 1] = V[Y[i, 1], 1]

11 I← I⊕ 〈V[j, 2]〉
12 j ← j + 1

13 PRINT(‘〈’)
14 PRINT PATTERN(I)

15 PRINT(‘,’)

16 PRINT SET OF TRANSLATORS(I)

17 PRINT(‘〉’)
18 repeat

19 i← i+ 1

20 until i > r or Y[i, 2] �= Y[i− 1, 2]
21 if i ≤ r

22 PRINT(‘,’)

23 PRINT NEW LINE

24 until i > r

25 PRINT(‘}’)

Figure 12: An algorithm for printing out T′(D).

13/82

PRINT PATTERN(I)

1 p← |I|
2 PRINT(‘{’)
3 PRINT VECTOR(D[I[1]])

4 for k ← 2 to p

5 PRINT(‘,’)

6 PRINT VECTOR(D[I[k]])

7 PRINT(‘}’)

Figure 13: The PRINT PATTERN algorithm.

14/82

PRINT SET OF TRANSLATORS(I)

1 p← |I|
2 n← |D|
3 if p = 1

4 PRINT(‘{’)
5 for k ← 1 to n

6 if k �= I[1]

7 PRINT VECTOR(W[I[1], k])

8 unless k = n ∨ (k = n− 1 ∧ I[1] = n)

9 PRINT(‘,’)

10 PRINT(‘}’)
11 else

12 PRINT(‘{’)
13 J← 〈 〉
14 for k ← 1 to p

15 J← J⊕ 〈1〉
16 if I[1] = 1 then J[1]← 2

17 FINISHED ← FALSE

18 FIRST VECTOR← TRUE

19 k ← 2

20 while not FINISHED

21 if J[k] ≤ J[k − 1] then J[k]← J[k − 1] + 1

22 while J[k] ≤ n− p + k and W[I[k],J[k]] < W[I[k − 1],J[k − 1]]

23 J[k]← J[k] + 1

24 if J[k] > n− p + k then FINISHED ← TRUE

25 else if W[I[k],J[k]] > W[I[k − 1],J[k − 1]]

26 k ← 2

27 J[1]← J[1] + 1

28 if J[1] = I[1] then J[1]← J[1] + 1

29 if J[1] > n− p + 1 then FINISHED ← TRUE

30 else if k = p

31 if not FIRST VECTOR then PRINT(‘,’)

32 else FIRST VECTOR← FALSE

33 PRINT VECTOR(W[I[k], J[k]])

34 k ← 1

35 while k ≤ p

36 J[k]← J[k] + 1

37 if J[k] = I[k] then J[k]← J[k] + 1

38 if J[k] > n− p + k

39 FINISHED ← TRUE

40 k ← p

41 k ← k + 1

42 k ← 2

43 else k ← k + 1

44 PRINT(‘}’)

Figure 14: The PRINT SET OF TRANSLATORS algorithm.

15/82

{〈{〈1, 3〉}, {〈0,−2〉, 〈1,−2〉, 〈1,−1〉, 〈1, 0〉, 〈2,−1〉}〉,
〈{〈2, 1〉, 〈2, 2〉}, {〈0, 1〉}〉,
〈{〈1, 1〉, 〈2, 1〉}, {〈0, 2〉, 〈1, 1〉}〉,
〈{〈1, 1〉, 〈1, 3〉, 〈2, 2〉}, {〈1, 0〉}〉}

Figure 15: The output of the algorithm in Figure 12 for the dataset in Figure 1(a).

16/82

〈 〈 〈−1,−1〉, 〈2, 2〉 〉,
〈 〈−1, 0〉, 〈2, 1〉 〉,
〈 〈−1, 0〉, 〈2, 2〉 〉,
〈 〈−1, 1〉, 〈2, 1〉 〉,
〈 〈0,−1〉, 〈1, 2〉 〉,
〈 〈0,−1〉, 〈2, 2〉 〉,
〈 〈0, 0〉, 〈1, 1〉 〉,
〈 〈0, 0〉, 〈1, 2〉 〉,
〈 〈0, 0〉, 〈2, 1〉 〉,
〈 〈0, 0〉, 〈2, 2〉 〉,
〈 〈0, 1〉, 〈1, 1〉 〉,
〈 〈0, 1〉, 〈2, 1〉 〉,
〈 〈0, 1〉, 〈2, 2〉 〉,
〈 〈0, 2〉, 〈2, 1〉 〉,
〈 〈0, 2〉, 〈2, 2〉 〉,
〈 〈0, 3〉, 〈2, 1〉 〉,
〈 〈1,−1〉, 〈1, 2〉 〉,
〈 〈1, 0〉, 〈1, 1〉 〉,
〈 〈1, 0〉, 〈1, 2〉 〉,
〈 〈1, 1〉, 〈1, 1〉 〉,
〈 〈1, 1〉, 〈1, 2〉 〉,
〈 〈1, 1〉, 〈2, 2〉 〉,
〈 〈1, 2〉, 〈1, 1〉 〉,
〈 〈1, 2〉, 〈1, 2〉 〉,
〈 〈1, 2〉, 〈2, 1〉 〉,
〈 〈1, 2〉, 〈2, 2〉 〉,
〈 〈1, 3〉, 〈1, 1〉 〉,
〈 〈1, 3〉, 〈2, 1〉 〉,
〈 〈2, 1〉, 〈1, 2〉 〉,
〈 〈2, 2〉, 〈1, 1〉 〉,
〈 〈2, 2〉, 〈1, 2〉 〉,
〈 〈2, 3〉, 〈1, 1〉 〉 〉

Figure 16: The ordered set VSIAME computed by Step 2 of SIAME for the pattern in Fig-
ure 3(a) and the dataset in Figure 3(b).

17/82

r ← |VSIAME|
N← 〈 〉
�← 0

i← 1

for k ← 2 to r

�← �+ 1

if VSIAME[k − 1, 1] �= VSIAME[k, 1]

N← N⊕ 〈〈�, i〉〉
i← k

�← 0

if r > 0

N← N⊕ 〈〈�+ 1, i〉〉
return N

Figure 17: An algorithm for computing N using VSIAME.

18/82

〈 〈1, 1〉,
〈2, 2〉,
〈1, 4〉,
〈2, 5〉,
〈4, 7〉,
〈3, 11〉,
〈2, 14〉,
〈1, 16〉,
〈1, 17〉,
〈2, 18〉,
〈3, 20〉,
〈4, 23〉,
〈2, 27〉,
〈1, 29〉,
〈2, 30〉,
〈1, 32〉 〉

Figure 18: N for the pattern in Figure 3(a) and the dataset in Figure 3(b).

19/82

〈 〈4, 23〉,
〈4, 7〉,
〈3, 20〉,
〈3, 11〉
〈2, 30〉,
〈2, 27〉,
〈2, 18〉,
〈2, 14〉
〈2, 5〉,
〈2, 2〉,
〈1, 32〉,
〈1, 29〉
〈1, 17〉,
〈1, 16〉,
〈1, 4〉,
〈1, 1〉 〉

Figure 19: N′ for the pattern in Figure 3(a) and the dataset in Figure 3(b).

20/82

s← |N′|
M← 〈 〉
for i← 1 to s

Q← 〈 〉
for j ← 0 to N′[i, 1]− 1

Q← Q⊕ 〈VSIAME[N
′[i, 2] + j, 2]〉

M←M⊕ 〈〈VSIAME[N
′[i, 2], 1],Q〉〉

return M

Figure 20: An algorithm for computing M′(P,D) from N′ and VSIAME.

21/82

〈 〈 〈1, 2〉, 〈〈1, 1〉, 〈1, 2〉, 〈2, 1〉, 〈2, 2〉〉 〉,
〈 〈0, 0〉, 〈〈1, 1〉, 〈1, 2〉, 〈2, 1〉, 〈2, 2〉〉 〉,
〈 〈1, 1〉, 〈〈1, 1〉, 〈1, 2〉, 〈2, 2〉〉 〉,
〈 〈0, 1〉, 〈〈1, 1〉, 〈2, 1〉, 〈2, 2〉〉 〉,
〈 〈2, 2〉, 〈〈1, 1〉, 〈1, 2〉〉 〉,
〈 〈1, 3〉, 〈〈1, 1〉, 〈2, 1〉〉 〉,
〈 〈1, 0〉, 〈〈1, 1〉, 〈1, 2〉〉 〉,
〈 〈0, 2〉, 〈〈2, 1〉, 〈2, 2〉〉 〉,
〈 〈0,−1〉, 〈〈1, 2〉, 〈2, 2〉〉 〉,
〈 〈−1, 0〉, 〈〈2, 1〉, 〈2, 2〉〉 〉,
〈 〈2, 3〉, 〈〈1, 1〉〉 〉,
〈 〈2, 1〉, 〈〈1, 2〉〉 〉,
〈 〈1,−1〉, 〈〈1, 2〉〉 〉,
〈 〈0, 3〉, 〈〈2, 1〉〉 〉,
〈 〈−1, 1〉, 〈〈2, 1〉〉 〉,
〈 〈−1,−1〉, 〈〈2, 2〉〉 〉 〉

Figure 21: M for the pattern in Figure 3(a) and the dataset in Figure 3(b).

22/82

COSIATEC(D)

1 C← 〈 〉
2 D′ ← D

3 while D′ �= ∅
4 T← T′(D′)

5 x← |T|
6 Ebest ← T[1]

7 CRbest ← CR(T[1])

8 COV best ← COV (T[1])

9 for i← 2 to x

10 if 〈CR(T[i]),COV (T[i])〉 > 〈CRbest,COV best〉
11 Ebest ← T[i]

12 CRbest ← CR(T[i])

13 COV best ← COV (T[i])

14 C← C⊕ 〈Ebest〉
15 D′ ← D′ \ ⋃

P∈Ebest

P

16 return C

Figure 22: The COSIATEC algorithm.

23/82

global types

NUMBER NODE
number : a real number
next : a NUMBER NODE pointer

VECTOR NODE
right : a VECTOR NODE pointer
down : a VECTOR NODE pointer
vector : a NUMBER NODE pointer

COV NODE
datapoint : a VECTOR NODE pointer
next : a COV NODE pointer

TEC NODE
pattern : a VECTOR NODE pointer
translator set : a VECTOR NODE pointer
pattern size : an integer
translator set size : an integer
covered set : a COV NODE pointer
coverage : an integer
compression ratio : a rational number

X NODE
size : an integer
vec seq : a VECTOR NODE pointer
start vec : a VECTOR NODE pointer
down : an X NODE pointer
right : an X NODE pointer

Figure 23: Globally defined data types used in the algorithms.

24/82

SIA(DFN, OFN : filenames; SD : string of 0s and 1s representing selected dimensions)
local variables

1 DF : files
2 D, V : VECTOR NODE pointers

3 if (DF ← OPEN FILE(DFN,READ)) = NULL
4 EXIT
5 D ← READ VECTOR SET(DF,DOWN,SD)
6 CLOSE FILE(DF)
7 D ← SORT DATASET(D)
8 D ← SETIFY DATASET(D)
9 V ← SIA COMPUTE VECTORS(D)
10 V ← SIA SORT VECTORS(V)
11 PRINT VECTOR MTP PAIRS(V,OFN)

Figure 24: The SIA algorithm.

25/82

READ VECTOR SET(F : file; DIR : direction; SD : string indicating chosen dimensions)
local variables

1 S, L: VECTOR NODE pointers
2 v : NUMBER NODE pointer

3 S ← L ← NULL
4 v ← NULL
5 while not AT END OF LINE(F)
6 v ← READ VECTOR(F)
7 if SD �= NULL
8 v ← SELECT DIMENSIONS IN VECTOR(v,SD)
9 if S = NULL
10 S ← MAKE NEW VECTOR NODE
11 S↑vector ← v
12 v ← NULL
13 L ← S
14 else if DIR = DOWN
15 L↑down ← MAKE NEW VECTOR NODE
16 L ← L↑down
17 L↑vector ← v
18 v ← NULL
19 else
20 L↑right ← MAKE NEW VECTOR NODE
21 L ← L↑right
22 L↑vector ← v
23 v ← NULL
24 return S

Figure 25: The READ VECTOR SET algorithm.

26/82

SORT DATASET(D : VECTOR NODE pointer)
local variables

1 ABOVE A, A, B, BELOW B, C : VECTOR NODE pointers

2 while D �= NULL and D↑down �= NULL
3 ABOVE A ← NULL
4 A ← D
5 D ← NULL
6 repeat
7 if D �= NULL
8 ABOVE A↑down ← NULL
9 B ← A↑down
10 A↑down ← NULL
11 BELOW B ← B↑down
12 B↑down ← NULL
13 C ← MERGE DATASET ROWS(A,B)
14 if D = NULL
15 D ← C
16 else
17 ABOVE A↑down ← C
18 C↑down ← BELOW B
19 ABOVE A ← C
20 A ← ABOVE A↑down
21 until A = NULL or A↑down = NULL
22 return D

Figure 26: The SORT DATASET algorithm.

27/82

MERGE DATASET ROWS(A, B : VECTOR NODE pointers)
local variables

1 a, b, C, c : VECTOR NODE pointers

2 a ← A
3 b ← B
4 if VECTOR LESS THAN(a↑vector,b↑vector)
5 C ← a
6 a ← a↑right
7 else
8 C ← b
9 b ← b↑right
10 C↑right ← NULL
11 c ← C
12 while a �= NULL and b �= NULL
13 if VECTOR LESS THAN(a↑vector,b↑vector)
14 c↑right ← a
15 a ← a↑right
16 else
17 c↑right ← b
18 b ← b↑right
19 c ← c↑right
20 c↑right ← NULL
21 if a = NULL
22 c↑right ← b
23 else
24 c↑right ← a
25 return C

Figure 27: The MERGE DATASET ROWS algorithm.

28/82

SETIFY DATASET(D : VECTOR NODE pointer)
local variables

1 d1,d2 : VECTOR NODE pointers

2 d1 ← D
3 d2 ← NULL
4 while d1 �= NULL and d1↑right �= NULL
5 if VECTOR EQUAL(d1↑right↑vector,d1↑vector)
6 d2 ← d1↑right
7 d1↑right ← d2↑right
8 d2↑right ← NULL
9 d2 ← DISPOSE OF VECTOR NODE(d2)
10 else
11 d1 ← d1↑right
12 return D

Figure 28: The SETIFY DATASET algorithm.

29/82

SIA COMPUTE VECTORS(D : VECTOR NODE pointer)
local variables

1 d1, d2, p, v, V : VECTOR NODE pointers

2 V ← NULL
3 if D �= NULL and D↑right �= NULL
4 d1 ← D
5 d2 ← d1↑right
6 V ← MAKE NEW VECTOR NODE
7 v ← V
8 repeat
9 p ← v
10 repeat
11 p↑down ← MAKE NEW VECTOR NODE
12 p ← p↑down
13 p↑right ← d1

14 p↑vector ← VECTOR MINUS(d2↑vector,d1↑vector)
15 d2 ← d2↑right
16 until d2 = NULL
17 d1← d1↑right
18 if d1↑right �= NULL
19 v↑right ← MAKE NEW VECTOR NODE
20 v ← v↑right
21 d2 ← d1↑right
22 until d1↑right = NULL
23 return V

Figure 29: The SIA COMPUTE VECTORS algorithm.

30/82

SIA SORT VECTORS(V : VECTOR NODE pointer)
local variables

1 BEFORE A, A, B, AFTER B, C : VECTOR NODE pointers

2 while V �= NULL and V↑right �= NULL
3 BEFORE A ← NULL
4 A ← V
5 V ← NULL
6 repeat
7 if V �= NULL
8 BEFORE A↑right ← NULL
9 B ← A↑right
10 A↑right ← NULL
11 AFTER B ← B↑right
12 B↑right ← NULL
13 C ← SIA MERGE VECTOR COLUMNS(A,B)
14 if B �= NULL
15 B↑down ← NULL
16 B ← DISPOSE OF VECTOR NODE(B)
17 if V = NULL
18 V ← C
19 else
20 BEFORE A↑right ← C
21 C↑right ← AFTER B
22 BEFORE A ← C
23 A ← BEFORE A↑right
24 until A = NULL or A↑right = NULL
25 BEFORE A ← A ← B ← AFTER B ← C ← NULL
26 if V �= NULL
27 A ← V↑down
28 V↑down ← NULL
29 V ← DISPOSE OF VECTOR NODE(V)
30 V ← A
31 A ← NULL
32 return V

Figure 30: The SIA SORT VECTORS algorithm.

31/82

SIA MERGE VECTOR COLUMNS(A, B : VECTOR NODE pointers)
local variables

1 a, b, C, c : VECTOR NODE pointers

2 a ← A↑down
3 b ← B↑down
4 C ← A
5 C↑down ← NULL
6 c ← C
7 while a �= NULL and b �= NULL
8 if VECTOR LESS THAN(b↑vector,a↑vector)
9 c↑down ← b
10 b ← b↑down
11 else
12 c↑down ← a
13 a ← a↑down
14 c ← c↑down
15 c↑down ← NULL
16 if a = NULL
17 c↑down ← b
18 else
19 c↑down ← a
20 a ← b ← c ← NULL
21 return C

Figure 31: The SIA MERGE VECTOR COLUMNS algorithm.

32/82

PRINT VECTOR MTP PAIRS(V : VECTOR NODE pointer; FN : filename)
local variables

1 v1, v2: VECTOR NODE pointers
2 F : file

3 if (F ← OPEN FILE(FN,WRITE)) = NULL
4 EXIT
5 if V �= NULL
6 v1 ← V
7 while v1 �= NULL
8 PRINT VECTOR(v1↑vector,F)
9 PRINT NEW LINE(F)
10 PRINT VECTOR(v1↑right↑vector,F)
11 v2 ← v1↑down
12 while v2 �= NULL and VECTOR EQUAL(v2↑vector,v1↑vector)
13 PRINT VECTOR(v2↑right↑vector,F)
14 v2 ← v2↑down
15 PRINT NEW LINE(F)
16 v1 ← v2

17 PRINT NEW LINE(F)
18 CLOSE FILE(F)

Figure 32: The PRINT VECTOR MTP PAIRS algorithm.

33/82

SIATEC(DFN, OFN : filenames; SD : string representing selected dimensions)
local variables

1 OF, DF : files
2 D, V : VECTOR NODE pointers
3 X : X NODE pointer
4 n : integer

5 if (DF ← OPEN FILE(DFN,READ)) = NULL
6 EXIT
7 D ← READ VECTOR SET(DF,DOWN,SD)
8 CLOSE FILE(DF)
9 if D = NULL
10 OF ← OPEN FILE(OFN,WRITE)
11 CLOSE FILE(OF)
12 else
13 D ← SORT DATASET(D)
14 D ← SETIFY DATASET(D)
15 n ← SIZE OF DATASET(D)
16 if D↑right = NULL
17 OF ← OPEN FILE(OFN,WRITE)
18 PRINT VECTOR(D↑vector,OF)
19 PRINT NEW LINE(OF)
20 PRINT NEW LINE(OF)
21 PRINT NEW LINE(OF)
22 CLOSE FILE(OF)
23 else
24 V ← COMPUTE VECTORS(D)
25 V ← CONSTRUCT VECTOR TABLE(V)
26 V ← SORT VECTORS(V)
27 X ← VECTORIZE PATTERNS(V)
28 X ← SORT PATTERN VECTOR SEQUENCES(X)
29 PRINT TECS(X,OFN,n)

Figure 33: The SIATEC algorithm.

34/82

COMPUTE VECTORS(D : VECTOR NODE pointer)
local variables

1 d1, d2, p, v, V: VECTOR NODE pointers

2 V ← NULL
3 if D �= NULL
4 d1 ← D
5 while d1 �= NULL
6 p ← d1

7 d2 ← D
8 while d2 �= NULL
9 p↑down ← MAKE NEW VECTOR NODE
10 p ← p↑down
11 p↑right ← d1

12 p↑vector ← VECTOR MINUS(d2↑vector,d1↑vector)
13 if d1 = d2 and d1↑right �= NULL
14 if V = NULL
15 V ← MAKE NEW VECTOR NODE
16 v ← V
17 else
18 v↑right ← MAKE NEW VECTOR NODE
19 v ← v↑right
20 v↑down ← p
21 d2 ← d2↑right
22 d1 ← d1↑right
23 return V

Figure 34: The COMPUTE VECTORS algorithm.

35/82

CONSTRUCT VECTOR TABLE(V : VECTOR NODE pointer)
local variables

1 p, v, w : VECTOR NODE pointers

2 p ← V
3 while p �= NULL
4 v ← p↑down↑down
5 w ← p
6 while v �= NULL
7 w↑down ← MAKE NEW VECTOR NODE
8 w ← w↑down
9 w↑right ← v
10 v ← v↑down
11 p ← p↑right
12 return V

Figure 35: The CONSTRUCT VECTOR TABLE algorithm.

36/82

SORT VECTORS(V : VECTOR NODE pointer)
local variables

1 BEFORE A, A, B, AFTER B, C : VECTOR NODE pointers

2 while V �= NULL and V↑right �= NULL
3 BEFORE A ← NULL
4 A ← V
5 V ← NULL
6 repeat
7 if V �= NULL
8 BEFORE A↑right ← NULL
9 B ← A↑right
10 A↑right ← NULL
11 AFTER B ← B↑right
12 B↑right ← NULL
13 C ← MERGE VECTOR COLUMNS(A,B)
14 if B �= NULL
15 B↑down ← NULL
16 B ← DISPOSE OF VECTOR NODE(B)
17 if V = NULL
18 V ← C
19 else
20 BEFORE A↑right ← C
21 C↑right ← AFTER B
22 BEFORE A ← C
23 A ← BEFORE A↑right
24 until A = NULL or A↑right = NULL
25 BEFORE A ← A ← B ← AFTER B ← C ← NULL
26 if V �= NULL
27 A ← V↑down
28 V↑down ← NULL
29 V ← DISPOSE OF VECTOR NODE(V)
30 V ← A
31 A ← NULL
32 return V

Figure 36: The SORT VECTORS algorithm.

37/82

MERGE VECTOR COLUMNS(A, B : VECTOR NODE pointers)
local variables

1 a, b, C, c : VECTOR NODE pointers

2 a ← A↑down
3 b ← B↑down
4 C ← A
5 C↑down ← NULL
6 c ← C
7 while a �= NULL and b �= NULL
8 if VECTOR LESS THAN(b↑right↑vector,a↑right↑vector)
9 c↑down ← b
10 b ← b↑down
11 else
12 c↑down ← a
13 a ← a↑down
14 c ← c↑down
15 c↑down ← NULL
16 if a = NULL
17 c↑down ← b
18 else
19 c↑down ← a
20 a ← b ← c ← NULL
21 return C

Figure 37: The MERGE VECTOR COLUMNS algorithm.

38/82

VECTORIZE PATTERNS(V : VECTOR NODE pointer)
local variables

1 i, j, above j, Q, q : VECTOR NODE pointers
2 x, X : X NODE pointers
3 size : integer

4 i ← j ← above j ← Q ← q ← NULL
5 x ← X ← NULL
6 i ← V
7 while i �= NULL
8 size ← 1
9 j ← i↑down
10 above j ← i
11 while j �= NULL and VECTOR EQUAL(i↑right↑vector,j↑right↑vector)
12 if Q = NULL
13 Q ← MAKE NEW VECTOR NODE
14 q ← Q
15 else
16 q↑down ← MAKE NEW VECTOR NODE
17 q ← q↑down
18 size ← size + 1
19 q↑vector ← VECTOR MINUS(j↑right↑right↑vector,above j↑right↑right↑vector)
20 j ← j↑down
21 above j ← above j↑down
22 if X = NULL
23 X ← MAKE NEW X NODE
24 x ← X
25 else
26 x↑down ← MAKE NEW X NODE
27 x ← x↑down
28 x↑size ← size
29 x↑vec seq ← Q
30 x↑start vec ← i
31 Q ← q ← NULL
32 i ← j
33 i ← j ← above j ← Q ← q ← NULL
34 x ← NULL
35 return X

Figure 38: The VECTORIZE PATTERNS algorithm.

39/82

SORT PATTERN VECTOR SEQUENCES(X : X NODE pointer)
local variables

1 ABOVE A, A, B, BELOW B, C : X NODE pointers

2 while X �= NULL and X↑down �= NULL
3 ABOVE A ← NULL
4 A ← X
5 X ← NULL
6 repeat
7 if X �= NULL
8 ABOVE A↑down ← NULL
9 B ← A↑down
10 A↑down ← NULL
11 BELOW B ← B↑down
12 B↑down ← NULL
13 C ← MERGE PATTERN ROWS(A,B)
14 if X = NULL
15 X ← C
16 else
17 ABOVE A↑down ← C
18 C↑down ← BELOW B
19 ABOVE A ← C
20 A ← ABOVE A↑down
21 until A = NULL or A↑down = NULL
22 ABOVE A ← A ← B ← BELOW B ← C ← NULL
23 return X

Figure 39: The SORT PATTERN VECTOR SEQUENCES algorithm.

40/82

MERGE PATTERN ROWS(A, B : X NODE pointers)
local variables

1 a, b, C, c : X NODE pointers

2 a ← A
3 b ← B
4 if PATTERN VEC SEQ LESS THAN(b,a)
5 C ← b
6 b ← b↑right
7 else
8 C ← a
9 a ← a↑right
10 C↑right ← NULL
11 c ← C
12 while a �= NULL and b �= NULL
13 if PATTERN VEC SEQ LESS THAN(b,a)
14 c↑right ← b
15 b ← b↑right
16 else
17 c↑right ← a
18 a ← a↑right
19 c ← c↑right
20 c↑right ← NULL
21 if a = NULL
22 c↑right ← b
23 else
24 c↑right ← a
25 a ← b ← c ← NULL
26 return C

Figure 40: The MERGE PATTERN ROWS algorithm.

41/82

PRINT TECS(X : X NODE pointer; FN : filename; n : integer)
local variables

1 i, before i : X NODE pointer
2 Iptr, j, I : VECTOR NODE pointer
3 F : file

4 F = OPEN FILE(FN,WRITE)
5 i ← before i ← NULL
6 I ← Iptr ← j ← NULL
7 i ← X
8 if X �= NULL
9 repeat
10 j ← i↑start vec
11 if I �= NULL
12 Iptr ← I
13 while Iptr �= NULL
14 Iptr↑right ← NULL
15 Iptr ← Iptr↑down
16 I ← DISPOSE OF VECTOR NODE(I)
17 while j �= NULL and VECTOR EQUAL(j↑right↑vector,i↑start vec↑right↑vector)
18 if I = NULL
19 I ← MAKE NEW VECTOR NODE
20 Iptr ← I
21 else
22 Iptr↑down ← MAKE NEW VECTOR NODE
23 Iptr ← Iptr↑down
24 Iptr↑right ← j↑right↑right
25 j ← j↑down
26 PRINT PATTERN(I,F)
27 PRINT SET OF TRANSLATORS(I,F,n,i↑size)
28 before i ← i
29 i ← i↑right
30 while i �= NULL and PATTERN VEC SEQ EQUAL(i,before i)
31 i ← i↑right
32 before i ← before i↑right
33 until i = NULL
34 if I �= NULL
35 Iptr ← I
36 while Iptr �= NULL
37 Iptr↑right ← NULL
38 Iptr ← Iptr↑down
39 I ← DISPOSE OF VECTOR NODE(I)
40 j ← NULL
41 i ← before i ← NULL
42 PRINT NEW LINE(F)
43 CLOSE FILE(F)

Figure 41: The PRINT TECS algorithm.

42/82

PRINT PATTERN(I : VECTOR NODE pointer; F : file)
local variables

1 p : VECTOR NODE pointer

2 p ← I
3 while p �= NULL
4 PRINT VECTOR(p↑right↑vector,F)
5 p ← p↑down
6 PRINT NEW LINE(F)

Figure 42: The PRINT PATTERN algorithm.

43/82

PRINT SET OF TRANSLATORS(I : VECTOR NODE pointer; F : file; n, p : integers)

local variables

1 v, J, j2, j1, i : VECTOR NODE pointers

2 FINISHED : Boolean value

3 k : integer

4 v ← J ← j2 ← j1 ← i ← NULL

5 if I↑down = NULL

6 v ← I↑right↑down
7 while v �= NULL

8 if not IS ZERO VECTOR(v↑vector)
9 PRINT VECTOR(v↑vector,F)
10 v ← v↑down
11 PRINT NEW LINE(F)

12 else

13 J ← NULL

14 i ← I

15 while i �= NULL

16 if J = NULL

17 J ← MAKE NEW VECTOR NODE

18 j2 ← J

19 else

20 j2↑down ← MAKE NEW VECTOR NODE

21 j2 ← j2↑down
22 j2↑right ← i↑right↑down
23 j2↑vector ← MAKE NEW NUMBER NODE

24 j2↑vector↑number ← 1

25 i ← i↑down
26 if J↑right �= NULL and IS ZERO VECTOR(J↑right↑vector)
27 J↑right ← J↑right↑down
28 J↑vector↑number ← J↑vector↑number + 1

29 FINISHED ← FALSE

30 j2 ← J↑down
31 k ← 2

32 j1 ← J

33 while not FINISHED

34 while j2↑right �= NULL and j2↑vector↑number ≤ j1↑vector↑number
35 j2↑right ← j2↑right↑down
36 j2↑vector↑number ← j2↑vector↑number + 1

37 while j2↑vector↑number ≤ n - p + k and VECTOR LESS THAN(j2↑right↑vector,j1↑right↑vector)
38 j2↑right ← j2↑right↑down
39 j2↑vector↑number ← j2↑vector↑number + 1

40 if j2↑vector↑number > n - p + k then FINISHED ← TRUE

41 else if VECTOR LESS THAN(j1↑right↑vector,j2↑right↑vector)
42 j1 ← J

43 j2 ← J↑down
44 k ← 2

45 J↑right ← J↑right↑down
46 J↑vector↑number ← J↑vector↑number + 1

47 if J↑right �= NULL and IS ZERO VECTOR(J↑right↑vector)
48 J↑right ← J↑right↑down
49 J↑vector↑number ← J↑vector↑number + 1

50 if J↑vector↑number > n - p + 1 then FINISHED ← TRUE

51 else if k = p

52 PRINT VECTOR(j2↑right↑vector,F)
53 j2 ← J

54 k ← 1

55 while k ≤ p

56 j2↑right ← j2↑right↑down
57 j2↑vector↑number ← j2↑vector↑number + 1

58 if j2↑right �= NULL and IS ZERO VECTOR(j2↑right↑vector)
59 j2↑right ← j2↑right↑down
60 j2↑vector↑number ← j2↑vector↑number + 1

61 if j2↑vector↑number > n - p + k

62 FINISHED ← TRUE

63 k ← p

64 j1 ← j2
65 j2 ← j2↑down
66 k ← k + 1

67 j1 ← J

68 j2 ← J↑down
69 k ← 2

70 else

71 j1 ← j2
72 j2 ← j2↑down
73 k ← k + 1

74 PRINT NEW LINE(F)

75 j2 ← NULL

76 j1 ← J

77 while j1 �= NULL

78 j1↑right ← NULL

79 j1 ← j1↑down
80 J ← DISPOSE OF VECTOR NODE(J)

Figure 43: The PRINT SET OF TRANSLATORS algorithm.

44/82

COSIATEC(DFN, OFN : filenames; SD : string indicating chosen dimensions)

local variables

1 TFN : filename

2 OF, TF, DF : files

3 D, V : VECTOR NODE pointers

4 BT, T : TEC NODE pointers

5 X : an X NODE pointer

6 n : integer

7 TFN ← "TEMP TEC FILE"

8 if (DF ← OPEN FILE(DFN,READ)) = NULL

9 EXIT

10 D ← READ VECTOR SET(DF,DOWN,SD)

11 CLOSE FILE(DF)

12 D ← SORT DATASET(D)

13 D ← SETIFY DATASET(D)

14 n ← SIZE OF DATASET(D)

15 OF ← OPEN FILE(OFN,WRITE)

16 BT ← NULL

17 T ← NULL

18 while D �= NULL

19 if D↑right = NULL

20 TF ← OPEN FILE(TFN,WRITE)

21 PRINT VECTOR(D↑vector,TF)
22 PRINT NEW LINE(TF)

23 PRINT NEW LINE(TF)

24 PRINT NEW LINE(TF)

25 CLOSE FILE(TF)

26 else

27 V ← COMPUTE VECTORS(D)

28 V ← CONSTRUCT VECTOR TABLE(V)

29 V ← SORT VECTORS(V)

30 X ← VECTORIZE PATTERNS(V)

31 X ← SORT PATTERN VECTOR SEQUENCES(X)

32 PRINT TECS(X,TFN,n)

33 DISPOSE OF SIATEC DATA STRUCTURES(D,V,X)

34 TF ← OPEN FILE(TFN,READ)

35 while not AT END OF LINE(TF)

36 T ← READ TEC(TF,D)

37 if IS BETTER TEC(T,BT)

38 BT ← DISPOSE OF TEC(BT)

39 BT ← T

40 T ← NULL

41 else

42 T ← DISPOSE OF TEC(T)

43 CLOSE FILE(TF)

44 DELETE FILE(TFN)

45 PRINT TEC(BT,OF)

46 D ← DELETE TEC COVERED SET(D,BT)

47 n ← n - BT↑coverage
48 BT ← DISPOSE OF TEC(BT)

49 PRINT NEW LINE(OF)

50 CLOSE FILE(OF)

Figure 44: The COSIATEC algorithm.

45/82

DISPOSE OF SIATEC DATA STRUCTURES(D, V : VECTOR NODE pointers; X : X NODE pointer)
local variables

1 p1, p2 : VECTOR NODE pointers
2 x : X NODE pointer

3 p1 ← D
4 while p1 �= NULL
5 p2 ← p1↑down
6 while p2 �= NULL
7 p2↑right ← NULL
8 p2 ← p2↑down
9 p1 ← p1↑right
10 p1 ← V
11 while p1 �= NULL
12 p1↑right ← NULL
13 p1 ← p1↑down
14 x ← X
15 while x �= NULL
16 x↑start vec ← NULL
17 while x↑vec seq �= NULL
18 p1 ← x↑vec seq↑down
19 x↑vec seq↑down ← NULL
20 FREE(x↑vec seq)
21 x↑vec seq ← p1

22 x ← x↑right
23 p1 ← D
24 while p1 �= NULL
25 p1↑down ← DISPOSE OF VECTOR NODE(p1↑down)
26 p1 ← p1↑right
27 while V �= NULL
28 p1← V↑down
29 V↑down ← NULL
30 FREE(V)
31 V ← p1

32 while X �= NULL
33 x ← X↑right
34 X↑right ← NULL
35 FREE(X)
36 X ← x

Figure 45: The DISPOSE OF SIATEC DATA STRUCTURES algorithm.

46/82

READ TEC(F : FILE; D : VECTOR NODE pointer)
local variables

1 T : TEC NODE pointer

2 T ← MAKE NEW TEC NODE
3 T↑pattern ← READ VECTOR SET(F,DOWN,NULL)
4 T↑translator set ← READ VECTOR SET(F,DOWN,NULL)
5 SET TEC PATTERN SIZE(T)
6 SET TEC TRANSLATOR SET SIZE(T)
7 SET TEC COVERED SET(T,D)
8 SET TEC COVERAGE(T)
9 SET TEC COMPRESSION RATIO(T)
10 return T

Figure 46: The READ TEC algorithm.

47/82

SET TEC COVERED SET(T : TEC NODE pointer; D : VECTOR NODE pointer)
local variables

1 p, d, t : VECTOR NODE pointers
2 s : NUMBER NODE pointers
3 c : COV NODE pointers

4 if T �= NULL and D �= NULL
5 p ← T↑pattern
6 d ← D
7 while p �= NULL
8 while d �= NULL and not VECTOR EQUAL(d↑vector, p↑vector)
9 d ← d↑right
10 if d = NULL
11 EXIT
12 d↑down ← MAKE NEW VECTOR NODE
13 p ← p↑down
14 p ← T↑pattern
15 while p �= NULL
16 t ← T↑translator set
17 d ← D
18 while t �= NULL
19 s ← VECTOR PLUS(p↑vector,t↑vector)
20 while d �= NULL and not VECTOR EQUAL(d↑vector,s)
21 d ← d↑right
22 if d = NULL
23 EXIT
24 d↑down ← MAKE NEW VECTOR NODE
25 s ← DISPOSE OF NUMBER NODE(s)
26 t ← t↑down
27 p ← p↑down
28 d ← D
29 c ← NULL
30 while d �= NULL
31 if d↑down �= NULL
32 if c = NULL
33 T↑covered set ← MAKE NEW COV NODE
34 c ← T↑covered set
35 else
36 c↑next ← MAKE NEW COV NODE
37 c ← c↑next
38 c↑datapoint ← d
39 d↑down ← DISPOSE OF VECTOR NODE(d↑down)
40 d ← d↑right
41 c ← NULL

Figure 47: The SET TEC COVERED SET algorithm.

48/82

IS BETTER TEC(T1, T2: TEC NODE pointers)
1 if T1 = NULL
2 PRINT ERROR MESSAGE(‘‘IS BETTER TEC: T1 is NULL.’’)
3 EXIT
4 if T2 = NULL
5 return TRUE
6 if T1↑compression ratio > T2↑compression ratio
7 return TRUE
8 if T1↑compression ratio < T2↑compression ratio
9 return FALSE
10 if T1↑coverage > T2↑coverage
11 return TRUE
12 return FALSE

Figure 48: The IS BETTER TEC algorithm.

49/82

PRINT TEC(T : TEC NODE pointer; F : file)
1 if T �= NULL
2 PRINT VECTOR SET(T↑pattern,DOWN,F)
3 PRINT VECTOR SET(T↑translator set,DOWN,F)

Figure 49: The PRINT TEC algorithm.

50/82

PRINT VECTOR SET(V : VECTOR NODE pointer; DIRECTION : either DOWN or RIGHT; F : file)
local variables

1 v : VECTOR NODE pointer

2 v ← V
3 while v �= NULL
4 PRINT VECTOR(v↑vector,F)
5 if DIRECTION = DOWN
6 v ← v↑down
7 else
8 v ← v↑right
9 PRINT NEW LINE(F)

Figure 50: The PRINT VECTOR SET algorithm.

51/82

DELETE TEC COVERED SET(D : VECTOR NODE pointer; T : TEC NODE pointer)
local variables

1 c : COV NODE pointer
2 d : VECTOR NODE pointer

3 if T �= NULL
4 c ← T↑covered set
5 while c �= NULL and D = c↑datapoint
6 D ← D↑right
7 c↑datapoint↑right ← NULL
8 c↑datapoint ← DISPOSE OF VECTOR NODE(c↑datapoint)
9 c ← c↑next
10 d ← D
11 while c �= NULL
12 while d↑right �= c↑datapoint
13 d ← d↑right
14 d↑right ← c↑datapoint↑right
15 c↑datapoint↑right ← NULL
16 c↑datapoint ← DISPOSE OF VECTOR NODE(c↑datapoint)
17 c ← c↑next
18 return D

Figure 51: The DELETE TEC COVERED SET algorithm.

52/82

1
	
1

	
1

	
�

1
	
3

	
2

	
�

2
	
1

	
2

	
�

2
	
2

	
2

	
�

2
	
3

	
3

	
�

3
	
2

	
2

	
�

�

Figure 52: Example of format used as input to READ VECTOR SET algorithm.

53/82

v ✲ 3 ✲ 4
❅

❅
❅

number next NULL

Figure 53: Using NUMBER NODEs to represent vectors.

54/82

1

3

2

4

3

3

✲ ✲ ✲

❄

❄

❄

❄

❄

❄

p ❅
❅

❅

❅
❅

❅

❅
❅

❅

❅
❅

❅

❅
❅

❅

❅
❅

❅

❅
❅

❅

vector rightdown

Figure 54: A right-directed list of VECTOR NODEs.

55/82

1

1
❅

❅
❅

2

2
❅

❅
❅

3

1
❅

❅
❅

❄

❄

❄

❄

❄

❄

✛

✛

✛

❅
❅

❅

❅
❅

❅

❅
❅

❅

❅
❅

❅

❅
❅

❅

❅
❅

❅

❅
❅

❅

p

Figure 55: A down-directed list of VECTOR NODEs.

56/82

1

1

1

2

2

2

2

2

2

3

3

2

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

✛

✛

✛

✛

✛

✛

❅
❅❅

❅
❅❅

❅
❅❅

❅
❅❅

❅
❅❅

❅
❅❅

❅
❅❅

❅
❅❅

❅
❅❅

❅
❅❅

❅
❅❅

❅
❅❅

❅
❅❅

S

Figure 56: The linked list constructed by READ VECTOR SET when F is the data in Figure 52,
DIR = DOWN and SD = "101".

57/82

1

1

1

1

3

2

2

1

2

2

2

2

2

3

3

3

2

2

✲ ✲ ✲ ✲ ✲ ✲

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

S ❅❅

❅❅

❅❅

❅❅

❅❅

❅❅

❅❅

❅❅

❅❅

❅❅

❅❅

❅❅

❅❅

Figure 57: The linked list constructed by READ VECTOR SET when F is the data in Figure 52,
DIR = RIGHT and SD = NULL.

58/82

3
	
3

	
�

3
	
3

	
�

3
	
1

	
�

1
	
1

	
�

1
	
1

	
�

1
	
3

	
�

�

Figure 58: Example input data.

59/82

\ \

\

\

\

\

\

✛

✛

✛

✛

✛

✛

❄

❄

❄

❄

❄

❄

〈1, 3〉

〈1, 1〉

〈1, 1〉

〈3, 1〉

〈3, 3〉

〈3, 3〉

D

Figure 59: The linked list generated by line 5 of SIA (Figure 24) for the data in Figure 58.

60/82

\ \ \

\ \

\ \

✛ ✲

✛ ✲

✛ ✲

❄

❄

❄

✻

✻

✻

〈1, 1〉

〈1, 3〉

〈1, 1〉

〈3, 1〉

〈3, 3〉

〈3, 3〉
D

Figure 60: The state of the linked list D after one iteration of the outer while loop of
SORT DATASET on the dataset list in Figure 59.

61/82

\ \ \ \ \ \ \✲ ✲ ✲ ✲ ✲ ✲
✻ ✻ ✻ ✻ ✻ ✻

〈1, 1〉 〈1, 1〉 〈1, 3〉 〈3, 1〉 〈3, 3〉 〈3, 3〉

D

Figure 61: The sorted, right-directed linked list produced by SORT DATASET from the
unsorted, down-directed dataset list in Figure 59.

62/82

\ \ \ \ \✲ ✲ ✲ ✲
✻ ✻ ✻ ✻

〈1, 1〉 〈1, 3〉 〈3, 1〉 〈3, 3〉

D

Figure 62: The linked list that results when SETIFY DATASET has been executed on the
linked list in Figure 61.

63/82

\

\

\

\

\

\

\

\

\
\
\

\ \ \ \ \ \ \

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛ ✛

✻ ✻ ✻ ✻ ✻ ✻

〈2, 1〉
〈1, 2〉
〈1, 1〉
〈1, 0〉
〈0, 2〉

〈2,−1〉
〈1, 0〉
〈1,−1〉
〈1,−2〉

〈1, 1〉
〈0, 2〉
〈0, 1〉

〈1, 0〉
〈0, 1〉 〈1,−1〉

〈1, 1〉 〈1, 3〉 〈2, 1〉 〈2, 2〉 〈2, 3〉 〈3, 2〉

✻ ✻ ✻ ✻ ✻✲ ✲ ✲ ✲ ✲

✲ ✲ ✲ ✲ ✲ ✲

V

D

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

Figure 63: The data structure that results after SIA COMPUTE VECTORS has executed when
the SIA algorithm in Figure 24 is carried out on the dataset shown in Figure 1(a).

64/82

\

\ \ \ \ \ \ \

〈2, 1〉

〈2,−1〉

〈1, 2〉

〈1, 1〉

〈1, 1〉

〈1, 0〉

〈1, 0〉

〈1, 0〉

〈1,−1〉

〈1,−1〉

〈1,−2〉

〈0, 2〉

〈0, 2〉

〈0, 1〉

〈0, 1〉

〈1, 1〉 〈1, 3〉 〈2, 1〉 〈2, 2〉 〈2, 3〉 〈3, 2〉
✲ ✲ ✲ ✲ ✲ ✲✻ ✻ ✻ ✻ ✻ ✻

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

✻ ✻ ✻ ✻ ✻

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

V
D

Figure 64: The data structure headed by V after SIA SORT VECTORS has executed when
SIA is carried out on the dataset in Figure 1(a).

65/82

0
�
1

�
�

�
2

�
1

�
�

2
�
2

�
�

�
0

�
2

�
�

�
1

�
1

�
�

2
�
1

�
�

�
1

�
-2

�
�

�
1

�
3

�
�

�
1

�
-1

�
�

�
1

�
3

�
�

2
�
3

�
�

�
1

�
0

�
�

�
1

�
1

�
�

1
�
3

�
�

2
�
2

�
�

�
1

�
1

�
�

�
1

�
1

�
�

2
�
1

�
�

�
1

�
2

�
�

�
1

�
1

�
�

�
2

�
-1

�
�

�
1

�
3

�
�

�
2

�
1

�
�

�
1

�
1

�
�

�
�

Figure 65: The output generated by PRINT VECTOR MTP PAIRS (Figure 32) for the dataset
in Figure 1(a).

66/82

\ \ \ \ \ \

\

V ✲ ✲ ✲ ✲ ✲\ \ \ \ \ \

✻

✻

✻

✻

✻✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✻ ✻ ✻ ✻ ✻ ✻

〈2, 1〉

〈1, 2〉

〈1, 1〉

〈1, 0〉

〈0, 2〉

〈0, 0〉

〈2,−1〉

〈1, 0〉

〈1,−1〉

〈1,−2〉

〈0, 0〉

〈0,−2〉

〈1, 1〉

〈0, 2〉

〈0, 1〉

〈0, 0〉

〈−1, 2〉

〈−1, 0〉

〈1, 0〉

〈0, 1〉

〈0, 0〉

〈0,−1〉

〈−1, 1〉

〈−1,−1〉

〈1,−1〉

〈0, 0〉

〈0,−1〉

〈0,−2〉

〈−1, 0〉

〈−1,−2〉

〈0, 0〉

〈−1, 1〉

〈−1, 0〉

〈−1,−1〉

〈−2, 1〉

〈−2,−1〉

〈1, 1〉 〈1, 3〉 〈2, 1〉 〈2, 2〉 〈2, 3〉 〈3, 2〉

✻ ✻ ✻ ✻ ✻ ✻

✲ ✲ ✲ ✲ ✲ ✲D

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄❄❄❄❄ ❄ ❄

Figure 66: The data structure generated by COMPUTE VECTORS for the dataset in Fig-
ure 1(a).

67/82

\ \ \ \ \ \

\

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻ ✻ ✻ ✻ ✻ ✻

〈2, 1〉

〈1, 2〉

〈1, 1〉

〈1, 0〉

〈0, 2〉

〈0, 0〉

〈2,−1〉
〈1, 0〉

〈1,−1〉

〈1,−2〉

〈0, 0〉

〈0,−2〉

〈1, 1〉

〈0, 2〉

〈0, 1〉

〈0, 0〉

〈−1, 2〉

〈−1, 0〉

〈1, 0〉

〈0, 1〉

〈0, 0〉

〈0,−1〉

〈−1, 1〉

〈−1,−1〉

〈1,−1〉

〈0, 0〉

〈0,−1〉

〈0,−2〉

〈−1, 0〉

〈−1,−2〉

〈0, 0〉

〈−1, 1〉

〈−1, 0〉

〈−1,−1〉

〈−2, 1〉

〈−2,−1〉

〈1, 1〉 〈1, 3〉 〈2, 1〉 〈2, 2〉 〈2, 3〉 〈3, 2〉

✻

✁
✁

✁
✁

✁
✁

✁
✁

✻

✁
✁

✁
✁

✁
✁

✻

✁
✁

✁
✁

✻

✁
✁

✻ ✻

✲ ✲ ✲ ✲ ✲ ✲D

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄❄❄❄❄ ❄ ❄

V ✲ ✲ ✲ ✲ ✲

\ \ \ \ \ \

\ \ \ \ \ \

\ \ \ \ \

\ \ \ \

\ \ \

\ \ ✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

Figure 67: The data structures that result after CONSTRUCT VECTOR TABLE has executed
when the SIATEC implementation in Figure 33 is run on the dataset in Figure 1(a).

68/82

\

\

\

\

\

\

\

✻

✻

✻

✻

✻

✻

✻

✻

✻
✻

✻
✻

✻

✻

✻

✻
✻
✻

✻

✻

✻
✻
✻
✻

✻

✻
✻
✻
✻
✻

✻
✻
✻
✻
✻
✻

✻ ✻ ✻ ✻ ✻ ✻

〈2, 1〉

〈1, 2〉

〈1, 1〉

〈1, 0〉

〈0, 2〉

〈0, 0〉

〈2,−1〉

〈1, 0〉

〈1,−1〉

〈1,−2〉

〈0, 0〉

〈0,−2〉

〈1, 1〉

〈0, 2〉

〈0, 1〉

〈0, 0〉

〈−1, 2〉

〈−1, 0〉

〈1, 0〉

〈0, 1〉

〈0, 0〉

〈0,−1〉

〈−1, 1〉

〈−1,−1〉

〈1,−1〉

〈0, 0〉

〈0,−1〉

〈0,−2〉

〈−1, 0〉

〈−1,−2〉

〈0, 0〉

〈−1, 1〉

〈−1, 0〉

〈−1,−1〉

〈−2, 1〉

〈−2,−1〉

〈1, 1〉 〈1, 3〉 〈2, 1〉 〈2, 2〉 〈2, 3〉 〈3, 2〉

✻ ✻ ✻ ✻ ✻ ✻
✲ ✲ ✲ ✲ ✲ ✲D

❄

❄

❄

❄

❄

❄

❄
❄

❄

❄

❄
❄

❄

❄

❄

❄
❄
❄

❄

❄

❄
❄
❄
❄

❄

❄
❄
❄
❄
❄

❄❄❄❄❄ ❄ ❄

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\ \

✲
✲

✲
✲

✲
✲

✲
✲

✲
✲

✲
✲

✲
✲

✲

❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄

V

Figure 68: The data structures that result after SORT VECTORS has executed when the
SIATEC implementation in Figure 33 is run on the dataset in Figure 1(a).

69/82

size right

vec seq down start vec

Figure 69: Diagrammatic representation of an X NODE.

70/82

\

\

\

\

\

\

\

✻

✻

✻

✻

✻

✻

✻

✻

✻
✻

✻
✻

✻

✻

✻

✻
✻
✻

✻

✻

✻
✻
✻
✻

✻

✻
✻
✻
✻
✻

✻
✻
✻
✻
✻
✻

✻ ✻ ✻ ✻ ✻ ✻

〈2, 1〉

〈1, 2〉

〈1, 1〉

〈1, 0〉

〈0, 2〉

〈0, 0〉

〈2,−1〉

〈1, 0〉

〈1,−1〉

〈1,−2〉

〈0, 0〉

〈0,−2〉

〈1, 1〉

〈0, 2〉

〈0, 1〉

〈0, 0〉

〈−1, 2〉

〈−1, 0〉

〈1, 0〉

〈0, 1〉

〈0, 0〉

〈0,−1〉

〈−1, 1〉

〈−1,−1〉

〈1,−1〉

〈0, 0〉

〈0,−1〉

〈0,−2〉

〈−1, 0〉

〈−1,−2〉

〈0, 0〉

〈−1, 1〉

〈−1, 0〉

〈−1,−1〉

〈−2, 1〉

〈−2,−1〉

〈1, 1〉 〈1, 3〉 〈2, 1〉 〈2, 2〉 〈2, 3〉 〈3, 2〉

✻ ✻ ✻ ✻ ✻ ✻
✲ ✲ ✲ ✲ ✲ ✲D

❄

❄

❄

❄

❄

❄

❄
❄

❄

❄

❄
❄

❄

❄

❄

❄
❄
❄

❄

❄

❄
❄
❄
❄

❄

❄
❄
❄
❄
❄

❄❄❄❄❄ ❄ ❄

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\ \

✲
✲

✲
✲

✲
✲

✲
✲

✲
✲

✲
✲

✲
✲

✲

❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄

V

\

\

\ \

\

\

\

\ \

\ \

\ \ \

✲

✲

✲
✲

✲

✲

✲
✲
✲

X

❄
❄
❄
❄
❄
❄
❄
❄
❄

✛
✛

✛
✛
✛

2

2

1

2

3

2

1

1

1

\ \

\ \

\ \

\\\

\ \

✛
✛

✛
✛
✛

✛

〈0, 1〉

〈1, 0〉

〈1, 0〉

〈0, 2〉

〈1, 0〉

〈1,−1〉
✻

Figure 70: The state of the data structures headed by D, V and X in the SIATEC imple-
mentation in Figure 33 after line 27 has been executed when this implementation is run
on the dataset in Figure 1(a).

71/82

\

\

\

\

\

\

\

✻

✻

✻

✻

✻

✻

✻

✻

✻
✻

✻
✻

✻

✻

✻

✻
✻
✻

✻

✻

✻
✻
✻
✻

✻

✻
✻
✻
✻
✻

✻
✻
✻
✻
✻
✻

✻ ✻ ✻ ✻ ✻ ✻

〈2, 1〉

〈1, 2〉

〈1, 1〉

〈1, 0〉

〈0, 2〉

〈0, 0〉

〈2,−1〉

〈1, 0〉

〈1,−1〉

〈1,−2〉

〈0, 0〉

〈0,−2〉

〈1, 1〉

〈0, 2〉

〈0, 1〉

〈0, 0〉

〈−1, 2〉

〈−1, 0〉

〈1, 0〉

〈0, 1〉

〈0, 0〉

〈0,−1〉

〈−1, 1〉

〈−1,−1〉

〈1,−1〉

〈0, 0〉

〈0,−1〉

〈0,−2〉

〈−1, 0〉

〈−1,−2〉

〈0, 0〉

〈−1, 1〉

〈−1, 0〉

〈−1,−1〉

〈−2, 1〉

〈−2,−1〉

〈1, 1〉 〈1, 3〉 〈2, 1〉 〈2, 2〉 〈2, 3〉 〈3, 2〉

✻ ✻ ✻ ✻ ✻ ✻
✲ ✲ ✲ ✲ ✲ ✲D

❄

❄

❄

❄

❄

❄

❄
❄

❄

❄

❄
❄

❄

❄

❄

❄
❄
❄

❄

❄

❄
❄
❄
❄

❄

❄
❄
❄
❄
❄

❄❄❄❄❄ ❄ ❄

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\ \

✲
✲

✲
✲

✲
✲

✲
✲

✲
✲

✲
✲

✲
✲

✲

❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄

V

\ \

\ \

\ \

\ \

\

\

\

\

\ \

✲

✲
✲
✲

✲

✲

✲

✲

✲

X

❄
❄
❄
❄
❄
❄
❄
❄
❄

✛
✛
✛
✛
✛

1

1

1

1

2

2

2

2

3

\ \

\ \

\ \

\\\

\ \

✛
✛
✛
✛
✛✛

〈0, 1〉

〈1, 0〉

〈1, 0〉

〈0, 2〉

〈1, 0〉

〈1,−1〉
✻

Figure 71: The state of the data structures headed by D, V and X in the SIATEC imple-
mentation in Figure 33 after line 28 has been executed when this implementation is run
on the dataset in Figure 1(a).

72/82

1
�
3

�
�

�
0

�
-2

�
�

1
�
-2

�
�

1
�
-1

�
�

1
�
0

�
�

2
�
-1

�
�

�
2

�
1

�
�

2
�
2

�
�

�
0

�
1

�
�

�
1

�
1

�
�

2
�
1

�
�

�
0

�
2

�
�

1
�
1

�
�

�
1

�
1

�
�

1
�
3

�
�

2
�
2

�
�

�
1

�
0

�
�

�
�

Figure 72: The output generated by PRINT TECS (Figure 41) for the dataset in Figure 1(a).

73/82

1
�
1

�
�

1
�
3

�
�

2
�
2

�
�

�
1

�
0

�
�

2
�
0

�
�

3
�
0

�
�

�
�

Figure 73: The output generated by COSIATEC (Figure 44) for the dataset in Figure 4.

74/82

L

M
3

2

1

S S

tt
1 8

tt
1 8

t
4
t
4

t t t
2 6 9
t t t
2 6 9

t t
3 7
t t
3 7

t
5
t
5

1 11 1

2 2

3 3

4 4

5 5

tt
1 8

tt
1 8

t
4
t
4

t t t
2 6 9
t t t
2 6 9

t t
3 7
t t
3 7

t
5
t
5

1 11 1

2 2

3 3

4 4

5 5

∆ Σ

∆ Σ

∆ Σ

∆ Σ

∆ Σ

∆ Σ

∆ Σ

∆ Σ

∆ Σ

∆ Σ

Figure 74: An illustration of the data structures used in SIAME.

75/82

Function NewLink(data, next)
1. p← new(next);
2. p ↑ next ← next;
3. p ↑ data ← data;
4. return p;

Figure 75: The NewLink algorithm.

76/82

Algorithm SIAME(T,D, S)
1. p← nil;L ← nil;
2. for each t ∈ T do
3. for each d ∈ D do
4. v ← d− t;
5. p← S[F(v)];
6. p ↑ ptr ←NewLink(t, p ↑ ptr);
7. p ↑ ∆← v;
8. p ↑ Σ← p ↑ Σ + 1;
9. if p ↑ Σ = 1 then L ←NewLink(p,L);
10. p← L;
11. while p �= nil do
12. tmp← p ↑ data ↑ Σ;
13. M[tmp]←NewLink(p ↑ data ,M[tmp]);
14. p← p ↑ next;
15. returnM;

Figure 76: First implementation of SIAME algorithm.

77/82

Algorithm SIAME2(T,D, S)
1. p← nil;L ← nil;
2. i← 0;
3. for each t ∈ T do
4. for each d ∈ D do
5. S[i].∆← d− t;
6. S[i].ptr ← NewLink(t, S[i]. ptr);
7. i← i+ 1;
8. S ←MergeSort(S);
9. M←MergeDuplicates(S);
10. returnM;

Figure 77: Second implementation of SIAME.

78/82

Function MergeDuplicates(S)
1. j ← 0;
2. while j < (m× n) do
3. k ← 1;
4. while S[j].∆ = S[j + k].∆ do
5. S[j + k]. ptr ↑ next ← S[j].ptr;
6. S[j]. ptr ← S[j + k].ptr;
7. k ← k + 1;
8. S[j].Σ← k;
9. M[k]←NewLink(S[j],M[k]);
10. j ← j + k;
11. returnM;

Figure 78: The MergeDuplicates algorithm.

79/82

From
〈1, 1〉 〈1, 3〉 〈2, 1〉 〈2, 2〉 〈2, 3〉 〈3, 2〉

〈1, 1〉
〈1, 3〉 〈〈0, 2〉 , 1〉
〈2, 1〉 〈〈1, 0〉 , 1〉 〈〈1,−2〉 , 2〉

To 〈2, 2〉 〈〈1, 1〉 , 1〉 〈〈1,−1〉 , 2〉 〈〈0, 1〉 , 3〉
〈2, 3〉 〈〈1, 2〉 , 1〉 〈〈1, 0〉 , 2〉 〈〈0, 2〉 , 3〉 〈〈0, 1〉 , 4〉
〈3, 2〉 〈〈2, 1〉 , 1〉 〈〈2,−1〉 , 2〉 〈〈1, 1〉 , 3〉 〈〈1, 0〉 , 4〉 〈〈1,−1〉 , 5〉

Table 1: A vector table showing the set V for the dataset shown in Figure 1(a).

80/82

i V[i] D[V[i, 2]]
1
2

〈〈0, 1〉 , 3〉
〈〈0, 1〉 , 4〉

〈2, 1〉
〈2, 2〉

}
= MTP for 〈0, 1〉

3
4

〈〈0, 2〉 , 1〉
〈〈0, 2〉 , 3〉

〈1, 1〉
〈2, 1〉

}
= MTP for 〈0, 2〉

5 〈〈1,−2〉 , 2〉 〈1, 3〉 }
= MTP for 〈1,−2〉

6
7

〈〈1,−1〉 , 2〉
〈〈1,−1〉 , 5〉

〈1, 3〉
〈2, 3〉

}
= MTP for 〈1,−1〉

8
9
10

〈〈1, 0〉 , 1〉
〈〈1, 0〉 , 2〉
〈〈1, 0〉 , 4〉

〈1, 1〉
〈1, 3〉
〈2, 2〉

 = MTP for 〈1, 0〉

11
12

〈〈1, 1〉 , 1〉
〈〈1, 1〉 , 3〉

〈1, 1〉
〈2, 1〉

}
= MTP for 〈1, 1〉

13 〈〈1, 2〉 , 1〉 〈1, 1〉 }
= MTP for 〈1, 2〉

14 〈〈2,−1〉 , 2〉 〈1, 3〉 }
= MTP for 〈2,−1〉

15 〈〈2, 1〉 , 1〉 〈1, 1〉 }
= MTP for 〈2, 1〉

Table 2: Reading the second column from top to bottom gives V for the dataset shown
in Figure 1(a). The third column gives D[V[i, 2]] for each element V[i] in the second
column. The right-hand side of the third column shows how the non-empty MTPs may
be derived directly from V.

81/82

From
〈1, 1〉 〈1, 3〉 〈2, 1〉 〈2, 2〉 〈2, 3〉 〈3, 2〉

〈1, 1〉 〈0, 0〉 〈0,−2〉 〈−1, 0〉 〈−1,−1〉 〈−1,−2〉 〈−2,−1〉
〈1, 3〉 〈0, 2〉 〈0, 0〉 〈−1, 2〉 〈−1, 1〉 〈−1, 0〉 〈−2, 1〉
〈2, 1〉 〈1, 0〉 〈1,−2〉 〈0, 0〉 〈0,−1〉 〈0,−2〉 〈−1,−1〉

To 〈2, 2〉 〈1, 1〉 〈1,−1〉 〈0, 1〉 〈0, 0〉 〈0,−1〉 〈−1, 0〉
〈2, 3〉 〈1, 2〉 〈1, 0〉 〈0, 2〉 〈0, 1〉 〈0, 0〉 〈−1, 1〉
〈3, 2〉 〈2, 1〉 〈2,−1〉 〈1, 1〉 〈1, 0〉 〈1,−1〉 〈0, 0〉

Table 3: A vector table showing W for the dataset shown in Figure 1(a).

82/82

From
〈1, 1〉 〈1, 2〉 〈2, 1〉 〈2, 2〉

〈1, 1〉 〈〈0, 0〉 , 〈1, 1〉〉 〈〈0,−1〉 , 〈1, 2〉〉 〈〈−1, 0〉 , 〈2, 1〉〉 〈〈−1,−1〉 , 〈2, 2〉〉
〈1, 2〉 〈〈0, 1〉 , 〈1, 1〉〉 〈〈0, 0〉 , 〈1, 2〉〉 〈〈−1, 1〉 , 〈2, 1〉〉 〈〈−1, 0〉 , 〈2, 2〉〉
〈2, 1〉 〈〈1, 0〉 , 〈1, 1〉〉 〈〈1,−1〉 , 〈1, 2〉〉 〈〈0, 0〉 , 〈2, 1〉〉 〈〈0,−1〉 , 〈2, 2〉〉

To 〈2, 2〉 〈〈1, 1〉 , 〈1, 1〉〉 〈〈1, 0〉 , 〈1, 2〉〉 〈〈0, 1〉 , 〈2, 1〉〉 〈〈0, 0〉 , 〈2, 2〉〉
〈2, 3〉 〈〈1, 2〉 , 〈1, 1〉〉 〈〈1, 1〉 , 〈1, 2〉〉 〈〈0, 2〉 , 〈2, 1〉〉 〈〈0, 1〉 , 〈2, 2〉〉
〈2, 4〉 〈〈1, 3〉 , 〈1, 1〉〉 〈〈1, 2〉 , 〈1, 2〉〉 〈〈0, 3〉 , 〈2, 1〉〉 〈〈0, 2〉 , 〈2, 2〉〉
〈3, 3〉 〈〈2, 2〉 , 〈1, 1〉〉 〈〈2, 1〉 , 〈1, 2〉〉 〈〈1, 2〉 , 〈2, 1〉〉 〈〈1, 1〉 , 〈2, 2〉〉
〈3, 4〉 〈〈2, 3〉 , 〈1, 1〉〉 〈〈2, 2〉 , 〈1, 2〉〉 〈〈1, 3〉 , 〈2, 1〉〉 〈〈1, 2〉 , 〈2, 2〉〉

Table 4: A vector table showing the set VSIAME generated by Step 1 of SIAME for the query
pattern in Figure 3(a) and the dataset in Figure 3(b).

1

METHOD OF PATTERN DISCOVERY

Field of the invention

This invention relates to the fields of pattern matching, pattern discovery and data com-

pression. In particular, it relates to pattern matching, pattern discovery and data com-

pression in multidimensional numerical data.

Pattern discovery, pattern matching and data compression in multidimensional nu-

merical datasets can be used in many areas such as audio and video compression, data

indexing and drug design.

Related art

Algorithms already exist for data compression, information retrieval and structural anal-

ysis of data. However, most existing approaches are based on string matching techniques

that require the datasets to be represented as strings of characters before they are pro-

cessed. In other words, most existing approaches attempt to process multidimensional

numerical data using techniques originally designed for processing one-dimensional tex-

tual data. String-based approaches to processing multidimensional datasets are artificially

limited as to the types of patterns that can be discovered and searched for; and certain

information-retrieval tasks (such as, for example, searching for patterns with gaps in mul-

tidimensional data) are unnecessarily awkward to accomplish using these techniques. For

an overview of string-matching techniques in general, see Crochemore and Rytter (1994).

For an introduction to pattern-matching techniques in bioinformatics, see Gusfield (1997).

Although previous approaches to pattern matching, pattern discovery and data com-

pression are based on the assumption that the data to be processed is represented in the

form of a string of symbols or as a set of such symbol strings, there are many domains in

which data cannot be appropriately represented using strings. In such domains, existing

2

methods for pattern matching, pattern discovery and data compression are not effective.

In many domains in which information cannot appropriately be represented using strings,

multidimensional numerical datasets can be used instead.

Summary of the invention

In a first aspect of the present invention, there is a method of pattern discovery in a

dataset, in which the dataset is represented as a set of datapoints in an n-dimensional

space, comprising the step of computing inter-datapoint vectors.

The present invention is based on the insight that the properties of multidimensional

datasets can be expressed naturally in geometrical terms (using concepts such as vectors,

points and geometrical transformations like translation) and that pattern discovery can

be based on computing inter-datapoint vectors. Multidimensional datasets can therefore

be directly analysed using the mathematical concepts and theory that were originally

developed for manipulating this kind of data. More specifically, in an implementation

designed to identify translation invariant sets of datapoints within the dataset, the method

comprises the further steps of:

(a) computing the largest set of datapoints that can be translated by a given inter-

datapoint vector to another set of datapoints in the dataset; and

(b) computing all sets of datapoints which are translationally equivalent to the largest

set identified in step (a).

This method of finding internal recurring structures within a multi-dimensional dataset

can be used (without limitation) for any of the following purposes:

(a) lossless data-compression;

(b) predicting the future price of a tradable commodity;

(c) locating repeating elements in a molecule; and

3

(d) indexing.

A pattern matching implementation of the present invention further differs over the prior

art as follows: most existing approaches to pattern-discovery and pattern-matching em-

ploy techniques based on the idea of trying to align a query pattern (e.g. a user-supplied

regular expression) against the dataset at each possible position. Implementations of the

present invention eschew alignment-based techniques in favour of a data driven approach

based on the fact that if there exists a pattern P in a dataset that is translationally in-

variant to a query pattern Q, then there will exist at least one query pattern datapoint

q and one dataset point p such that the vector that maps q onto p is equal to the vector

that maps Q onto P . Hence, in an implementation adapted to identify the occurrence of

a user supplied set of datapoints in a dataset, the method comprises the further steps of:

(a) computing inter-datapoint vectors from each datapoint in the user supplied set of

datapoints to each datapoint in the dataset;

(b) computing the largest set of datapoints in the user supplied set of datapoints that

can be translated by a given inter-datapoint vector to another set of datapoints in

the dataset.

This implementation can be used (without limitation) for any of the following purposes:

(a) locating specific elements in a molecule;

(b) visual pattern comparison;

(c) speech or music recognition.

The present invention finds broad application whenever multi-dimensional datasets

need to be analysed for internal patterns or for matches against external queries. Typically,

datapoints in an n-dimensional space can therefore represent any of the following:

(a) audio data;

4

(b) 2D image data;

(c) 3D representations of virtual spaces;

(d) video data;

(e) molecular structure;

(f) chemical spectra;

(g) financial data;

(h) seismic data:

(i) meteorological data;

(j) symbolic music representations;

(k) CAD circuit data.

In another aspect of the invention, there is provided computer software adapted to

perform the method described above.

List of figures and tables

The present invention will be described with reference to the accompanying drawings and

tables, a brief description of which follows.

Figure 1 (a) shows a simple 2-dimensional dataset. (b)–(j) show the maximal repeated

patterns found by SIA in the dataset in (a).

Figure 2 The sets of patterns discovered by SIATEC in the dataset in Figure 1(a).

Figure 3 When SIAME searches for occurrences of the query pattern (a) in the dataset

(b), it finds the exact matches shown in (c). It also finds the closest incomplete

matches shown in (d).

5

Figure 4 (b) shows the compressed representation generated by COSIATEC for the dataset

(a). The dataset in (a) can be generated by translating the three-point pattern in

(b) by the three vectors represented by arrows.

Figure 5 The set S(D) for the dataset in Figure 1(a).

Figure 6 The set T′(D) for the dataset in Figure 1(a).

Figure 7 An algorithm for printing out S(D) using V and D.

Figure 8 The output of the algorithm in Figure 7 for the dataset in Figure 1(a).

Figure 9 An algorithm for computing X using V and D.

Figure 10 The ordered set X for the dataset in Figure 1(a).

Figure 11 The ordered set Y for the dataset in Figure 1(a).

Figure 12 An algorithm for printing out T′(D).

Figure 13 The PRINT PATTERN algorithm.

Figure 14 The PRINT SET OF TRANSLATORS algorithm.

Figure 15 The output of the algorithm in Figure 12 for the dataset in Figure 1(a).

Figure 16 The ordered set VSIAME computed by Step 2 of SIAME for the pattern in Fig-

ure 3(a) and the dataset in Figure 3(b).

Figure 17 An algorithm for computing N using VSIAME.

Figure 18 N for the pattern in Figure 3(a) and the dataset in Figure 3(b).

Figure 19 N′ for the pattern in Figure 3(a) and the dataset in Figure 3(b).

Figure 20 An algorithm for computing M′(P,D) from N′ and VSIAME.

Figure 21 M for the pattern in Figure 3(a) and the dataset in Figure 3(b).

6

Figure 22 The COSIATEC algorithm.

Figure 23 Globally defined data types used in the algorithms.

Figure 24 The SIA algorithm.

Figure 25 The READ VECTOR SET algorithm.

Figure 26 The SORT DATASET algorithm.

Figure 27 The MERGE DATASET ROWS algorithm.

Figure 28 The SETIFY DATASET algorithm.

Figure 29 The SIA COMPUTE VECTORS algorithm.

Figure 30 The SIA SORT VECTORS algorithm.

Figure 31 The SIA MERGE VECTOR COLUMNS algorithm.

Figure 32 The PRINT VECTOR MTP PAIRS algorithm.

Figure 33 The SIATEC algorithm.

Figure 34 The COMPUTE VECTORS algorithm.

Figure 35 The CONSTRUCT VECTOR TABLE algorithm.

Figure 36 The SORT VECTORS algorithm.

Figure 37 The MERGE VECTOR COLUMNS algorithm.

Figure 38 The VECTORIZE PATTERNS algorithm.

Figure 39 The SORT PATTERN VECTOR SEQUENCES algorithm.

Figure 40 The MERGE PATTERN ROWS algorithm.

Figure 41 The PRINT TECS algorithm.

7

Figure 42 The PRINT PATTERN algorithm.

Figure 43 The PRINT SET OF TRANSLATORS algorithm.

Figure 44 The COSIATEC algorithm.

Figure 45 The DISPOSE OF SIATEC DATA STRUCTURES algorithm.

Figure 46 The READ TEC algorithm.

Figure 47 The SET TEC COVERED SET algorithm.

Figure 48 The IS BETTER TEC algorithm.

Figure 49 The PRINT TEC algorithm.

Figure 50 The PRINT VECTOR SET algorithm.

Figure 51 The DELETE TEC COVERED SET algorithm.

Figure 52 Example of format used as input to READ VECTOR SET algorithm.

Figure 53 Using NUMBER NODEs to represent vectors.

Figure 54 A right-directed list of VECTOR NODEs.

Figure 55 A down-directed list of VECTOR NODEs.

Figure 56 The linked list constructed by READ VECTOR SET when F is the data in Fig-

ure 52, DIR = DOWN and SD = "101".

Figure 57 The linked list constructed by READ VECTOR SET when F is the data in Fig-

ure 52, DIR = RIGHT and SD = NULL.

Figure 58 Example input data.

Figure 59 The linked list generated by line 5 of SIA (Figure 24) for the data in Figure 58.

8

Figure 60 The state of the linked list D after one iteration of the outer while loop of

SORT DATASET on the dataset list in Figure 59.

Figure 61 The sorted, right-directed linked list produced by SORT DATASET from the

unsorted, down-directed dataset list in Figure 59.

Figure 62 The linked list that results when SETIFY DATASET has been executed on the

linked list in Figure 61.

Figure 63 The data structure that results after SIA COMPUTE VECTORS has executed

when the SIA algorithm in Figure 24 is carried out on the dataset shown in Fig-

ure 1(a).

Figure 64 The data structure headed by V after SIA SORT VECTORS has executed when

SIA is carried out on the dataset in Figure 1(a).

Figure 65 The output generated by PRINT VECTOR MTP PAIRS (Figure 32) for the dataset

in Figure 1(a).

Figure 66 The data structure generated by COMPUTE VECTORS for the dataset in Fig-

ure 1(a).

Figure 67 The data structures that result after CONSTRUCT VECTOR TABLE has executed

when the SIATEC implementation in Figure 33 is run on the dataset in Figure 1(a).

Figure 68 The data structures that result after SORT VECTORS has executed when the

SIATEC implementation in Figure 33 is run on the dataset in Figure 1(a).

Figure 69 Diagrammatic representation of an X NODE.

Figure 70 The state of the data structures headed by D, V and X in the SIATEC imple-

mentation in Figure 33 after line 27 has been executed when this implementation is

run on the dataset in Figure 1(a).

9

Figure 71 The state of the data structures headed by D, V and X in the SIATEC imple-

mentation in Figure 33 after line 28 has been executed when this implementation is

run on the dataset in Figure 1(a).

Figure 72 The output generated by PRINT TECS (Figure 41) for the dataset in Fig-

ure 1(a).

Figure 73 The output generated by COSIATEC (Figure 44) for the dataset in Figure 4.

Figure 74 An illustration of the data structures used in SIAME.

Figure 75 The NewLink algorithm.

Figure 76 First implementation of SIAME algorithm.

Figure 77 Second implementation of SIAME.

Figure 78 The MergeDuplicates algorithm.

Table 1 A vector table showing the set V for the dataset shown in Figure 1(a).

Table 2 Reading the second column from top to bottom gives V for the dataset shown

in Figure 1(a). The third column givesD[V[i, 2]] for each element V[i] in the second

column. The right-hand side of the third column shows how the non-empty MTPs

may be derived directly from V.

Table 3 A vector table showing W for the dataset shown in Figure 1(a).

Table 4 A vector table showing the set VSIAME generated by Step 1 of SIAME for the query

pattern in Figure 3(a) and the dataset in Figure 3(b).

10

Detailed Description of Preferred Implementations

The aim of the present invention is to provide methods for pattern matching, pat-

tern discovery and data compression in multidimensional datasets. More specifically, the

following four related algorithms are described:

1. an algorithm called SIA that takes a multidimensional dataset as input and computes

all the largest repeated patterns in the dataset;

2. an algorithm called SIATEC that takes a multidimensional dataset as input and

computes all the occurrences of all the largest repeated patterns in the dataset;

3. an algorithm called SIAME that takes a multidimensional query pattern and a mul-

tidimensional dataset as input and finds all partial and complete occurrences of the

query pattern in the dataset; and

4. an algorithm called COSIATEC that takes a multidimensional dataset as input and

computes a compressed (i.e. space-efficient) representation of the dataset (i.e., it

losslessly compresses the dataset).

SIA discovers the largest (or ‘maximal’) repeated patterns in a multidimensional

dataset. For example, if the 2-dimensional dataset shown in Figure 1(a) is given to SIA

as input, SIA discovers the pairs of patterns shown in Figure 1(b)-(j).

SIATEC first uses SIA to find all the maximal repeated patterns and then it finds all the

occurrences of these patterns in the dataset. Figure 2(a)-(d) shows the output of SIATEC

for the dataset in Figure 1(a).

SIA and SIATEC are pattern discovery algorithms: they autonomously discover re-

peated structures in data. SIAME, on the other hand, is an information-retrieval or pattern

matching algorithm: the user supplies a query pattern and a dataset and SIAME searches

the dataset for occurrences of the query pattern. For example, if a molecular biologist

wanted to find all the occurrences of the purine base adenine in a DNA molecule, he/she

could give SIAME two items of input:

11

1. a multidimensional representation of adenine as the query pattern; and

2. a multidimensional representation of the DNA molecule as the dataset.

SIAME would then output a list indicating, first, all the exact occurrences of adenine in

the DNA molecule; then, all the closest incomplete matches (i.e., one atom different);

then all the incomplete matches with two atoms different; and so on. SIAME can also be

used to compare datasets: the two datasets to be compared are given to SIAME as input

and SIAME computes all the ways in which the two datasets may be matched, returning

the best matches first. Figure 3(c) shows the exact matches found by SIAME for the

query pattern in Figure 3(a) in the dataset in Figure 3(b). Figure 3(d) shows the closest

incomplete matches found by SIAME for the same query pattern in the same dataset.

COSIATEC generates a compressed representation of a dataset by repeatedly applying

SIATEC. For example, Figure 4(a) shows the dataset

{〈1, 1〉 , 〈1, 3〉 , 〈2, 1〉 , 〈2, 2〉 , 〈2, 3〉 , 〈3, 1〉 , 〈3, 2〉 , 〈3, 3〉 , 〈4, 1〉 , 〈4, 2〉 , 〈4, 3〉 , 〈5, 2〉} .

Note that to store this dataset explicitly, 12 vectors need to be specified, one for each

datapoint in the dataset. When this dataset is given as input to COSIATEC, the algorithm

generates the following ordered pair of sets

〈{〈1, 1〉, 〈1, 3〉, 〈2, 2〉}, {〈1, 0〉, 〈2, 0〉, 〈3, 0〉}〉

The first set of vectors in this ordered pair, {〈1, 1〉, 〈1, 3〉, 〈2, 2〉}, represents the three-
point pattern shown in Figure 4(b). The second set of vectors, {〈1, 0〉, 〈2, 0〉, 〈3, 0〉},
represents the three translation vectors indicated by arrows in Figure 4(b). The dataset

in Figure 4(a) can be generated by translating the three-point pattern in Figure 4(b) by

the vectors indicated by the arrows in the diagram. Note that to store this compressed

representation, only 6 vectors need to be specified. In this particular case, therefore,

COSIATEC generates a compressed representation that uses only half the space used to

12

store the original dataset. The degree of compression achievable using COSIATEC depends

on the amount of repetition in the dataset to be compressed.

1 The mathematical functions computed by the al-

gorithms

1.1 Preliminary mathematical concepts

Before specifying the mathematical functions computed by the SIA, SIATEC, COSIATEC

and SIAME algorithms, it is necessary to define some preliminary mathematical concepts.

A vector is a k-tuple of real numbers viewed as a member of a k-dimensional Euclidean

space (Borowski and Borwein, 1989, p. 624, s.v. vector, sense 2). A vector in a k-

dimensional Euclidean space will be represented here as an ordered set of k real numbers.

If A is an ordered set or a vector then we denote the cardinality of A by |A| and
the ith element of A by A[i]. If u and v are two vectors such that |u| = |v| = k then

we say that u is less than v, denoted by u < v, if and only if there exists an integer

i such that 1 ≤ i ≤ k and u[i] < v[i] and u[j] = v[j] for 1 ≤ j < i. For example,

〈1, 1〉 < 〈1, 2〉 < 〈2, 1〉.
If A and B are ordered sets such that A = 〈a1, a2, . . . am〉 and B = 〈b1, b2, . . . bn〉 then

the concatenation of B onto A, denoted by A⊕ B, is defined to be equal to

〈a1, a2, . . . am, b1, b2, . . . bn〉 .

If S1, S2, . . . Sk, . . . Sn is a collection of ordered sets then the expression

S1 ⊕ S2 ⊕ . . .⊕ Sk ⊕ . . .⊕ Sn

is defined to be equivalent to
n⊕

k=1

Sk.

In set theory, recall that ∅ denotes the empty set and that A \ B denotes the set

13

that contains all elements of A except those that are also elements of B. Otherwise, a

knowledge of basic set theory and notation will be assumed.

An object is a vector set if and only if it is a set of vectors. An object is a k-dimensional

vector set if and only if it is a vector set in which every vector has cardinality k.

An object may be called a pattern or a dataset if and only if it is a k-dimensional vector

set. An object may be called a datapoint if and only if it is a vector in a pattern or a

dataset. We usually reserve the term dataset for a k-dimensional vector set that represents

some complete set of data that we are interested in processing. We usually reserve the

term pattern for a k-dimensional vector set that is a subset of some specified dataset or

a transformation of some subset of a dataset. Also, if we have two k-dimensional vector

sets P and D and we wish to search for occurrences of P in D then we would usually refer

to P as a pattern and D as a dataset.

Let D be a dataset and let d1 and d2 be any two datapoints in D. The vector from d1

to d2 is given by d2−d1 where the minus sign denotes vector subtraction. If v = d2−d1

then d2 = v + d1 (‘+’ here denotes vector addition) which expresses the fact that the

datapoint d1 can be translated by the vector v to give the datapoint d2.

We denote by τ(P,v) the pattern that results when the pattern P is translated by the

vector v. Formally,

τ(P,v) = {d+ v | d ∈ P} . (1)

We say that two patterns P1 and P2 are translationally equivalent, denoted by P1 ≡τ P2,

if and only if there exists a vector v such that τ(P1,v) = P2. We say that a pattern P is

translatable by a vector v in a dataset D if and only if τ(P,v) ⊆ D.

The maximal translatable pattern (MTP) for a vector v in a dataset D, denoted by

MTP(v, D), is the largest pattern translatable by v in D. Formally,

MTP(v, D) = {d | d ∈ D ∧ d+ v ∈ D} . (2)

The MTP for a vector v in a dataset D is non-empty if and only if there exist at least

14

two datapoints d1 and d2 in D such that v = d2−d1. This implies that the complete set

of non-empty MTPs for a dataset D is given by

P(D) = {MTP(d2 − d1, D) | d1,d2 ∈ D} . (3)

1.2 The function computed by SIA

SIA computes all the non-empty MTPs in a dataset. However, it is not necessary for SIA

to compute explicitly all the elements of P(D) in Eq.3, because, in general, if the MTP

for v is translated by v, the resulting pattern is the MTP for the vector −v. This will

now be proved.

Lemma 1 If D is a dataset and v is a vector then

τ(MTP(v, D),v) = MTP(−v, D). (4)

Proof

From Eq.1 we deduce that

τ(MTP(v, D),v) = {d1 + v | d1 ∈ MTP(v, D)} . (5)

Substituting Eq.2 into Eq.5, we find that

τ(MTP(v, D),v) = {d1 + v | d1 ∈ {d2 | d2 ∈ D ∧ d2 + v ∈ D}}

= {d2 + v | d2 ∈ D ∧ d2 + v ∈ D} . (6)

If we let d3 = d2 + v and substitute this into Eq.6, we deduce that

τ(MTP(v, D),v) = {d3 | d3 − v ∈ D ∧ d3 ∈ D} . (7)

15

Eqs.7 and 2 together imply

τ(MTP(v, D),v) = MTP(−v, D).

�

Lemma 1 tells us that if we compute MTP(d2−d1, D) then we can find MTP(d1−d2, D)

simply by translating MTP(d2−d1, D) by d2−d1. It is also clear that MTP(0, D) = D

where 0 is the zero vector. These two facts imply that if our goal is only to compute all

the non-empty MTPs in a dataset then we only really need to compute the set

P′(D) = {MTP(d2 − d1, D) | d1,d2 ∈ D ∧ d1 < d2} . (8)

However, if SIA simply generated the set P′(D), then it would not be possible to determine

the vector for which any given element of P′(D) was the MTP. Therefore, SIA actually

computes the set

S(D) = {〈d2 − d1,MTP(d2 − d1, D)〉 | d1,d2 ∈ D ∧ d1 < d2}. (9)

Each member of S(D) is an ordered pair in which the first element is a vector v and the

second element is the MTP for v in D. Figure 5 shows S(D) for the dataset in Figure 1(a).

1.3 The function computed by SIATEC

SIATEC computes all the occurrences of all the non-empty MTPs in a dataset. If D is a

dataset and P ⊆ D is a pattern in D then we define the translational equivalence class

(TEC) of P in D to be the set

TEC (P,D) = {Q | Q ≡τ P ∧Q ⊆ D} . (10)

16

The four graphs in Figure 2(a)-(d) show the four TECs computed by SIATEC for the

dataset in Figure 1(a). The aim of SIATEC is to compute efficiently all the TECs of all

the non-empty MTPs for a dataset D, that is,

T(D) = {TEC (MTP(d2 − d1, D), D) | d1,d2 ∈ D} . (11)

The translational equivalence relation is reflexive, transitive and symmetric and partitions

the power set of a dataset into translational equivalence classes. This means that every

pattern in a dataset is a member of exactly one TEC. However, from Lemma 1 we know

that

τ(MTP(d2 − d1, D),d2 − d1) = MTP(d1 − d2, D).

Therefore

TEC (MTP(d2 − d1, D), D) = TEC (MTP(d1 − d2, D), D).

Moreover, we know that MTP(0, D) = D and therefore TEC (MTP(0, D), D) = {D}
which is a trivial translational equivalence class. Therefore, instead of computing T(D)

as defined in Eq.11, SIATEC actually computes the set

T′(D) = {TEC (MTP(d2 − d1, D), D) | d1,d2 ∈ D ∧ d1 < d2}. (12)

It can easily be seen that T(D) = T′(D) ∪ {{D}}.
If P is a pattern in a dataset D then we say that v is a translator of P in D if and

only if P is translatable by v in D. The set of translators for P in D, which we denote

by T (P,D), is the set that only contains all vectors by which P is translatable in D.

Formally,

T (P,D) = {v | τ(P,v) ⊆ D} . (13)

For example, the set of translators for the three-point pattern in Figure 4(b) is the set

{〈0, 0〉 , 〈1, 0〉 , 〈2, 0〉 , 〈3, 0〉}. Any pattern P in a dataset D is translatable in D by the

17

zero vector, 0. 0 is therefore considered a trivial translator. Any non-zero translator of

a pattern P in a dataset D is a non-trivial translator of P in D. The set of non-trivial

translators for a pattern P in a dataset D is therefore given by

T (P,D) \ {0} . (14)

The TEC of a pattern P in a dataset D can therefore be represented efficiently by the

ordered pair 〈P, T (P,D) \ {0}〉. That is, 〈P, T (P,D) \ {0}〉 denotes the set of patterns

⋃
v∈T (P,D)

{τ(P,v)} . (15)

For any given TEC, E, there are |E| such representations, one for each pattern in E. In

general, this ordered-pair representation for a TEC can be much more space-efficient than

explicitly writing out every member pattern of the TEC in full. For example, if there are

20 patterns in a dataset that are translationally equivalent to a pattern P containing 10

datapoints, then printing out the TEC for P in full would involve printing 200 datapoints.

However, if this TEC were represented as the ordered pair 〈P, T (P,D) \ {0}〉 then only
10+19 = 29 vectors would need to be printed. This provides the basis for the compression

algorithm, COSIATEC, described below.

In the output of SIATEC, each distinct TEC, E, in T′(D) is therefore represented as

an ordered pair 〈P, T (P,D) \ {0}〉 where P is a member of E and T (P,D) is the set of

translators for P in D. Figure 6 shows T′(D) for the dataset shown in Figure 1(a).

1.4 The function computed by SIAME

SIAME takes a query pattern P and a dataset D and finds all the partial and complete

translation-invariant occurrences of P inD. Themaximal match (MM) for a query pattern

P and a vector v in a dataset D, denoted by MM (P,v, D) is the set of datapoints in P

18

that can be translated by v to give datapoints in D. Formally,

MM (P,v, D) = {p | p ∈ P ∧ p+ v ∈ D} . (16)

Note that for any dataset D, MM (D,v, D) = MTP(v, D) (see Eq.2). The concept of

a maximal match is therefore a generalization of the concept of a maximal translatable

pattern. A maximal match MM (P,v, D) will be non-empty if and only if there exist two

datapoints, p ∈ P,d ∈ D, such that v = d − p. The complete set of maximal matches

for a pattern P and a dataset D is therefore given by

M(P,D) = {MM (P,d− p, D) | d ∈ D ∧ p ∈ P} . (17)

Note thatM(D,D) = P(D) (see Eq.3). The aim of SIAME is to compute all the non-empty

maximal matches for a given pattern and dataset. However, if SIAME simply generated

the set M(P,D), it would be impossible to determine the vector for which each pattern

in M(P,D) was a maximal match. SIAME therefore computes the set

M′(P,D) = {〈d− p,MM (P,d− p, D)〉 | d ∈ D ∧ p ∈ P} . (18)

1.5 The mapping computed by COSIATEC

COSIATEC uses SIATEC to generate a compressed representation of a dataset. As ex-

plained above, each TEC, E, in the output of SIATEC is represented as an ordered pair

〈P, T (P,D) \ 0〉 such that
E =

⋃
v∈T (P,D)

{τ(P,v)} .

If E = 〈P, T (P,D) \ 0〉 is a TEC in a dataset D, then the coverage of E, denoted by

COV (E) is given by

COV (E) =

∣∣∣∣∣
⋃

Q∈E

Q

∣∣∣∣∣ (19)

19

and the compression ratio of E, denoted by CR(E) is defined to be

CR(E) =
COV (E)

|P |+ |T (P,D) \ 0| (20)

We can now define Ebest(D) to be the set of TECs, E ∈ T′(D), for which the vector

〈CR(E),COV (E)〉 is a maximum (recall definition of vector inequality on page 12 above).

That is, E ∈ Ebest(D) if and only if E ∈ T′(D) and there exists no E ′ ∈ T′(D) such that

〈CR(E),COV (E)〉 < 〈CR(E ′),COV (E ′)〉.
COSIATEC takes a dataset D as input and computes an ordered set of TECs

〈E1, E2, . . . Er〉

satisfying the following conditions:

1. For all 1 ≤ k ≤ r, Ek ∈ Ebest(Dk) where

Dk =

D, when k = 1;

Dk−1 \
⋃

P∈Ek−1

P, when 1 < k ≤ r.

2. Dr �= ∅ and Dr+1 = ∅.

2 The algorithms

The SIA, SIATEC, SIAME and COSIATEC algorithms will now be described. Detailed exam-

ple implementations will then be presented in section 3.

2.1 The SIA algorithm

When given a multidimensional dataset, D, as input, SIA computes S(D) as defined in

Eq.9 above. For a k-dimensional dataset containing n datapoints, the worst-case running

20

time of SIA is O(kn2 log2 n) and its worst-case space complexity is O(kn
2). The algorithm

consists of the following four steps.

2.1.1 SIA: Step 1 – Sorting the dataset

The first step in SIA is to sort the dataset D to give an ordered set D that contains all and

only the datapoints in D in increasing order. For the dataset in Figure 1(a), the result of

this first step would be the ordered set

D = 〈〈1, 1〉 , 〈1, 3〉 , 〈2, 1〉 , 〈2, 2〉 , 〈2, 3〉 , 〈3, 2〉〉 . (21)

For a k-dimensional dataset of size n, this can be done using merge sort (Cormen et al.,

1990, pp. 12–15) in a worst-case running time of O(kn log2 n). When merge sort is im-

plemented using arrays, it requires linear extra memory and the additional work spent

copying to and from the temporary array throughout the algorithm has the effect of slow-

ing down the sort considerably. However, in the example implementation described in

section 3.1 below, we use a special implementation of merge sort that employs linked

lists and in this implementation no extra memory is required and no copying of data is

performed.

2.1.2 SIA: Step 2 – Computing inter-datapoint vectors

The second step in SIA is to compute the set

V = {〈D[j]−D[i], i〉 | 1 ≤ i < j ≤ |D|} . (22)

Note that each member of V is an ordered pair in which the first element is the vector

from datapoint D[i] to datapoint D[j] and the second element is the index of the ‘origin’

datapoint, D[i], in D. For the dataset in Figure 1(a), V contains all the elements below

the leading diagonal in Table 1.

21

We call a table like the one in Table 1 a vector table. Each element in this table is an

ordered pair 〈v, i〉 where i gives the number of the column in which the element occurs and

v is the vector from the datapoint at the head of the column in which the element occurs

to the datapoint at the head of the row in which the element occurs. For a k-dimensional

dataset of size n, this second step of SIA involves computing n(n−1)
2

vector subtractions.

It can be accomplished in a worst-case running time of O(kn2).

2.1.3 SIA: Step 3 – Sorting the vectors in the vector table

If 〈u, i〉 and 〈v, j〉 are any two elements in the set V computed in the second step SIA

(Eq.22) then we define that 〈u, i〉 is less than 〈v, j〉, denoted by 〈u, i〉 < 〈v, j〉, if and only
if u < v or u = v and i < j.

The third step in SIA is to sort V to give an ordered set V that contains the elements

of V in increasing order. For example, the column headed V[i] in Table 2 gives V for

the dataset in Figure 1(a). An examination of Table 1 reveals that the vectors increase

as one descends a column and decrease as one goes from left to right along a row. In the

implementation of SIA that we describe in section 3.1 below we use a two-dimensional

linked list to represent V as a vector table like the one in Table 1 (see Figure 63). We

then use a modified version of merge sort, that exploits the fact that the columns and

rows in this vector table are already sorted, to accomplish this third step of the algorithm

more rapidly than would be achievable using plain merge sort on the completely unsorted

set V . The worst-case running time of this step of the algorithm is O(kn2 log2 n).

2.1.4 SIA: Step 4 – Printing out S(D)

If A is an ordered set of ordered sets then A[i, j] denotes the jth element of the ith

element of A. For example, if A = 〈〈a, b, c〉 , 〈d, e〉 , 〈f〉〉 then A[1, 3] = c, A[2, 1] = d

and A[3, 1] = f . As pointed out above, the column headed V[i] in Table 2 gives V for

the dataset in Figure 1(a). For each of these ordered pairs, V[i], the datapoint D[V[i, 2]]

is printed next to it in the third column in Table 2. For example, V[1] = 〈〈0, 1〉 , 3〉 in

22

Table 2, so V[1, 2] = 3 and D[V[1, 2]] = 〈2, 1〉, the third datapoint in the ordered set D

for the dataset shown in Figure 1(a).

As indicated on the right-hand side of the third column in Table 2, the MTP for a vector

v is the set of consecutive datapoints D[V[i, 2]] in the third column that corresponds to

the set of consecutive ordered pairs V[i] in the second column for which V[i, 1] = v. The

complete set S(D) as defined in Eq.9 can be printed out using the algorithm in Figure 7. In

our pseudocode, block structure is indicated by indentation and the symbol ‘←’ indicates
assignment. Figure 8 shows the output generated by this algorithm for the dataset in

Figure 1(a).

SIA discovers the set P′(D) of non-empty MTPs defined in Eq.8 and from Table 2

it can easily be seen that SIA accomplishes this simply by sorting the set V defined in

Eq.22. It is clear from Table 1 that, for a dataset of size n, the number of elements in V

is n(n−1)
2

. Therefore, if we use P to denote an MTP in P′(D),

∑
P∈P′(D)

|P | = n(n− 1)
2

.

Therefore the total number of vectors that have to be printed when S(D) is printed is

n(n−1)
2

plus one vector for each MTP in P′(D). Since |P′(D)| ≤ n(n−1)
2

, the total number

of vectors to be printed out is certainly less than or equal to n(n − 1). Therefore, for a
k-dimensional dataset containing n datapoints, S(D) can be printed out in a worst-case

running time of O(kn2).

2.2 The SIATEC algorithm

When given a multidimensional dataset, D, as input, SIATEC computes T′(D) as defined in

Eq.12 above. For a k-dimensional dataset containing n datapoints, the worst-case running

time of SIATEC is O(kn3) and its worst-case space complexity is O(kn2). The algorithm

consists of the following seven steps.

23

2.2.1 SIATEC: Step 1 – Sorting the dataset

This is exactly the same as Step 1 of SIA as described in section 2.1.1 above.

2.2.2 SIATEC: Step 2 – Computing W

The second step in SIATEC is to compute the ordered set of ordered sets

W = 〈〈W[1, 1], . . .W[1, |D|]〉 , . . . 〈W[|D|, 1], . . .W[|D|, |D|]〉〉

where

W[i, j] = D[j]−D[i]. (23)

W can be visualized as a vector table like Table 3 (which shows W for the dataset in

Figure 1(a)). Note that each element in W is simply a vector whereas each element in

the vector table computed in Step 2 of SIA is an ordered pair (see Table 1). W is used

in Step 7 of SIATEC to compute the set of translators for each MTP.

Computing W for a k-dimensional dataset of size n involves computing n2 vector

subtractions. Each of these vector subtractions involves carrying out k scalar subtractions

so the overall worst-case running time of this step is O(kn2).

2.2.3 SIATEC: Step 3 – Computing V

The third step of SIATEC is to compute the set V as defined in Eq.22. This is the same set

as that computed in Step 2 of SIA. In the example implementation of SIATEC described

in section 3.2 below, V is constructed from W so that the inter-datapoint vectors are only

computed once. This step can therefore be carried out in a worst-case time complexity of

O(n2) and not O(kn2). Table 1 shows V for the dataset in Figure 1(a).

24

2.2.4 SIATEC: Step 4 – Sorting V to produce V

This step is exactly the same as Step 3 of SIA. The second column of Table 2 shows V

for the dataset in Figure 1(a).

2.2.5 SIATEC: Step 5 – ‘Vectorizing’ the MTPs

V is effectively a sorted representation of S(D) (Eq.9) (see Step 4 of SIA and Table 2).

The purpose of SIATEC is to compute T′(D) (Eq.12) which is the set that only contains

every TEC that is the TEC of an MTP in P′(D) (Eq.8). P′(D) can be obtained from V

but it is possible for two or more MTPs in P′(D) to be translationally equivalent. For

example, the MTPs in the dataset in Figure 1(a) for the vectors 〈0, 2〉, 〈1,−1〉 and 〈1, 1〉
are translationally equivalent (see Table 2 and Figure 1(c), (e) and (g)). If two patterns

are translationally equivalent then they are members of the same TEC. Therefore, if we

näıvely compute the TEC of each MTP in P′(D), we run the risk of computing the same

TEC more than once which is inefficient. We therefore partition P′(D) into translational

equivalence classes and then select just one MTP from each of these classes, discarding

the others.

If P is a pattern then let SORT (P) be the function that returns the ordered set that

only contains all the datapoints in P sorted into increasing order. If P is an ordered set

of datapoints then let VEC (P) be the function that returns the ordered set of vectors

VEC (P) = 〈P[2]−P[1],P[3]−P[2], . . .P[|P |]−P[|P | − 1]〉. (24)

If P1 and P2 are two patterns in a dataset, then

VEC (SORT(P1)) = VEC (SORT(P2)) ⇐⇒ P1 ≡τ P2. (25)

We say that VEC (SORT(P)) is the vectorized representation of the pattern P . In the

ordered set V computed in Step 4 of SIATEC, each MTP, P , is represented in its sorted

25

form as SORT(P) = P (see Table 2). Therefore, if we want to use Eq.25 to partition

P′(D) we first have to compute VEC (P) for each of the sorted MTPs, P, in V. Step 5 of

SIATEC is therefore to compute

X = {〈i,VEC (SORT(P))〉 | 〈v, P 〉 ∈ S(D)∧V[i, 1] = v∧(i = 1∨V[i−1, 1] �= v)}. (26)

If V[i] and V[j] are two distinct elements of V and V[i] < V[j] but V[i, 1] = V[j, 1]

(i.e., the vectors in V[i] and V[j] are the same) then V[i, 2] < V[j, 2] which implies

that D[V[i, 2]] < D[V[j, 2]]. This means that the datapoints within each MTP in the V

representation of S(D) are sorted in increasing order, as can be seen in the output of SIA

(Figure 8) generated by the algorithm in Figure 7.

X can be efficiently computed directly from V and D using the algorithm in Figure 9

which exploits the fact that the MTPs in V are already sorted. In Figure 9, the set X is

actually represented as an ordered set X. When the algorithm in Figure 9 has terminated,

the ordered set X only contains all the elements of X (with no duplicates). In Figure 9,

〈 〉 denotes the empty ordered set.
Figure 10 shows the state of X for the dataset in Figure 1(a) at the termination of

Step 5 of SIATEC. For a k-dimensional dataset of size n, the worst-case running time of

the algorithm in Figure 9 is O(kn2).

2.2.6 SIATEC: Step 6 – Sorting X

Let Q1 and Q2 be any two ordered sets in which each element is a k-dimensional vector.

We define that Q1 is less than Q2, denoted by Q1 < Q2 if and only if one of the following

two conditions is satisfied:

1. |Q1| < |Q2|.

2. |Q1| = |Q2| and there exists an integer 1 ≤ i ≤ |Q1| such that Q1[i] < Q2[i] and

Q1[j] = Q2[j] for all 1 ≤ j < i.

26

(See page 12 for a definition of the expression u < v when u and v are vectors.) In Step 6

of SIATEC, the ordered set X generated by the algorithm in Figure 9 is sorted to produce

the ordered set Y which satisfies the following two conditions:

1. Y only contains all the elements of X.

2. If Y[i] and Y[j] are any two distinct elements of Y then i < j if and only if

Y[i, 2] < Y[j, 2] ∨ (Y[i, 2] = Y[j, 2] ∧Y[i, 1] < Y[j, 1]).

Figure 11 showsY for the dataset in Figure 1(a). For a k-dimensional dataset of size n, this

step of the algorithm can be accomplished in a worst-case running time of O(kn2 log2 n)

using merge sort.

We know that

MTP(V[Y[i, 1], 1], D) ≡τ MTP(V[Y[j, 1], 1], D) ⇐⇒ Y[i, 2] = Y[j, 2].

So Figure 11 tells us, for example, that the MTPs for the vectors V[3, 1] = 〈0, 2〉,
V[6, 1] = 〈1,−1〉 and V[11, 1] = 〈1, 1〉 are translationally equivalent since the vector-

ized representation of each of these patterns is 〈〈1, 0〉〉. This implies that we only have to
compute the TEC of one of these patterns and the other two can be disregarded.

2.2.7 SIATEC: Step 7 – Printing out T′(D)

The final step of SIATEC is to print out T′(D). This can be done using the algorithm in Fig-

ure 12. Recall that each TEC in T′(D) is represented as an ordered pair 〈P, T (P,D) \ 0〉
where P is an MTP and T (P,D) is the set of translators for P in the dataset D (see

Eq.13 and discussion on page 16 above). In Figure 12, each MTP is printed out using the

algorithm PRINT PATTERN called in line 14. This algorithm is given in Figure 13.

The set of translators for each TEC is printed out using the algorithm

PRINT SET OF TRANSLATORS called in line 16 of Figure 12. This algorithm, which is given

27

in Figure 14, exploits the fact that

T ({D[i]} , D) =
|D|⋃
j=1

{W[i, j]} .

That is, the set of translators for a datapoint D[i] is the set that only contains every

vector that occurs in the ith column in the vector table computed in Step 2 of SIATEC

(see Table 3). In Figure 12, each MTP is represented as a set of indices, I such that the

pattern represented by I is simply {D[i] | i ∈ I}. The set of translators for the pattern
represented by I is therefore

⋂
i∈I

T ({D[i]} , D) =
⋂
i∈I

 |D|⋃

j=1

{W[i, j]}

 . (27)

In other words, the set of translators for a pattern is the set that only contains those

vectors that occur in all the columns in the vector table corresponding to the datapoints

in the pattern. For example, if D is the dataset in Figure 1(a), the set of translators for

the pattern {a, c} = {〈1, 1〉 , 〈2, 1〉} is the set that only contains all the vectors that occur
in both the first and third columns in Table 3:

T ({〈1, 1〉 , 〈2, 1〉} , D) = {〈0, 0〉 , 〈0, 2〉 , 〈1, 0〉 , 〈1, 1〉 , 〈1, 2〉 , 〈2, 1〉}

∩ {〈−1, 0〉 , 〈−1, 2〉 , 〈0, 0〉 , 〈0, 1〉 , 〈0, 2〉 , 〈1, 1〉}

= {〈0, 0〉 , 〈0, 2〉 , 〈1, 1〉}

The algorithm PRINT SET OF TRANSLATORS is an efficient algorithm for computing the

expression on the right-hand side of Eq.27.

Using the algorithms in Figures 12, 13 and 14, Step 7 can be accomplished in a worst-

case running time of O(kn3) for a k-dimensional dataset of size n. Figure 15 shows the

output generated by the algorithm in Figure 12 for the dataset in Figure 1(a).

28

2.3 The SIAME algorithm

When given a k-dimensional query pattern, P , and a k−dimensional dataset, D, as input,
SIAME computes M′(P,D) as defined in Eq.18 above. For a k-dimensional query pattern

containing m datapoints and a k-dimensional dataset containing n datapoints, the worst-

case running time of SIAME is O(kmn log2(mn)) and its worst-case space complexity is

O(kmn). The algorithm consists of the following 5 steps.

2.3.1 SIAME: Step 1 – Computing the set of inter-datapoint vectors

The first step in SIAME is very similar to Step 2 of SIA (see section 2.1.2): given a query

pattern P and a dataset D, the set

VSIAME = {〈d− p,p〉 | d ∈ D ∧ p ∈ P} (28)

is computed. For example, for the query pattern in Figure 3(a) and the dataset in Fig-

ure 3(b), VSIAME would contain all and only the elements in Table 4. Note that each element

in VSIAME is an ordered pair of vectors. In an implementation (such as the one described

in section 3.4 below) the second vector in each of these ordered pairs would probably be

represented by a pointer to the datapoint in the representation of P or by an index to an

element of an array storing P .

For a k−dimensional pattern of size m and a k−dimensional dataset of size n, this

step can be accomplished in a worst-case running time of O(kmn) using O(kmn) space.

2.3.2 SIAME: Step 2 – Sorting the inter-datapoint vectors

In our description of Step 6 of SIATEC in section 2.2.6 above we defined the concept of

‘less than’ when applied to ordered sets of vectors. The second step in SIAME is similar

to Step 3 of SIA (see section 2.1.3): the set VSIAME computed in Step 1 of SIAME is sorted

to give an ordered set VSIAME that contains the elements of VSIAME sorted into increasing

order. Again, as can be seen in Table 4, each column in the table is already sorted. This

29

fact can be used to advantage if VSIAME is represented as a two-dimensional linked list and

merge sort is used to perform the sort (see section 3.4 below). This step of the algorithm

can be accomplished in a worst-case running time of O(kmn log2(mn)). Alternatively, if

hashing is used, the step can be accomplished in an expected time of O(kmn). Figure 16

shows VSIAME for the query pattern in Figure 3(a) and the dataset in Figure 3(b).

2.3.3 SIAME: Step 3 – Computing the size of each set in M(P,D)

It is very useful if the matches found by SIAME are listed so that the best matches occur

first. To achieve this, it is necessary to compute the size of each element of M(P,D).

Therefore, in this third step of SIAME, the set

N = {〈|M |, i〉 | 〈v,M〉 ∈M′(P,D) ∧VSIAME[i, 1] = v ∧ (i = 1 ∨VSIAME[i− 1, 1] �= v)}
(29)

is computed. This can be done directly from VSIAME using the algorithm in Figure 17

which returns an ordered set, N, that only contains every element of N exactly once.

Figure 18 shows N for the pattern in Figure 3(a) and the dataset in Figure 3(b). The

worst-case running time of the algorithm in Figure 17 is O(kmn).

2.3.4 SIAME: Step 4 – Sorting N

The fourth step of SIAME is to sort the vectors in N to produce a new ordered set, N′

that only contains all the vectors in N sorted into decreasing order. This can be achieved

in a worst-case running time of O(mn log2(mn)). Note that this step is not dependent on

the cardinality of the datapoints in the pattern and dataset. Figure 19 shows N′ for the

pattern in Figure 3(a) and the dataset in Figure 3(b).

2.3.5 SIAME: Step 5 – Computing M′(P,D)

Finally, M′(P,D), expressed as an ordered set, M, in which the best matches occur first,

can be computed directly from N′ and VSIAME using the algorithm shown in Figure 20.

30

The worst-case running time of this algorithm is O(kmn). Figure 21 shows M for the

pattern in Figure 3(a) and the dataset in Figure 3(b).

2.4 The COSIATEC algorithm

When given a multidimensional dataset D as input, COSIATEC uses SIATEC to compute

a compressed representation of D in the form of an ordered set of TECs satisfying the

conditions described on page 19 above.

Figure 22 shows a simple (but inefficient) version of the COSIATEC algorithm. The

ordered set variable C is used to store the compressed representation and it is initalised

to equal the empty ordered set in line 1. The variable D′ is used to hold the current value

of Dk as defined on page 19 above. This variable is initialised to equal D in line 2.

On each iteration of the ‘while’ loop (lines 3–15), SIATEC is first used to compute T′(D′)

(line 4). Then, in lines 5–13, an element Ebest of Ebest(D
′) (see page 19) is computed which

is appended to C (line 14). In line 15, D′ has all datapoints removed from it that are

elements of patterns in Ebest. The while loop terminates when D′ is empty (line 3).

In line 4, the function T′(D′) uses SIATEC to compute an ordered set containing the

elements of T′(D′) arranged in some arbitrary order. The functions COV (E) and CR(E)

are as defined in Eqs.19 and 20 above.

3 Example implementations of the algorithms

In this section, efficient implementations of the SIA, SIATEC, SIAME and COSIATEC algo-

rithms will be described.

3.1 Example implementation of SIA

In this section we describe an efficient implementation of the SIA algorithm described in

section 2.1 above.

31

3.1.1 The SIA procedure

Figure 24 gives pseudocode for an efficient implementation of SIA. In this algorithm, the

dataset to be analysed is stored in a file whose name is given in the parameter DFN. The

output of the algorithm is written to a file whose name is given in the parameter OFN.

The third parameter to the algorithm, SD, is either NULL or a string of 0s and 1s

indicating the orthogonal projection of the dataset to be analysed. For example, if the

dataset stored in the file whose name is DFN is a 5-dimensional dataset but the user only

wishes to analyse the 2-dimensional projection of this dataset onto the plane defined by

the first and third dimensions, then SD would be set to "10100". If SD is NULL, all the

dimensions are considered.

In line 3 of the SIA implementation in Figure 24, an attempt is made to open the file

whose name is DFN. The function OPEN FILE returns NULL and the program exits (line 4)

if this attempt is unsuccessful.

If the file DFN exists, then the dataset is read into memory in line 5 using the

READ VECTOR SET function which is defined in Figure 25 and discussed further in sec-

tion 3.1.2 below. The file containing the input dataset is then closed in line 6.

In line 7, the dataset is sorted using the SORT DATASET algorithm which is defined in

Figure 26 and discussed further in section 3.1.3 below.

If the SD parameter is used to select an orthogonal projection of the dataset, then it

is possible for two or more datapoints in the dataset stored in DF to be projected onto

the same datapoint in the chosen projection of this dataset. If this happens, then D may

contain duplicate datapoints. These are removed in line 8 of the SIA implementation

(see Figure 24) using the SETIFY DATASET algorithm which is defined in Figure 28 and

discussed further in section 3.1.4 below.

This accomplishes Step 1 of the SIA algorithm as described in section 2.1.1 above.

The function SIA COMPUTE VECTORS, defined in Figure 29 and called in line 9 of the

SIA implementation in Figure 24, accomplishes Step 2 of the SIA algorithm as described

32

in section 2.1.2 above. SIA COMPUTE VECTORS is discussed further in section 3.1.5 below.

The function SIA SORT VECTORS, defined in Figure 30 and called in line 10 of the SIA

implementation in Figure 24, accomplishes Step 3 of the SIA algorithm as described in

section 2.1.3 above. SIA SORT VECTORS is discussed further in section 3.1.6 below.

Finally, Step 4 of the SIA algorithm, described in section 2.1.4 above, is carried out

using the PRINT VECTOR MTP PAIRS procedure which is defined in Figure 32 and called in

line 11 of the SIA implementation in Figure 24. PRINT VECTOR MTP PAIRS is an imple-

mentation of the algorithm in Figure 7. It is discussed further in section 3.1.7 below.

For a k−dimensional dataset containing n datapoints, the worst-case running time

of this implementation of the SIA algorithm is O(kn2 log2 n) (this is the running time

of SIA SORT VECTORS called in line 10 of the implementation). The worst-case space

complexity is O(kn2).

3.1.2 The READ VECTOR SET function

Figure 25 gives pseudocode for the READ VECTOR SET function which is called in line 5 of

the SIA implementation given in Figure 24. This algorithm reads a list of vectors from a

file and stores the list in memory as a linked list, returning a pointer (S in Figure 25) to

the head of this list.

READ VECTOR SET takes three parameters: F is a text file containing the list of vectors

to be read; DIR determines the type of linked list used to store the vectors (see below);

and SD is either NULL or a string of 0s and 1s indicating a specific orthogonal projection

of the vector set to be read (see section 3.1.1 above).

It is assumed that the collection of vectors to be read from the file F is represented as

a list with one vector per line, the list being terminated by an empty line. Each vector is

represented as a list of numerical values, each one followed by a single space character and

terminated by an end-of-line character. For example, Figure 52 shows how the ordered

vector set

〈〈1, 1, 1〉 , 〈1, 3, 2〉 , 〈2, 1, 2〉 , 〈2, 2, 2〉 , 〈2, 3, 3〉 , 〈3, 2, 2〉〉

33

would be represented in the input file F. In Figure 52, ‘
	
’ represents a space character

and ‘�’ represents an end-of-line character.

The linked list constructed by READ VECTOR SET uses two types of node: NUMBER NODEs

and VECTOR NODEs.

NUMBER NODEs are used to construct linked lists that represent vectors. Each

NUMBER NODE has two fields, one called number and the other called next (see definition

in Figure 23). The number field of a NUMBER NODE is used to hold a numerical value. The

next field is a NUMBER NODE pointer used to point to the node that holds the next element

in the vector. A NUMBER NODE can be represented diagrammatically as a rectangular box

divided into two cells (see Figure 53). The left-hand cell represents the number field and

the right-hand cell represents the next field. A cell with a diagonal line drawn across it

represents a pointer whose value is NULL. The pointer v in Figure 53 heads a linked list

of NUMBER NODEs that represents the vector 〈3, 4〉.
VECTOR NODEs are used to construct linked lists that represent vector sets, such as

patterns and datasets. Each VECTOR NODE has three fields: a NUMBER NODE pointer called

vector and two VECTOR NODE pointers, one called down and the other called right (see

definition in Figure 23). A VECTOR NODE can be represented diagrammatically as a rectan-

gular box divided into three cells (see Figure 54). The left-hand cell represents the vector

field, the middle cell represents the down field and the right-hand cell represents the right

field. The field called vector is always used to head a linked list of NUMBER NODEs rep-

resenting a vector. The right field is used to point to the next VECTOR NODE in a right-

directed list such as the one shown in Figure 54. The down field is used to point to the

next VECTOR NODE in a down-directed list such as the one shown in Figure 55. The linked

list in Figure 54 could be used to represent the ordered set of vectors 〈〈1, 3〉 , 〈2, 4〉 , 〈3, 3〉〉
or the vector set {〈1, 3〉 , 〈2, 4〉 , 〈3, 3〉}. The linked list in Figure 55 could be used to rep-
resent the ordered vector set 〈〈1, 1〉 , 〈2, 2〉 , 〈3, 1〉〉 or the vector set {〈1, 1〉 , 〈2, 2〉 , 〈3, 1〉}.
The fact that each VECTOR NODE has both a down and a right field allows for a linked

list of VECTOR NODEs to be efficiently sorted using an implementation of merge sort that

34

converts an unsorted down-directed list into a sorted right-directed list (see the algorithms

SORT DATASET (defined in Figure 26 and discussed in section 3.1.3) and SIA SORT VECTORS

(defined in Figure 30 and discussed in section 3.1.6)).

If the DIR parameter of the READ VECTOR SET function (Figure 25) has the value DOWN,

the vector set read by the algorithm is stored as a down-directed list of VECTOR NODEs,

otherwise the vector set is stored as a right-directed list. If F contains the data in Figure 52,

then Figure 56 shows the linked list returned by the call

READ VECTOR SET(F,DOWN,"101")

and Figure 57 shows the linked list returned by

READ VECTOR SET(F,RIGHT,NULL)

In our pseudocode, the symbol ‘↑’ denotes pointer dereferencing: that is, the expression
‘x↑y’ denotes the field called y in the data structure pointed to by x.

The function AT END OF LINE(F) used in line 5 of READ VECTOR SET (see Figure 25)

returns TRUE if the next character to be read from F is an end-of-line character or an

end-of-file character. The function is used to determine whether or not all the vectors in

a list have been read.

The function READ VECTOR called in line 6 of READ VECTOR SET reads a vector from a

file and returns a linked list of NUMBER NODEs representing the vector (as in Figure 53).

The function SELECT DIMENSIONS IN VECTOR(v,SD) called in line

8 of READ VECTOR SET uses SD to remove those elements of v that are not required in

the chosen orthogonal projection of the vector set.

The function MAKE NEW VECTOR NODE called in lines 10, 15 and 20 of READ VECTOR SET

creates a new VECTOR NODE and sets all its fields to NULL.

3.1.3 The SORT DATASET function

Figure 26 gives pseudocode for the SORT DATASET algorithm called in line 7 of the SIA

algorithm implementation given in Figure 24. In Figure 24, the call to READ VECTOR SET

35

in line 5 stores the orthogonal projection of the dataset to be analysed as an unsorted,

down-directed list of VECTOR NODEs. For example, in Figure 24, if DFN is the name of a file

containing the data in Figure 58 then the call to READ VECTOR SET in line 5 would return

the linked list in Figure 59.

SORT DATASET is a version of merge sort that converts the unsorted down-directed list

of VECTOR NODEs generated by the call to READ VECTOR SET in line 5 of SIA into a sorted,

right-directed list. On the first iteration of the outer while loop (lines 2–21 in Figure 26),

SORT DATASET scans the down-directed list of unsorted datapoints, merging each pair of

consecutive datapoints into a single, sorted, right-directed list. For example, Figure 59

shows the unsorted, down-directed list generated by line 5 of SIA (see Figure 24) for the

data in Figure 58 and Figure 60 shows the state of the linked list D after one iteration of

the outer while loop of SORT DATASET has been completed on the dataset list shown in

Figure 59. On subsequent iterations, each pair of adjacent right-directed lists is merged

into a single list and the process continues until the whole list has been merged into a

single, sorted, right-directed list. Figure 61 shows the right-directed list produced by

SORT DATASET from the down-directed list shown in Figure 59.

The merging process is carried out by the MERGE DATASET ROWS algorithm which is

called in line 13 of SORT DATASET and defined in Figure 27.

In lines 4 and 13 of the MERGE DATASET ROWS algorithm in Figure 27, the function

VECTOR LESS THAN(v1,v2) is used to compare two vectors represented as NUMBER NODE

lists headed by the pointers v1 and v2. The function VECTOR LESS THAN returns TRUE if

and only if the vector represented by the NUMBER NODE list headed by v1 is less than that

represented by the list headed by v2.

3.1.4 The SETIFY DATASET function

Figure 28 gives pseudocode for the SETIFY DATASET algorithm called in line 8 of the SIA

implementation in Figure 24. SETIFY DATASET removes duplicate datapoints from the

sorted right-directed list generated by SORT DATASET. For example, if SETIFY DATASET

36

is given the linked list shown in Figure 61 as input, it returns the linked list shown in

Figure 62. The call to SORT DATASET in line 7 of the SIA implementation and the call to

SETIFY DATASET in line 8 together accomplish Step 1 of the SIA algorithm described in

section 2.1 above.

The VECTOR EQUAL function used in line 5 of SETIFY DATASET in Figure 28 takes two

NUMBER NODE pointer arguments, each heading a list of NUMBER NODEs representing a vec-

tor, and returns TRUE if and only if the two vectors are equal.

The DISPOSE OF VECTOR NODE function used in line 9 of SETIFY DATASET destroys the

linked multi-list of VECTOR NODEs headed by its argument and deallocates the memory

used by this list.

3.1.5 The SIA COMPUTE VECTORS function

The function SIA COMPUTE VECTORS, defined in Figure 29 and called in line 9 of SIA (see

Figure 24), accomplishes Step 2 of the SIA algorithm as described in section 2.1.2 above.

Figure 63 shows the data structure that results after SIA COMPUTE VECTORS has exe-

cuted when the SIA implementation in Figure 24 is carried out on the dataset shown in

Figure 1(a). The resulting data structure is a representation of the vector table shown in

Table 1.

The VECTOR MINUS(v1,v2) function called in line 14 of SIA COMPUTE VECTORS (see

Figure 29) takes two NUMBER NODE pointer arguments, each pointing to a linked-list rep-

resenting a vector, and subtracts the vector pointed to by v2 from the vector pointed to

by v1, returning a pointer to the linked list representing the result.

3.1.6 The SIA SORT VECTORS function

The function SIA SORT VECTORS, defined in Figure 30 and called in line 10 of the SIA

implementation in Figure 24, accomplishes Step 3 of the SIA algorithm as described in

section 2.1.3 above.

37

The call to SIA SORT VECTORS in line 10 of the SIA implementation is the most expen-

sive step in the program, requiring O(kn2 log2 n) time in the worst case.

SIA SORT VECTORS takes the data structure headed by V returned by

SIA COMPUTE VECTORS (see Figure 63) and uses a modified version of merge sort to

generate a single down-directed list representing the ordered set V defined in section 2.1.3

above.

As can be seen in Figure 63, the structure headed by V consists of a right-directed

list of VECTOR NODEs from each of which ‘hangs’ a down-directed list of nodes. Each of

these ‘hanging’ down-directed lists represents a column in Table 1. Within each of these

down-directed lists the vectors are already sorted into increasing order. SIA SORT VECTORS

exploits this fact to accomplish its task more efficiently.

In SIA SORT VECTORS, the merging process is carried out using the

SIA MERGE VECTOR COLUMNS function which is called in line 13 and defined in Fig-

ure 31.

Figure 64 shows the data structure that results after the call to SIA SORT VECTORS in

line 10 of the implementation of SIA in Figure 24 has executed when this implementation

is run on the dataset in Figure 1(a). This data structure represents the second column in

Table 2.

3.1.7 The PRINT VECTOR MTP PAIRS function

Step 4 of the SIA algorithm, described in section 2.1.4 above, is carried out in this im-

plementation using the PRINT VECTOR MTP PAIRS algorithm which is defined in Figure 32

and called in line 11 of the SIA procedure in Figure 24.

PRINT VECTOR MTP PAIRS is an implementation of the algorithm in Figure 7 except

that the format of the output is simpler than that produced by the algorithm in Figure 7.

In the output of PRINT VECTOR MTP PAIRS, each 〈vector,MTP〉 pair is represented as
a pair of consecutive vector lists in the same format as that used for input to SIA (see

Figure 52). That is, for each 〈vector,MTP〉 pair, the vector is first printed out on a single

38

line, then there is an empty line, then the MTP is printed out as a list of vectors, each

vector being printed on a separate line, and the MTP being terminated by an empty

line. The end of the file is also signalled by an empty line. This means that every odd-

numbered vector list in the output file represents the vector of a 〈vector,MTP〉 pair and
every even-numbered vector list represents the MTP in such a pair.

Figure 65 shows the output generated by the PRINT VECTOR MTP PAIRS algorithm for

the dataset in Figure 1(a). This provides the same information as Figure 8 except that it

is presented in a different (and less complicated) format.

In lines 8, 10 and 13 of the PRINT VECTOR MTP PAIRS procedure in Figure 32,

PRINT VECTOR is used to print the vectors. PRINT VECTOR takes two arguments: the

first is a pointer to a NUMBER NODE list representing a vector and the second is the file to

which the vector is to be written.

PRINT VECTOR MTP PAIRS also uses the procedure PRINT NEW LINE(F) (lines 9, 15 and

17) to print an end-of-line character to the file stream F.

3.2 Example implementation of SIATEC

In this section we describe an efficient implementation of the SIATEC algorithm described

in section 2.2 above.

3.2.1 The SIATEC procedure

Figure 33 gives pseudocode for an efficient implementation of SIATEC.

Like the SIA implementation in Figure 24, the SIATEC procedure in Figure 33 takes

three arguments: DFN is the name of the file containing the dataset to be analysed; OFN is

the name of the file to which the output is written; and SD is a string of 1s and 0s indicating

the orthogonal projection of the dataset to be analysed (see discussion in section 3.1.1

above).

If the file whose name is DFN exists, then the call to READ VECTOR SET in line 7 of

39

Figure 33 reads the dataset into memory and stores it in an unsorted, down-directed list

of VECTOR NODEs. This is exactly the same as the task carried out in line 5 of the SIA

implementation in Figure 24 (see discussion of READ VECTOR SET in section 3.1.2 above).

If the dataset is empty (line 9, Figure 33), then an empty output file is created and

the algorithm terminates.

If the dataset is not empty, then it is sorted in line 13 using the SORT DATASET function

and ‘setified’ in line 14 using the SETIFY DATASET function. These functions are defined

in Figures 26 and 28 and were described above in sections 3.1.3 and 3.1.4.

This accomplishes Step 1 of the SIATEC algorithm as described in section 2.2.1 above.

The PRINT SET OF TRANSLATORS algorithm defined in Figure 14 and used in Step 7

of the SIATEC algorithm described in section 2.2.7 above, uses a knowledge of the size

of the dataset (stored in the variable n) to increase efficiency (see line 2 in Figure 14).

Therefore, in line 15 of the implementation of SIATEC given in Figure 33, the size of the

dataset is computed using a function SIZE OF DATASET which simply scans the sorted,

right-directed list of VECTOR NODEs generated by SETIFY DATASET in line 14 and counts

the number of datapoints in the list.

If a dataset D contains only one point, D = {d}, then the only TEC in D is {{d}}. If
the dataset given as input to the procedure in Figure 33 contains only one datapoint, then

D↑right = NULL in line 16 and an output file is generated containing the single datapoint

in the dataset.

If the dataset contains more than one datapoint, lines 24–29 in Figure 33 are executed.

The function COMPUTE VECTORS called in line 24 of Figure 33 and defined in Fig-

ure 34 accomplishes Step 2 of the SIATEC algorithm described in section 2.2.2 above. The

COMPUTE VECTORS function is discussed further in section 3.2.2 below.

The function CONSTRUCT VECTOR TABLE called in line 25 of Figure 33 and defined in

Figure 35 accomplishes Step 3 of the SIATEC algorithm described in section 2.2.3 above.

It is discussed further in section 3.2.3 below.

The function SORT VECTORS called in line 26 of Figure 33 and defined in Figure 36 ac-

40

complishes Step 4 of the SIATEC algorithm described in section 2.2.4 above. SORT VECTORS

is discussed further in section 3.2.4 below.

The function VECTORIZE PATTERNS called in line 27 of Figure 33 and defined in Fig-

ure 38 accomplishes Step 5 of the SIATEC algorithm described in section 2.2.5 above.

VECTORIZE PATTERNS is an implementation of the algorithm in Figure 9. It is discussed

further in section 3.2.5 below.

The function SORT PATTERN VECTOR SEQUENCES called in line 28 of Figure 33 and de-

fined in Figure 39 accomplishes Step 6 of the SIATEC algorithm described in section 2.2.6

above. It is discussed further in section 3.2.6 below.

Finally, the PRINT TECS algorithm called in line 29 of Figure 33 and defined in Figure 41

accomplishes Step 7 of the SIATEC algorithm described in section 2.2.7 above. PRINT TECS

is an implementation of the algorithm in Figure 12. It is discussed further in section 3.2.7

below.

For a k−dimensional dataset containing n datapoints, the worst-case running time

of this implementation of the SIATEC algorithm is O(kn3). This is the running time of

PRINT TECS which is the most expensive step in the implementation. The worst-case space

complexity is O(kn2). This is kept to a minimum by avoiding the need for storing the

TECs in memory at any point—PRINT TECS computes the TECs as it prints them out.

3.2.2 The COMPUTE VECTORS algorithm

The function COMPUTE VECTORS called in line 24 of Figure 33 and defined in Figure 34

accomplishes Step 2 of the SIATEC algorithm described in section 2.2.2 above.

COMPUTE VECTORS constructs a two-dimensional linked-list structure that represents

the ordered set of ordered sets, W, defined in Eq.23. Figure 66 shows the data structure

that results after COMPUTE VECTORS has executed when the SIATEC algorithm in Figure 33

is run on the dataset in Figure 1(a). The data structure in Figure 66 is a representation

of Table 3.

41

3.2.3 The CONSTRUCT VECTOR TABLE function

The function CONSTRUCT VECTOR TABLE called in line 25 of Figure 33 and defined in Fig-

ure 35 accomplishes Step 3 of the SIATEC algorithm described in section 2.2.3 above.

Figure 67 shows the data structures that result after CONSTRUCT VECTOR TABLE has

executed when the SIATEC implementation in Figure 33 is run on the dataset in Fig-

ure 1(a). That is, CONSTRUCT VECTOR TABLE converts the data structure in Figure 66 into

the data structure in Figure 67. The two-dimensional list headed by V in Figure 67 is a

representation of Table 1 while the pointer D is used to access the multi-list that represents

Table 3.

3.2.4 The SORT VECTORS algorithm

The function SORT VECTORS called in line 26 of Figure 33 is defined in Figure 36 and

accomplishes Step 4 of the SIATEC algorithm described in section 2.2.4 above.

Like SIA SORT VECTORS in Figure 30, SORT VECTORS is a version of merge sort. In fact,

the only difference between SORT VECTORS and SIA SORT VECTORS is that in line 13 of

SORT VECTORS, the merging process is performed by the MERGE VECTOR COLUMNS function

defined in Figure 37 whereas in line 13 of SIA SORT VECTORS, this process is performed

using the function SIA MERGE VECTOR COLUMNS defined in Figure 31.

Similarly, the only difference between SIA MERGE VECTOR COLUMNS (Figure 31)

and MERGE VECTOR COLUMNS (Figure 37) occurs in line 8 where the arguments

to the VECTOR LESS THAN function are b↑right↑vector and a↑right↑vector in

MERGE VECTOR COLUMNS and b↑vector and a↑vector in SIA MERGE VECTOR COLUMNS.

The reason for this difference can be seen by comparing the multi-list headed by V in

Figure 67 with that headed by V in Figure 63. In both cases, the multi-list data structure

accessed via V represents Table 1. In both cases, each down-directed list of nodes that

‘hangs’ off the down field of a node in the right-directed list headed by V represents a

column in Table 1, that is, the set of inter-datapoint vectors originating on a particular

42

datapoint. In Figure 63, the vector field of each node in these down-directed ‘column’

lists points directly at an inter-datapoint vector. However, in Figure 67, the vector field

of each of these nodes is empty and instead the right field is used to point to the node

in the multi-list headed by D that holds the required inter-datapoint vector.

This extra level of indirection is necessary in SIATEC because the structure of the

multi-list representing Table 3 must be preserved as it is used to compute TECs by the

PRINT TECS function (defined in Figure 41 and called in line 29 of the SIATEC implemen-

tation in Figure 33).

Figure 68 shows the state of the data structures headed by D and V after SORT VECTORS

has executed when the implementation of SIATEC in Figure 33 is run on the dataset in

Figure 1(a).

3.2.5 The VECTORIZE PATTERNS algorithm

The function VECTORIZE PATTERNS called in line 27 of Figure 33 and defined in Fig-

ure 38 accomplishes Step 5 of the SIATEC algorithm described in section 2.2.5 above.

VECTORIZE PATTERNS is an implementation of the algorithm in Figure 9.

VECTORIZE PATTERNS uses the data structure accessed by V in the SIATEC procedure

(see Figure 33) to compute a linked-list representation of the ordered set X in Figure 9

which is itself an ordered set representation of the set X defined in Eq.26.

The representation of X generated by VECTORIZE PATTERNS is a linked list of X NODEs

headed by the variable X in Figure 38. The X NODE data type is defined in Figure 23.

Each X NODE in the list headed by X computed by VECTORIZE PATTERNS represents one

of the ordered pairs 〈i,Q〉 in X (see line 10 in Figure 9). Q in Figure 9 is modelled in

VECTORIZE PATTERNS as a linked list of VECTOR NODEs which is first headed by the variable

Q (see, e.g., line 12 in Figure 38) but then stored in the vec seq field of its X NODE (line 29,

Figure 38). The first element of each 〈i,Q〉 ordered pair in X in Figure 9 is represented in

an X NODE by the field start vec which is used to point to the appropriate VECTOR NODE in

the list headed by V (see line 30 in Figure 38). The size field of an X NODE representing an

43

ordered pair 〈i,Q〉 inX is used to store the size of the pattern for whichQ is the vectorized

representation (see line 28 in Figure 38). The down and right fields of an X NODE are used

to construct two different types of linked list. The unsorted down-directed list of X NODEs

generated by VECTORIZE PATTERNS is converted into a sorted right-directed list by the

function SORT PATTERN VECTOR SEQUENCES which is called in line 28 of Figure 33 and

defined in Figure 39.

An X NODE can be represented diagrammatically as a rectangular box divided into 5

cells as shown in Figure 69. As shown in this figure, the cells represent, from left to right,

the vec seq, size, down, right and start vec fields.

The MAKE NEW X NODE function called in lines 23 and 26 of VECTORIZE PATTERNS simply

creates a new X NODE, sets its size field to zero and all the other fields to NULL.

Figure 70 shows the state of the data structures headed by D, V and X in the implemen-

tation of SIATEC in Figure 33 after line 27 has been executed when this implementation

is run on the dataset in Figure 1(a).

3.2.6 The SORT PATTERN VECTOR SEQUENCES algorithm

The function SORT PATTERN VECTOR SEQUENCES called in line 28 of the SIATEC implemen-

tation in Figure 33 and defined in Figure 39 accomplishes Step 6 of the SIATEC algorithm

described in section 2.2.6 above.

Like SORT DATASET (Figure 26) and SORT VECTORS (Figure 36),

SORT PATTERN VECTOR SEQUENCES is an implementation of merge sort. The func-

tion VECTORIZE PATTERNS called in line 27 of the SIATEC implementation in Figure 33

returns an unsorted, down-directed list of X NODEs that represents the ordered set X

computed by the algorithm in Figure 9 (see, for example, Figure 70). The call to

SORT PATTERN VECTOR SEQUENCES in line 28 of the SIATEC implementation (Figure 33)

converts this unsorted down-directed list into a sorted, right-directed list of X NODEs that

represents the ordered set Y computed in Step 6 of the SIATEC algorithm described in

section 2.2.6 above.

44

In SORT PATTERN VECTOR SEQUENCES (Figure 39), the merging process is performed by

the function MERGE PATTERN ROWS called in line 13 and defined in Figure 40. The function

PATTERN VEC SEQ LESS THAN called in line 13 of MERGE PATTERN ROWS, implements the

definition of ‘less than’ when applied to ordered sets of vectors defined in section 2.2.6

above.

Figure 71 shows the state of the data structures headed by D, V and X in the SIATEC

implementation in Figure 33 after line 28 has been executed when this implementation is

run on the dataset in Figure 1(a).

3.2.7 The PRINT TECS algorithm

The PRINT TECS algorithm called in line 29 of the SIATEC implementation in Figure 33 and

defined in Figure 41, accomplishes Step 7 of the SIATEC algorithm described in section 2.2.7

above.

PRINT TECS is an implementation of the algorithm in Figure 12. In PRINT TECS, the

variable X heads the right-directed list of X NODEs representing the ordered setY computed

in Step 6 of the SIATEC algorithm described in section 2.2.6 above.

The PRINT PATTERN procedure called in line 26 of PRINT TECS and defined in Figure 42

is an implementation of the algorithm in Figure 13.

The PRINT SET OF TRANSLATORS procedure called in line 27 of PRINT TECS and defined

in Figure 43 is an implementation of the algorithm in Figure 14.

The IS ZERO VECTOR function called in lines 8, 26, 47 and 58 of the

PRINT SET OF TRANSLATORS procedure in Figure 43 returns TRUE if and only if its ar-

gument is equal to the zero vector (i.e., a linked list of NUMBER NODEs in which every

number is 0).

The PATTERN VEC SEQ EQUAL function called in line 30 of PRINT TECS (see Figure 41)

takes two X NODE pointer arguments and returns TRUE if and only if the ordered vector

sets represented by the vec seq fields of the two X NODEs are equal.

Figure 72 shows the output generated by PRINT TECS for the dataset in Figure 1(a).

45

This represents the set of TECs shown in Figure 15. Recall that each TEC in the output

of SIATEC is represented as an ordered pair 〈P, T (P,D) \ 0〉 where P is a non-empty MTP

and T (P,D) is the set of translators for P . For each of the 〈pattern,translator set〉 pairs
generated by SIATEC, the PRINT TECS procedure in Figure 41 first prints out the pattern

as a list of vectors, each vector on its own line and the whole list terminated by an empty

line (see Figure 72). It then prints an empty line before printing out the translator set,

also as a list of vectors each vector on its own line and the set terminated by an empty line.

Thus, in the output shown in Figure 72, the odd-numbered vector lists represent patterns

and each even-numbered vector list represents the set of translators for the pattern that

precedes it.

3.3 Example implementation of COSIATEC

Figure 44 shows an efficient implementation of the COSIATEC algorithm in Figure 22.

Like the SIA and SIATEC implementations described above, the COSIATEC implementa-

tion in Figure 44 takes three arguments: DFN is the name of the file containing the dataset

to be analysed; OFN is the name of the file to which the output will be written; and SD is

a string of 1s and 0s representing the orthogonal projection of the dataset to be analysed

(see section 3.1.1 above).

If the file called DFN exists then it is opened (line 8, Figure 44) and the dataset is

read (line 10) using READ VECTOR SET (defined in Figure 25). The dataset is then sorted

(line 12) and setified (line 13) using the SORT DATASET (Figure 26) and SETIFY DATASET

(Figure 28) functions already described. The size of the dataset is then computed (line

14) using the SIZE OF DATASET function described in section 3.2.1 above.

The while loop that begins at line 18 in Figure 44 implements the while loop beginning

at line 3 in Figure 22. Lines 19–32 in Figure 44 are essentially the same as lines 16–29 of

the SIATEC implementation in Figure 33. On each iteration of the while loop, this code

from SIATEC is used to compute T′(D) for the dataset stored in the right-directed list of

46

VECTOR NODEs headed by the variable D. This set of TECs is then stored in a temporary

file whose name is kept in TFN (line 32, Figure 44).

To prevent memory leakage, the data structures headed by V and X are deallocated in

line 33 of Figure 44 using the function DISPOSE OF SIATEC DATA STRUCTURES defined in

Figure 45.

The temporary TEC file TF is then opened (line 34, Figure 44) and each TEC in this

file is read into memory in turn using the READ TEC function called in line 36 of Figure 44

and defined in Figure 46. This function will be discussed further in section 3.3.1 below.

The function IS BETTER TEC called in line 37 of the COSIATEC implementation in Fig-

ure 44 is an implementation of line 10 in Figure 22. It is defined in Figure 48 and discussed

further in section 3.3.3 below.

If IS BETTER TEC returns TRUE then the newly read TEC is stored as the best TEC so

far and the previously best TEC is deleted using the function DISPOSE OF TEC called in

line 38 of Figure 44.

Once all the TECs have been read from the temporary TEC file, TF, the while loop

beginning at line 35 terminates. and the best TEC is stored in the variable BT. The file TF

is then closed and deleted (lines 43 and 44 of Figure 44). The best TEC is then written

to the output file OF in line 45 using the PRINT TEC procedure defined in Figure 49 and

described further in section 3.3.4 below. Line 45 in Figure 44 is an implementation of line

14 in Figure 22.

Finally, line 15 of the COSIATEC algorithm in Figure 22 is implemented in line 46 of

the implementation in Figure 44 using the DELETE TEC COVERED SET function defined in

Figure 51.

In line 47 of Figure 44, the variable n is recalculated so that it once more stores the

number of remaining datapoints in the list headed by D. The coverage field of a TEC NODE

stores the coverage of the TEC as defined in Eq.19 above.

47

3.3.1 The READ TEC function

In line 36 of Figure 44, the function READ TEC, defined in Figure 46, is used to read each

TEC from the temporary TEC file. Each TEC is stored in a TEC NODE data structure as

defined in Figure 23.

In line 2 of READ TEC, a new TEC NODE is created, the numerical fields are set to zero

and the pointer fields are set to NULL. The pointer T is set to point to the new node. If

〈P, T (P,D) \ 0〉 is the TEC that is to be read, then in line 3 of READ TEC, the pattern P is

represented as a down-directed list of VECTOR NODEs pointed to by the pattern field of T.

The set of non-trivial translators, T (P,D) \ 0, is then, in line 4 of READ TEC, represented

as a down-directed list of VECTOR NODEs pointed to by the translator set field of T.

The size of P (that is T↑pattern) is then computed in line 5 and stored in the field

T↑pattern size. In line 6, the size of T (P,D) \ 0 is computed and stored in the field

T↑translator set size. In line 7 of READ TEC, the set

⋃
v∈T (P,D)

τ(P, v)

is computed and stored in the covered set field of T. This is done using the

SET TEC COVERED SET function defined in Figure 47 and described further in section 3.3.2

below. This allows the coverage of the TEC (see Eq.19) to be computed in line 8 of

READ TEC and stored in the coverage field of T.

Finally the compression ratio of the TEC as defined in Eq.20 is computed in line 9 of

READ TEC and stored in the compression ratio field of T.

3.3.2 The SET TEC COVERED SET function

If the TEC NODE pointer T represents the TEC 〈P, T (P,D) \ 0〉 then the function

SET TEC COVERED SET(T), called in line 7 of the READ TEC function and defined in Fig-

48

ure 47, computes the set ⋃
v∈T (P,D)

τ(P, v)

and stores this set as a linked list of COV NODEs, headed by the pointer T↑covered set.

Each COV NODE has two fields as defined in Figure 23: the datapoint field is a

VECTOR NODE pointer used to point at a VECTOR NODE representing a datapoint in the

list headed by D; the next field simply points at the next COV NODE in the linked list. In

this way, a linked list of COV NODEs can be used to represent a subset of the dataset.

The function VECTOR PLUS called in line 19 of SET TEC COVERED SET simply returns a

NUMBER NODE list representing the vector that results from adding the two vectors repre-

sented by its arguments.

The DISPOSE OF NUMBER NODE function called in line 25 of the SET TEC COVERED SET

function in Figure 47 destroys and deallocates the list of NUMBER NODEs headed by its

argument.

The MAKE NEW COV NODE function called in lines 33 and 36 of SET TEC COVERED SET

makes a new COV NODE and sets both of its fields to NULL.

3.3.3 The IS BETTER TEC function

The function IS BETTER TEC called in line 37 of the COSIATEC implementation in Figure 44

is an implementation of line 10 in Figure 22. It is defined in Figure 48.

The PRINT ERROR MESSAGE procedure called in line 2 of IS BETTER TEC simply prints

out its argument to the standard output.

As can be seen in Figure 48, the IS BETTER TEC function uses the compression ratio

and coverage fields of its argument TEC NODEs, T1 and T2, to determine whether or not

T1 would be a preferable choice to T2 for use in the compressed representation generated

by COSIATEC.

49

3.3.4 The PRINT TEC function

The PRINT TEC function called in line 45 of the COSIATEC implementation in Figure 44 is

used to output the ‘best TEC’ for the current state of the dataset to the output file.

PRINT TEC, which is defined in Figure 49, uses the procedure PRINT VECTOR SET defined

in Figure 50 to print out first the pattern and then the set of translators for the TEC.

Figure 73 shows the output generated by the COSIATEC implementation in Figure 44 for

the dataset in Figure 4. The format of the output for the COSIATEC function in Figure 44

is the same as that generated by the SIATEC implementation in Figure 33.

3.4 Example implementations of SIAME

Two versions of the SIAME algorithm will now be described: for a pattern of size m and a

dataset of size n, the first version has an average running time of O(nm); the second has

a worst-case running time of O(nm log(nm)).

In Figure 74, we illustrate the working of SIAME. Given the points ti of the pattern

T and dj of dataset D, the aim is to generate the structureM in the bottom right-hand

corner. The first version does this with the aid of an array, S, and a linked list, L; the
second version needs only the former. M stores the 〈vector, point-set〉 pairs in decreasing
order of point-set size.

Let us briefly describe the structures before introducing the pseudo-codes. Each ele-

ment of the array S contains three fields: ptr, ∆, and Σ. Field “ptr” is a pointer to a

linked list of tis that are translatable by a vector v which, itself, is stored in field ∆. Σ

stores the number of tis translatable by v, that is, the size of the subset of T represented

by this list.

For the first version of SIAME, it is crucial that the (used) nodes in the array S are

reachable in constant time. Hence it maintains a temporary linked list L, in which each
element contains two pointer fields. Field “ptr” points to a used element in S, while

“next” points to the next element in the list. M is an array of pointers, each of which is

50

pointing to a linked list of the same form as that of L.
Let us first introduce a function that shall be called by both versions of SIAME. We

denote by square brackets ([]) and an upwards-arrow (↑) array indexing and element

pointing, respectively. The function NewLink (Figure 75) takes two parameters: the

first is either a datapoint or a pointer; the second is a pointer to a linked list. NewLink

allocates a new node of the element type pointed to by the latter parameter, and adds

this created node as the first element of the linked list. The value of the first parameter is

stored in the “data” field of the created node. Note that because the newly created node

is put at the very beginning of the list, NewLink is executed in constant time.

3.4.1 Finding Patterns in O(mn) Time on Average.

In order to execute SIAME in O(mn) time, we need to choose the right element of S in

constant time. A simple solution allocates space for the whole possible value range along

each dimension and uses array indirection based on the translation vectors, v = d − t,

which select members of the SIAME output set. This works in constant time, and so is

efficient in this respect. The input dataset D for SIAME, however, may be very large in

quite ordinary applications. Furthermore, the data may be quite sparse. Therefore, not

only is there a potential for the data structures to be generated to become of excessive

size, but it is very likely that a large proportion of the space that the program attempts to

allocate for them is never actually needed. So we have to balance the strictures of space

against the time required to access the data.

In this first version we do so by using a hash function F that hashes the translation

vectors into an array of size O(nmk) where m and n are, respectively, the size of the

pattern to be searched for and the size of the dataset being searched, and k is the number

of dimensions represented in the input data. We use closed hashing (Weiss, 1993), in other

words, only identical values are hashed to the same location of the array. To make the

hashing work in an expected constant time, the frequency of collisions should be kept low.

A collision occurs when two different input values p1 and p2, p1 �= p2, have an identical

51

hashed value, F(p1) =F(p2). This is possible with a hashing array of size approximately

twice the number of the items to be hashed (Weiss, 1993). Moreover, a secondary hashing

procedure (or a resolution function) is needed. For more details on this, see Weiss (1993).

Given T , D, and S as input, the first version of SIAME is as shown in Figure 76. In the

nested loops at lines 2–9, SIAME operates by comparing each point t in the query pattern

with each point d in the dataset and uses the main structure S to store the 〈vector, point-
set〉 pairs. The hashing function F (including also the resolution function) is used at line

5 to find the index in S corresponding to v. After a new node storing the value t is added

to the linked list associated with the vector, then the fields of S, at the element F(v), are

updated. If the current vector, v̄, has not been met before, a new node is added to the

head of the linked list L (line 9) and the “data” field of this new node is set to point to

S[F(v̄)].

Having executed these nested loops, the main structure S contains the 〈vector, point-
set〉 pair information, and the list elements of L point to the nodes of S corresponding to

the vectors that were found to be present in the input data. The length of the list L is

O(mn).

The next phase is to go through the 〈vector point-set〉 pairs (lines 11–14) and sort them
according to their size counts. The pairs are stored in the structure M of size O(mn).

To give an example, see Figure 74, where Σ3 = 3;Σ1 = Σ4 = 2; and Σ2 = Σ5 = 1).

The total expected time complexity of this first version of SIAME is O(mn). This

is because the execution of line 5 takes a constant time on average. In the worst case,

however, it takes O(mn) time and, therefore, the worst case time complexity for this

version is O((mn)2). The remaining lines within the nested for loops are executable in

constant time. Thus, the execution of lines 2–9 takes O(mn) on average, while the loop

at lines 11–14 is clearly executable in O(mn) time, even in the worst case.

52

3.4.2 Finding Patterns in O(mn log(mn)) Time in the Worst Case.

In the former implementation, S comprised an array of size 2nm for each dimension of

the vectors. It is in our interest to reduce that still further for our databases may be very

large. Our second version needs an array of size nm. On average it may be slower than

the former version, but in the worst case it needs O(mn log(mn)) time, where m is usually

very small. The second version of SIAME is as shown in Figure 77.

This version of SIAME first stores all the vectors with the associated ti in S. Then S is

sorted with respect to the vectors by the conventional merge sort. Although Quicksort is

faster on average than merge sort, the worst-case time-complexity of Quicksort is O(n2)

which is worse than the worst-case running time of merge sort. Another reason for prefer-

ring merge sort here is because the implementation could be based on linked lists, which

would make merge sort an appropriate choice. Finally, the function MergeDuplicates

in Figure 78 is executed. If the vectors at the consecutive indices in S are identical,

MergeDuplicatesmerges them; all these query pattern datapoints are collected at the

location, say j, where the vector first occurred in S. Then the Σ field is updated, and an

element at the corresponding index ofM is created to point to S[j].

The worst case time complexity for this second version of SIAME is O(mn log(mn)).

The nested loops at lines 3–7 take time O(mn), and it is well-known that merge sort has

a worst case time complexity of N logN for sorting N objects. The function MergeDu-

plicates runs in time O(nm), since every location of S is visited exactly once (note that

the inner loop is executed k times, after which the outer loop variable j is updated to

j + k).

Instead of using merge sort and MergeDuplicates, one possibility would have

been to sort S “on-the-fly” within the nested loops of SIAME2 by using, e.g., insertion

sort (Weiss, 1993). This would, however, lead to a worst-case time-complexity ofO((nm)2)

(the case where the vectors are given in reversed order).

53

References

Borowski, E. J. and Borwein, J. M. (1989). Dictionary of Mathematics . Collins.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1990). Introduction to Algorithms .

M.I.T. Press, Cambridge, Mass.

Crochemore, M. and Rytter, W. (1994). Text Algorithms. Oxford University Press,

Oxford.

Gusfield, D. (1997). Algorithms on Strings, Trees and Sequences: Computer Science and

Computational Biology . Cambridge University Press, Cambridge.

Weiss, M. A. (1993). Data Structures and Algorithm Analysis in C . Benjamin Cummings,

Redwood City, CA.

54

CLAIMS

1. A method of pattern discovery in a dataset, in which the dataset is represented as

a set of datapoints in an n-dimensional space, comprising the step of computing

inter-datapoint vectors.

2. The method of Claim 1, adapted to identify translation invariant sets of datapoints

within the dataset, comprising the further steps of:

(a) computing the largest set of datapoints that can be translated by a given inter-

datapoint vector to another set of datapoints in the dataset; and

(b) computing all sets of datapoints which are translationally equivalent to the

largest set identified in step (a).

3. The method of Claim 2 used for any of the following purposes:

(a) lossless data-compression;

(b) predicting the future price of a tradable commodity;

(c) locating repeating elements in a molecule

(d) indexing.

4. The method of Claim 1, adapted to identify the occurrence of a user supplied set of

datapoints in a dataset, comprising the further steps of:

(a) computing inter-datapoint vectors from each datapoint in the user supplied set

of datapoints to each datapoint in the dataset;

(b) computing the largest set of datapoints in the user supplied set of datapoints

that can be translated by a given inter-datapoint vector to another set of

datapoints in the dataset.

5. The method of Claim 4 used for any of the following purposes:

55

(a) locating specific elements in a molecule;

(b) visual pattern comparison;

(c) speech or music recognition.

6. The method of any preceding claim in which the datapoints in an n-dimensional

space represent any of the following:

(a) audio data;

(b) 2D image data;

(c) 3D representations of virtual spaces;

(d) video data;

(e) molecular structure;

(f) chemical spectra;

(g) financial data;

(h) seismic data:

(i) meteorological data;

(j) symbolic music representations;

(k) CAD circuit data.

7. Computer software adapted to perform the method of any preceding Claim 1–6.

56

Abstract

METHOD OF PATTERN DISCOVERY

This invention provides methods for pattern discovery, pattern matching and

data compression in multidimensional numerical datasets. The invention can use-

fully be applied in any domain in which information represented in the form of mul-

tidimensional datasets needs to be retrieved, compared, analysed or compressed.

Such domains include 2D images, audio and video data, biomolecular data, seismic,

meteorological and financial data.

There already exist methods for pattern discovery, pattern matching and data

compression but these methods have been designed for processing data represented

as strings and there are many domains in which data cannot be appropriately rep-

resented using strings. In such domains, existing data-processing methods are not

effective.

In many of the domains in which strings cannot be effectively used to repre-

sent information (e.g., audio and video data), the data can be represented using

multidimensional numerical datasets. The present invention provides methods for

processing such datasets.

The method allows maximal matches for a query pattern to be found in a dataset

by computing the inter-datapoint vectors between datapoints in the pattern and

datapoints in the dataset. The method allows maximal recurring patterns in a

dataset to be found by computing inter-datapoint vectors between datapoints in

the dataset. An extension of the method allows all occurrences of all maximal

recurring patterns in a dataset to be found. This extension to the method can be

used to compute a compressed (i.e. space-efficient) representation of a dataset from

which the dataset can be reconstructed by multiple translations of an optimal set

of generating patterns.

