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Chapter 1

Introduction to MIPS and the genus

representation of octave equivalence

1.1 Introduction

MIPS is a mathematical formal language devised by the author for investigating the structural properties of

scales, pitch systems and their associated notational systems.1 The complete current specification of MIPS

is given in Chapter 4. MIPS has been implemented as a computer program written in Common Lisp.

MIPS models the way that pitch information is represented within Western staff notation. In fact, it

models a whole class of pitch notation systems that contains the Western staff notation system as one of its

members. In this sense, MIPS mathematically models and generalises the pitch representation system used

in Western staff notation.

MIPS is based on four representations of octave equivalence: chroma equivalence, morph equivalence,

chromamorph equivalence and genus equivalence. Chroma equivalence is essentially identical to the concept

of pitch-class equivalence used by Babbitt ([Bab65]), Forte ([For73]), Rahn ([Rah80]), Morris ([Mor87]) and

many others. The MIPS concept of a morph is basically the same as Brinkman’s concept of name class

([Bri90, 124–126]). The MIPS concept of a chromamorph is closely related to both Brinkman’s binomial

representation ([Bri90, 128]) and the representation of octave equivalence used by Agmon ([Agm89, 11],

[Agm96, 44]). Genus equivalence is a new representation of octave equivalence invented by the author which

provides a correct model of the traditional tonal concept of octave equivalence. That is, two pitches are

genus equivalent if and only if they are an integer number of perfect octaves apart. Genus equivalence can

also be generalised to any other pitch system without first having to specify which sets in that pitch system

correspond to the diatonic sets in the Western tonal system.

Chroma equivalence is not a particularly good model of the traditional tonal concept of octave equivalence.

The three pitches in Figure 1.1 are octave equivalent in the traditional tonal sense and, of course, they have

the same chroma—they are therefore chroma equivalent.

The two pitches in Figure 1.2 are also chroma equivalent, but they are not octave equivalent in the

traditional tonal sense because the interval between them is an augmented seventh and not an integer number

of perfect octaves. So although the sounds produced when the two notes are performed in an equal-tempered

system might be psycho-acoustically an octave apart, they are not ‘octave equivalent’ in terms of the logic of

the Western tonal pitch notation system.

1MIPS stands for Mathematical Investigation of Pitch Systems.
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CHAPTER 1. INTRODUCTION TO MIPS AND THE GENUS REPRESENTATION OF OCTAVE EQUIVALENCE5

Figure 1.1: Three pitches that are chroma equivalent and ‘octave equivalent’ in the traditional tonal sense.

Figure 1.2: Two pitches that are chroma equivalent but not ‘octave equivalent’ in the traditional tonal sense

and not chromamorph equivalent.
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Figure 1.3: Two pitches that are chromamorph equivalent but not octave equivalent in the traditional tonal

sense.

This demonstrates that the concept of pitch class as used by Forte ([For73]), Rahn ([Rah80]) and others,

does not provide a correct model of octave equivalence within the Western tonal pitch system.

There have been a number of attempts to produce better models of the traditional tonal concept of

octave equivalence. For example, Brinkman ([Bri90, 128]) and Agmon ([Agm89, 11], [Agm96, 44]) use

a representation of octave equivalence that Brinkman calls a binomial representation which is essentially

identical to the MIPS concept of a chromamorph. A chromamorph is an ordered pair of integers in which

the first number represents the chroma and the second number (which in MIPS is called morph and which

Brinkman calls name class ([Bri90, 124–126])) represents the letter-name of the note. So, in the Western

tonal system, the second element in a chromamorph (that is, the morph) will have an integer value between

0 and 6, with 0 corresponding to the letter-name A and 6 corresponding to G. Similarly, in a system that

uses five-note scales, the value of a morph would lie between 0 and 4.

If two notes that have the same chromamorph are defined to be chromamorph equivalent then it can be

seen from Figure 1.2 that chromamorph equivalence is a better model of the Western tonal concept of octave

equivalence than chroma equivalence—at least chromamorph equivalence correctly captures the fact that two

notes an augmented seventh apart are not octave equivalent in the traditional tonal sense.

However, the two notes in Figure 1.3 are chromamorph equivalent but they are certainly not octave

equivalent in the traditional Western tonal sense—the interval between them is a ‘12×diminished octave.’

This demonstrates that chromamorph equivalence is not a correct model of the traditional Western tonal

concept of octave equivalence.

Some may dispute the claim that the two notes in Figure 1.3 are logically possible and meaningful within

the Western tonal pitch notation system, but, in principle, there is no limit to the number of sharps and flats

that could be placed before a note in the Western tonal staff notation system. On the upper staff in Figure

1.4 is a sequence of notes in which the interval from each note to the next note is a rising major third. Each

note on the lower staff is enharmonically equivalent to the note immediately above it on the upper staff.
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Figure 1.4: Demonstration of the logical possibility of multiple sharps and flats in the Western tonal pitch

notation system.

The sequence of notes on the upper staff begins with an F double-sharp—a note that is encountered in tonal

music as the leading note in the key of G sharp minor, the relative minor of the commonly used key of B

major. As can be seen in Figure 1.4, after two consecutive leaps of a rising major third from F double sharp,

we have already arrived at a note that must have three sharp symbols placed before it if it is to be notated

correctly. After eleven consecutive leaps of a rising major third we are compelled to use eight sharps! This

example illustrates the fact that a formal language that correctly represents the logic of the Western tonal

system of pitch and pitch intervals must allow for pitches to have any number of sharps or flats.

In the Western pitch-naming system, a note has a letter-name (A to G), an inflection (. . . , [[, [, \, ], ]], . . .)

and an octave number (for example, middle C—C\4—has an octave number of 4 and the C above middle

C (C\5) has an octave number of 5). This naming system derives from the staff notation system which has

evolved over the past four hundred years or so to be a highly effective means of notating Western tonal music.

To this extent, the pitch-naming system correctly models the Western tonal pitch system. And if the octave

number of a pitch-name is omitted (for example, C\4 becomes C\), the result is a correct representation of

octave equivalence within the Western tonal system.

So, if one wishes to find a correct mathematical representation of the traditional Western tonal concept of

octave equivalence, one strategy might be to base a numerical representation on the traditional pitch-naming

system. Such a strategy has been adopted by Cambouropoulos ([Cam96, 233], [Cam98, 49]) in his General

Pitch Interval Representation (GPIR). In this system, the letter-name (A to G) is represented by an integer

between 0 and 6 and the inflection (or modifier-accidental as Cambouropoulos calls it) is represented by an

integer (0 corresponds to \, 1 corresponds to ], −1 corresponds to [ and so on).

The row labelled ‘Old genus’ in Figure 1.3 shows that this representation correctly captures the fact that

the two notes are not octave equivalent in the traditional sense. So this simple numeric representation of the

Western tonal pitch-naming system provides a correct model of the traditional concept of octave equivalence

within that system.

However, one of the motivations behind the development of MIPS was to produce a system that would

allow one to examine the special mathematical properties of the Western tonal scales and then go on to

determine if scales with similar properties exist in other systems where the octave is divided into more or

less than 12 intervals. In other words, it should be possible to use MIPS to discover those sets within any

pitch system that correspond in some significant sense to the sets associated with scales in the Western tonal

system. But unfortunately, it is not possible to generalise a representation such as Cambouropoulos’ to other

pitch systems without first knowing which sets within that system should be considered to correspond to the

diatonic sets in the Western tonal pitch system. This is because one first has to know which pitch classes
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correspond to the natural notes (that is, the notes that are not inflected with one or more sharp or flat

symbols).

It turns out, however, that it is possible to devise a representation of octave equivalence that is both

a correct model of the traditional tonal concept of octave equivalence and generalisable to any other pitch

system without first specifying the sets in that system that correspond to the diatonic sets in the Western

tonal system.

In MIPS, this model of octave equivalence is called genus equivalence: two pitches are genus equivalent

if and only if they have the same genus. A genus is an ordered pair rather like a chromamorph. As in a

chromamorph, the second element in the ordered pair is a morph and represents the letter-name (see the

row marked ‘Genus’ in Figure 1.3). However, the first member of a genus is not a chroma but a chromatic

genus which is not quite the same as chroma (see section 1.3.1 below for formal definitions of chromamorph,

chromatic genus and genus). Unfortunately the fact that chromatic genus is ‘not quite’ chroma means that the

whole theory surrounding the genus representation—the theory that defines, for example, how to transpose

and invert genus sets, find powers and sums of genus intervals and so on—is rather more involved than the

pitch-class set theory of Babbitt, Forte and Rahn.

In summary, MIPS is a formal language for investigating the mathematical properties of pitch systems and

scales within those systems. It is based on four distinct mathematical representations of octave equivalence:

chroma equivalence, morph equivalence, chromamorph equivalence and genus equivalence. Genus equivalence

correctly models the traditional Western tonal concept of octave equivalence wherein two pitches are consid-

ered octave equivalent if and only if they are an integer number of perfect octaves apart. Furthermore, the

concept of genus equivalence can be generalised to any pitch system without first having to specify which

sets within that system correspond to the diatonic sets of the Western tonal system.

The rest of this section will be devoted to introducing certain basic concepts that will be used throughout

this document. In section 1.2 the MIPS representations for the intuitive concepts of pitch system and pitch are

introduced and discussed in detail. In section 1.3 the genus representation of octave equivalence is defined and

the mathematical theory surrounding this representation is introduced. In section 1.4 four useful algorithms

are described for

1. generating the MIPS pitch representation that corresponds to any given A.S.A. pitch name;

2. generating the A.S.A. pitch name that corresponds to a given MIPS pitch representation;

3. generating the MIPS pitch interval representation that corresponds to a traditional Western tonal pitch

interval name (e.g. “Rising Major Third”); and

4. generating the traditional Western tonal pitch interval name that corresponds to a given MIPS pitch

interval representation.

These algorithms employ the concepts presented in sections 1.2 and 1.3 and therefore constitute concrete

examples of the kind of application that can be developed using MIPS concepts. Finally, in section 1.5 the

main points of this chapter are summarised.

1.1.1 The relationship between pitch and frequency

In the text that follows, reference will be made on a number of occasions to ‘the frequency of a pitch.’ It is

therefore important to understand the relationship between frequency and pitch.

The American Standards Association define the term ‘pitch’ to be “that attribute of auditory sensation in

terms of which sounds may be ordered on a musical scale” ([Ass60]). However this definition is not satisfactory
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because of the ambiguity of the term “musical scale.” It is proposed here that the term ‘pitch’ as this term is

used in psycho-acoustics should be defined to mean that perceptual attribute of a simple tone (a tone with a

sinusoidal waveform) that varies when the frequency of the tone is changed and the loudness is kept constant.

The frequency of a simple tone can be adjusted until it is perceived to have the same pitch as some given

complex tone. The pitch of the complex tone can then be represented by the frequency of the simple tone

that has the same perceived pitch as it.

Usually, the perceived pitch of a complex harmonic tone is the same as that of a simple tone whose

frequency is equal to the periodicity of the complex tone. For example, a complex tone with components at

400, 800 and 1200Hz will have a perceived pitch approximately equal to that of a simple tone with frequency

400Hz. Similarly, a complex tone with components at 1800, 2000 and 2200Hz has a pitch which is similar to

that of a 200Hz simple tone.2

There are, however, exceptions to this simple rule. For example, Moore ([Moo89, 169]) points out that a

complex tone with sine wave components at 1840, 2040 and 2240Hz has a periodicity of 40Hz. However its

perceived pitch is approximately the same as that of a 204Hz sinusoid (although its pitch can also be matched

to that of a sinusoid of frequency 185Hz and to that of a sinusoid of frequency 227Hz).3

It has also been shown that the pitch of a simple tone varies very slightly with amplitude (see [Moo89,

165]). In general, the pitch of tones below about 2000Hz decreases with increasing amplitude, while the pitch

of tones above about 4000Hz increases with increasing amplitude. However, this effect is extremely small for

most listeners and can be safely ignored for the purposes of this document.

Therefore, if at any point in this document it is suggested that a pitch p has a frequency f , this should

be understood to mean that p is the perceived pitch of a simple tone S with frequency f . This implies that

p is also the pitch of any complex tone whose pitch is perceived to be the same as that of S.

1.1.2 Some basic set-theoretical concepts

In this section and the next a number of basic set-theoretical concepts and arithmetical operations will be

defined that will be used often throughout this document. An understanding of the definitions and theorems

given here will make the remainder of the document much easier to follow.4 The definitions of mathematical

concepts given in this document are for the most part consistent with common mathematical usage. However

there may be slight differences between the definitions given here and those that one might find in a standard

mathematical dictionary such as [BB89]. These differences arise from the fact that the concepts presented

here are defined for use specifically in a formal language for investigating musical pitch systems.

Definition 1 (Universal set) An object is a well-formed universal set if and only if it is a well-defined

collection of objects that are all distinct in some specified way.

For example, {1, 2, 3, 4} is a well-formed universal set but {1, 1, 2, 3} is not because two of the objects in the

collection are equal.

Definition 2 (Universal set membership) If S is a universal set then a is an element or member of S,

denoted a ∈ S, if and only if a is equal to one of the objects in S. If a is not equal to any of the objects in S

then one can say that a is not an element of S and denote this fact as follows: a 6∈ S.

2This is called the ‘phenomenon of the missing fundamental’. For more details about this effect, see [Moo89, 167–175].
3For more details on the relationship between pitch and frequency, see [Moo89, 158–193].
4All definitions and theorems presented in the main body of this document are stated again in Chapter 4. The reference

number of a definition or theorem given in the main body of the document is the same as the number of that definition or

theorem in Chapter 4. In other words, the number of a definition or theorem in the main text indicates the order of appearance

of the item in Chapter 4 and not its order of appearance in the main text.
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For example, if S = {1, 2, 3, 4} then 1 ∈ S but 5 6∈ S.

Definition 3 (Set) An object is a well-formed set if and only if it is a collection of objects that are all

distinct members of a single specified universal set. When written out in full, a set is enclosed within braces

and the objects in the set are separated from each other by commas:

S = {s1, s2, . . .}

It is important to note that a set is, by definition, a collection of distinct objects. For example, if one defines

A to be a universal set that contains all and only those integers greater than or equal to 0 and less than or

equal to 10:

A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

then the collection

C = {1, 1, 2, 3}

is not a well-formed set of objects in A because two of the objects in C are equal to the same object in A.

However, the collection

B = {1, 2, 3}

is an example of a well-formed set of objects in A. Note that in this document, all the objects in a set must

be members of some single specified universal set whereas a universal set can be any collection of distinct

objects whatsoever.

Definition 4 (Ordered set) An object is a well-formed ordered set if and only if it is a collection of objects

(not necessarily distinct and not necessarily all from the same universal set). When written out in full, an

ordered set is enclosed in square brackets and the objects in the ordered set are separated from each other by

commas:

S = [s1, s2, . . .]

For example, the following are all well-formed ordered sets:

[4, 3, 2, 1] [4, 4, 4, 4] [3, c, π,G, 3]

If an ordered set contains exactly two objects then it can be called an ordered pair, if it contains three objects

it can be called an ordered triple, if it contains four objects it can be called an ordered quadruple and so on.

Definition 5 (Set membership) If S is a set or ordered set then a is an element or member of S, denoted

a ∈ S, if and only if a is equal to one of the objects in S. If a is not equal to any member of S then one can

say that a is not an element of S and denote this fact as follows: a 6∈ S.

For example, if S = {1, 2, 3, 4} then 1 ∈ S but 5 6∈ S.

Definition 6 (Set order) If S is a set or ordered set then the order or cardinality of S, denoted |S|, is

equal to the number of elements in S.

For example, if S = {1, 2, 3, 4} then |S| = 4 and if S = [1, 2, 3, 4, 4, 4] then |S| = 6.

Definition 7 (Empty set) The empty set is that unique set that contains no members. It is denoted ∅ or

{ }.

Definition 8 (Empty ordered set) The empty ordered set is that unique ordered set that contains no

members. It is denoted [ ].
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Definition 9 (Element of an ordered set) If S is an ordered set,

S = [s1, s2, . . . sk, . . .]

then, by definition,

e (S, k) = sk

for all integer k such that 1 ≤ k ≤ |S|. That is, the function e (S, k) returns the kth element of S.

For example, if S = [1, 2, 3, 4, 3, 2, 1] then e (S, 2) = 2, e (S, 4) = 4 and e (S, 6) = 2.

Definition 14 (Ordered set equality) If S and T are two ordered sets,

S =
[

s1, s2, . . . s|S|
]

T =
[

t1, t2, . . . t|T |
]

then S = T if and only if |S| = |T | and e (S, k) = e (T, k) for all integer values of k such that 1 ≤ k ≤ |S|.

It is this concept of ordered set equality that distinguishes an ordered set from an arbitrary collection of

objects. For two ordered sets to be equal, they must not only contain exactly the same objects, it must also

be true that each object in one set is equal to the object that occupies the same position in the other set.

For example,

[3, 2, 1] 6= [1, 2, 3]

Definition 15 (Set equality) If S and T are two sets then S is equal to T , denoted S = T , if and only if

one of the following two conditions is satisfied:

1. Both S and T are equal to the empty set.

2. Every element in S is an element in T and every element in T is an element in S.

If S is not equal to T then this is denoted S 6= T .

Note that for two sets to be equal, the order in which the elements occur does not have to be the same. For

example,

{1, 2, 3} = {3, 2, 1}

Definition 16 (Subset) If S and T are two sets then S is a subset of T , denoted S ⊆ T , if and only if one

of the following two conditions is satisfied:

1. S is the empty set.

2. Every element of S is also an element of T .

If S is not a subset of T then this is denoted S * T .

For example, {1, 2} ⊆ {1, 2, 3}, ∅ ⊆ {1, 2, 3} and {1, 2, 3} ⊆ {1, 2, 3}.

Definition 20 (Set union) If S and T are two sets then the union of S and T , denoted S ∪ T , is the set

that only contains every object that is an element of S or an element of T or an element of both S and T .

That is

(s ∈ (S ∪ T )) ⇐⇒ ((s ∈ S) ∨ (s ∈ T ))

For example, {1, 2} ∪ {2, 3} = {1, 2, 3}.

The operation of set union is associative, as stated by the following theorem:
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Theorem 21 (Associativity of set union) The union operation on sets is associative. That is, if R, S

and T are sets then

R ∪ (S ∪ T ) = (R ∪ S) ∪ T

The expressions R ∪ (S ∪ T ) and (R ∪ S) ∪ T can therefore both be written

R ∪ S ∪ T

All the theorems given in the main body of this document are stated without proof. However, every one of

these theorems is re-stated with proof in Chapter 4.

The fact that set union is associative allows for the following operation to be defined:

Definition 22 (Union of sequence of sets) If S1, S2, . . . Sk, . . . Sn is a collection of sets then, by definition,

S1 ∪ S2 ∪ . . . ∪ Sk ∪ . . . ∪ Sn =
n
⋃

k=1

Sk

Also, if S is a set, then
⋃

s∈S

F (s)

returns the set that only contains every object that is a member of one or more of the sets F (s) where s only

takes any value such that s ∈ S and where F (s) is some function of s that returns a set.

For example, if k only takes integer values then

n
⋃

k=1

{k} = {1, 2, 3, . . . n}

and if S = {1, 2, 3} then
⋃

k∈S

{2k} = {2, 4, 6}

Definition 23 (Set intersection) If S and T are two sets then the intersection of S and T , denoted S ∩T ,

is the set that only contains every object s that is a member of S and a member of T :

(s ∈ (S ∩ T )) ⇐⇒ ((s ∈ S) ∧ (s ∈ T ))

For example, if S = {1, 2, 3, 4} and T = {3, 4, 5, 6} then S ∩ T = {3, 4}.

Definition 26 (Set partition) If S is a set then P (S) is a partition on S if and only if the following

conditions are satisfied:

1. P (S) is a set.

2.
⋃

s∈P(S) s = S.

3. (s1, s2 ∈ P (S)) ∧ (s1 6= s2) ⇒ (s1 ∩ s2 = ∅).

For example, if S = {1, 2, 3, 4, 5, 6, 7, 8} then all of the following sets are partitions on S:

{{1, 2, 3} , {4, 5, 6} , {7, 8}} {{2, 4, 6, 8} , {1, 3, 5, 7}} {{1, 8, 2, 7} , {3, 6, 4, 5}}
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1.1.3 Some arithmetical operations

In MIPS, much use is made of the three arithmetical operations, int, mod and div. These will now be

defined.

Definition 27 (int) The function int (x) takes any real number x as its argument and returns the largest

integer less than or equal to x. In other words, int (x) is defined as follows:

int (x) = y : (x− 1 < y ≤ x) ∧ (y ∈ Z)

where Z is the universal set of integers.

For example, int (3.4) = 3 and int (−3.4) = −4.

Definition 33 (mod) Given that x is a real number and y is a non-zero real number, then the binary

operation mod is defined as follows:

x mod y = x− y × int

(

x

y

)

The following table gives some examples of this operation:

4.3 mod 3 = 1.3

4.3 mod −3 = −1.7

−4.3 mod 3 = 1.7

−4.3 mod −3 = −1.3

4 mod 3 = 1

4 mod −3 = −2

−4 mod 3 = 2

−4 mod −3 = −1

Definition 48 (div) If x is a real number and y is a non-zero real number then the binary operation div is

defined as follows:

x div y = int

(

x

y

)

The following table gives some examples of this operation:

4.3 div 3 = 1

4.3 div −3 = −2

−4.3 div 3 = −2

−4.3 div −3 = 1

4 div 3 = 1

4 div −3 = −2

−4 div 3 = −2

−4 div −3 = 1

Some use is also made of the function abs which is defined as follows:

Definition 60 (abs) If x is a real number then

abs (x) =

{

x

−x

if

if

x ≥ 0

x < 0

This function returns the ‘absolute value’ of a real number.
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1.2 Representing pitch systems and pitch in MIPS

This section is devoted to describing how pitch systems and pitch are represented in MIPS.

1.2.1 The concept of a MIPS pitch system

The intuitive concept of an equal-tempered pitch system is modelled in MIPS by a mathematical concept

called a pitch system. A MIPS pitch system is defined as follows:

Definition 61 (Pitch system) An object ψ is a well-formed pitch system if and only if it is an ordered

quadruple

ψ = [µc, µm, f0, pc,0]

such that the following conditions are satisfied:

1. µc is a natural number called the chromatic modulus;

2. µm is a natural number called the morphetic modulus;

3. µc ≥ µm;

4. f0 is a positive real number called the standard frequency;

5. pc,0 is an integer called the standard chromatic pitch.

The symbols used to represent MIPS concepts will be used consistently throughout this document so the

reader is advised to memorize each symbol as it is introduced.

The chromatic modulus µc of a pitch system indicates the number of equal intervals into which the octave

is divided. For example, for the Western 12-tone equal-tempered system, the chromatic modulus is 12.

The concept of chromatic modulus is essentially identical to the concept of chromatic cardinality defined by

Clough and Douthett ([CD91, 94]). It also corresponds to the value N in Cambouropoulos’ ‘N-tone discrete

equal-tempered pitch space’ ([Cam98, 50], [Cam96, 234]) and to the value that Agmon customarily labels a

in his formal representation of the diatonic system ([Agm89, 11], [Agm96, 44]). In Balzano’s exploration of

the group-theoretic properties of ‘equal-tempered systems of n-fold octave division’ ([Bal80, 66]), the value

n corresponds to the MIPS chromatic modulus.

The morphetic modulus is equal to the number of notes in scales within the pitch system. More precisely,

it indicates the number of different functional categories that a pitch can have within a key within the pitch

system. For example, for the Western tonal system, the morphetic modulus is 7 corresponding to the seven

different letter-names (A to G) used in the Western pitch notation system.

The Western pitch notation system has evolved to use 7 different letter-names because, according to

traditional tonal theory, each pitch in a piece of tonal music can be understood to have one of seven different

tonal functions (tonic, supertonic, mediant,. . . ) within the key that operates at the location in the music

where the pitch occurs. Pitches with the same tonal function in the same key have the same letter-name. This

relates to the idea that the pitch structure of Western tonal music can be interpreted using the traditional,

7-note, major and minor scales.

The concept of morphetic modulus is essentially identical to the concept of diatonic cardinality defined

by Clough and Douthett ([CD91, 94]). It also corresponds to the value M in Cambouropoulos’ ‘M-tone scale’

([Cam98, 50–51], [Cam96, 234–235]). In Agmon’s work, the value that corresponds to morphetic modulus is

customarily denoted b ([Agm89, 11], [Agm96, 44]).
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So, for example, if a musical style was based on anhemitonic pentatonic scales embedded in a 12-note

chromatic, then its pitch system would have a morphetic modulus of 5 and a chromatic modulus of 12; and

for a musical style based on the equipentatonic scale—a system that uses 5-note scales embedded in a 5-note

chromatic—both the chromatic modulus and the morphetic modulus would be 5.

Thus, whereas the chromatic modulus tells us something about the physical structure of the pitch system

(the number of equal frequency intervals into which an octave is divided), the morphetic modulus tells us

something about the cognitive structure of the pitch system (the number of notes in the scales that are used

in the pitch system).

1.2.2 The concept of a MIPS pitch

The concept of a MIPS pitch models the intuitive concept of a pitch within an equal-tempered pitch system

and its associated system of notation. It is defined as follows:

Definition 62 (Pitch) An object p is a well-formed pitch in a pitch system if and only if it is an ordered

pair

p = [pc, pm]

that satisfies the following conditions:

1. pc is an integer called the chromatic pitch;

2. pm is an integer called the morphetic pitch.

The chromatic pitch represents the frequency associated with the pitch in the equal-tempered system.5

In fact, given a pitch system,

ψ = [µc, µm, f0, pc,0]

the frequency of a pitch in ψ can be calculated from its chromatic pitch using the standard frequency f0

and the standard chromatic pitch pc,0 (see Definition 66 on page 17 below). In the Western, 12-tone, equal-

tempered system, the chromatic pitch associated with a note in a score can be thought of as indicating the

key on a normal piano keyboard that must be pressed in order to play the note. A rise of one semitone results

in an increase of 1 in chromatic pitch and a fall of one semitone results in a decrease of 1 in chromatic pitch.

If one specifies that a chromatic pitch of 0 is associated with the lowest A\ on a normal piano keyboard (A\0)

then the chromatic pitch of G]0 is −1 and the chromatic pitch associated with middle C (C\4) is 39.6 Figure

1.5 shows a variety of notes in the Western 12-tone equal-tempered pitch system, each labelled with its MIPS

pitch. The first element in each MIPS pitch indicates the chromatic pitch associated with the note.

In Western staff notation, the morphetic pitch of a note is determined by

1. the vertical position of the note-head on the staff,

2. the clef in operation on the staff at the location of the note, and

3. the transposition of the staff.

5See section 1.1.1 for a discussion of the relationship and distinction between pitch and frequency.
6 Pitch names will be denoted throughout this document using the A.S.A. pitch naming system. In this system, the pitch

of middle C is denoted C\4, the C an octave above middle C is denoted C\5. Multiple sharps and flats will be denoted with

the appropriate number of ]s and [s. The double-sharp symbol will not be used. For example, C]]4 has a sounding pitch two

semitones above middle C. C]]4 has the same sounding pitch within an equal-tempered system as B]]]3 and D\4. The octave

number of a pitch-name within the A.S.A system is always the same as that of the closest C below it on the staff. Thus the

sounding pitch of B]3 within a 12-tone equal-tempered system is one semitone higher than that of C[4. See section 1.4.1 for

algorithms for converting between MIPS pitches and A.S.A. pitch names.
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Figure 1.5: Examples of MIPS pitches in the Western staff notation system.

The morphetic pitch of a note is independent of the sounding pitch of the note and independent of its

chromatic pitch. It indicates only the vertical position of the note on the staff. If the morphetic pitch of A\0

is defined to be 0 then the morphetic pitch of B[[0 is 1 and the morphetic pitch of C[[[1 is 2 even though

all three have the same sounding pitch in an equal-tempered system and would be performed by pressing the

same key on a piano keyboard. The second element in each MIPS pitch in Figure 1.5 indicates the morphetic

pitch of the note.

In Figure 1.5 (a) notes 1, 2 and 3 have the same chromatic pitch but different morphetic pitches and in

Figure 1.5 (b) notes 1, 2 and 3 have the same morphetic pitch but different chromatic pitches. This illustrates

the fact that morphetic pitch and chromatic pitch are mutually independent.

1.2.3 Calculating the chromatic pitch, morphetic pitch and frequency of a pitch

It is useful to define functions for calculating certain values from a MIPS pitch. The following two definitions

provide functions for finding the chromatic pitch and morphetic pitch of a MIPS pitch:

Definition 63 (Chromatic pitch of a pitch) If p = [pc, pm] is a pitch in a well-formed pitch system then

the following function returns the chromatic pitch of p:

pc (p) = pc

Definition 64 (Morphetic pitch of a pitch) If p = [pc, pm] is a pitch in a well-formed pitch system then

the following function returns the morphetic pitch of p:

pm (p) = pm

These two definitions can be used to prove the following simple but useful theorem:

Theorem 65 If ψ is a pitch system and p is a pitch in ψ then

p = [pc (p) , pm (p)]

(The reader is reminded that the proof of each theorem stated in the main body of the document is given in

Chapter 4.)
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The following definition provides a function for returning the frequency of a pitch within a MIPS pitch

system7:

Definition 66 (Frequency of a pitch) If p is a pitch in the pitch system

ψ = [µc, µm, f0, pc,0]

then the function

f (p) = f0 × 2(pc(p)−pc,0)/µc

returns the frequency of p.

This function assumes that the pitch system being modelled is an equal-tempered pitch system in which each

octave is divided into µc equal intervals. To model a non-equal-tempered pitch system in MIPS, this function

would have to be modified appropriately. In principle, if the frequency of a pitch within a pitch system can

be calculated from its MIPS pitch, then the pitch system can be modelled in MIPS (provided that one defines

an appropriate frequency function in place of that given in Definition 66).

Enough concepts have now been introduced for a number of concrete examples of MIPS pitch systems to

be presented.

1.2.4 Some examples of MIPS pitch systems

A MIPS pitch system,

ψ = [µc, µm, f0, pc,0]

models a pitch system that employs scales containing µm notes, performed in an equal-tempered tuning

system where the frequency f0 is associated with the chromatic pitch pc,0 and where the octave is divided

into µc equal frequency intervals.

In the 12-tone equal-tempered system commonly used in the West, the frequency of the pitch A\4 is

commonly set to 440Hz. If A\0 is defined to have a MIPS pitch of [0, 0] then the Western tonal equal-tempered

pitch system and its associated staff-notation system which is designed to represent music constructed using

7-note scales, would be represented in MIPS as follows:

ψW = [12, 7, 440, 48] (1.1)

Within this pitch system, the pitch of C\4 (middle C) is [39, 23]. Therefore, using the frequency function

defined above (Definition 66), the frequency of C\4 is given by

f ([39, 23]) = 440× 2(39−48)/12

≈ 262Hz

As another example, consider the MIPS pitch system

ψAP = [12, 5, 440, 48] (1.2)

This models a pitch system that employs 5-note scales, embedded in a 12-tone equal-tempered chromatic,

tuned in the same way as that used in ψW (see Equation 1.1). An example of such a system would be one

that uses anhemitonic pentatonic scales (hence the ‘AP’ suffix on ψAP).

Just as the Western equal-tempered system divides the octave into 12 equal intervals, each of 100 cents,

so the ‘equipentatonic’ system divides the octave into 5 equal intervals each of 240 cents. An equipentatonic

7See section 1.1.1 for a discussion of the relationship and distinction between pitch and frequency
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system in which the pitch [0, 0] has the same frequency as A\0 in the Western system modelled by ψW would

be represented in MIPS as follows:

ψEP = [5, 5, 440, 20] (1.3)

As a final example, according to Clough et al. ([CDRR93, 36]) the classical Indian pitch system is supposed

to have consisted of a ‘ “chromatic” universe of 22 microtonal divisions of the octave (the śrutis)’ in which

scales containing seven degrees or ‘svaras’ were constructed. This system was almost definitely not strictly

equal-tempered but by appropriately changing the function defined in Definition 66, one could model this

classical Indian pitch system in MIPS using a pitch system such as

ψI = [22, 7, 440, 88] (1.4)

(Again, in this pitch system, the value of pc,0 is chosen (arbitrarily) so that the pitch [0, 0] has the same

sounding pitch as A\0 in the Western tonal system.)

1.2.5 Analogues of pitch, chromatic pitch and morphetic pitch in other pitch

representation systems

The pitch representation system devised by Brinkman ([Bri90, 119–135]) is designed to represent the Western

tonal pitch system and its associated staff notation system. Brinkman does not explicitly generalise his

system to all equal-tempered pitch systems. The MIPS pitch system that corresponds to the one modelled

by Brinkman is

ψBrinkman = [12, 7, 440, 57] (1.5)

where the pitch-name C\0 is assigned a MIPS pitch of [0, 0]. The chromatic pitch of a pitch in ψBrinkman

corresponds to Brinkman’s continuous pitch code (abbreviated cpc) ([Bri90, 122]) and a morphetic pitch in

ψBrinkman corresponds to Brinkman’s continuous name code (cnc) ([Bri90, 126]). Brinkman’s continuous

binomial representation (cbr) ([Bri90, 133]) is essentially identical to a MIPS pitch in ψBrinkman.

Unlike Brinkman, Agmon explicitly generalises his pitch representation system to any equal-tempered

system. In Agmon’s system, the function of a MIPS pitch is served by the integer pair that he consistently

labels (x, y), the value x corresponding to chromatic pitch and the value y corresponding to morphetic pitch

([Agm96, 44], [Agm89, 11]).

MIDI note numbers ([Rot92, 25, 143, 214], [MMA96, 10]) are similar to chromatic pitches in MIPS.

However, whereas a chromatic pitch can take any integer value whatsoever, a MIDI note number must be

an integer greater than or equal to 0 and less than 128. The frequency of the pitch associated with a MIDI

note number depends on the note mapping and tuning of the instrument producing the tone ([Rot92, 143]).

However, it is common for a MIDI note number of 60 to correspond to C\4, and in this particular case, the

MIDI note numbers are identical to a subset of the values that can be taken by a chromatic pitch in the pitch

system

ψMIDI = [12, 7, 440, 69] (1.6)

There is no analogue of morphetic pitch in the MIDI system and therefore nothing that corresponds to the

MIPS concept of a pitch.

1.2.6 Chromatic pitch equivalence, chroma and chroma equivalence

Figure 1.6 shows a number of notes which the reader should interpret as being in the normal Western 12-tone

equal-tempered system (i.e. ψW—see Equation 1.1 above). The pitches of notes 1, 2 and 3 in Figure 1.6 are

enharmonically equivalent. The pitches of notes 4, 5 and 6 in Figure 1.6 are also enharmonically equivalent.
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Figure 1.6: Examples of chromatic pitch equivalence and chroma equivalence in ψW.

The MIPS pitch of each note in ψW is given underneath the staff. Notes 1, 2 and 3 all have a chromatic pitch

of 48 and notes 4, 5 and 6 all have a chromatic pitch of 60. In MIPS, two pitches have the same chromatic

pitch if and only if they are enharmonically equivalent. The concept of enharmonic equivalence is therefore

modelled in MIPS by the concept of chromatic pitch equivalence which is defined as follows:

Definition 125 (Chromatic pitch equivalence of pitches) Two pitches p1 and p2 in a well-formed pitch

system are chromatic pitch equivalent if and only if

pc (p1) = pc (p2)

The fact that two pitches are chromatic pitch equivalent will be denoted

p1 ≡pc p2

All six pitches in Figure 1.6 are also ‘sounding octave equivalent’ in the sense that the frequency of the

sounding pitch of notes 1, 2 and 3 would be 1/2 of the frequency of the sounding pitch of notes 4, 5 and 6 in

an equal-tempered system. In MIPS, two notes are ‘sounding octave equivalent’ in this sense if and only if

they have the same chroma. The chroma of a MIPS pitch is defined as follows:

Definition 71 (Chroma of a pitch) If p is a pitch in a pitch system

ψ = [µc, µm, f0, pc,0]

then the following function returns the chroma of p:

c (p) = pc (p) mod µc

The concept of ‘sounding octave equivalence’ exhibited by the six notes in Figure 1.6 can be modelled in

MIPS by the concept of chroma equivalence which is defined as follows:

Definition 130 (Chroma equivalence of pitches) Two pitches p1 and p2 in a well-formed pitch system

are chroma equivalent if and only if

c (p1) = c (p2)

The fact that two pitches are chroma equivalent will be denoted

p1 ≡c p2

The MIPS concept of a chroma is essentially identical to the concept of pitch class used by Babbitt ([Bab60]),

Forte ([For73]), Rahn ([Rah80]), Morris ([Mor87]) and many other theorists concerned with the structure of

atonal and 12-tone music. The term chroma has been used by researchers in the field of music cognition
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Figure 1.7: Examples of morphetic pitch equivalence and morph equivalence in ψW.

and perception for at least half a century to signify that quality of the pitch of a tone that makes it similar

to the pitches of tones separated from it by one or more octaves. This perceptual similarity between the

pitches of tones separated by one or more octaves has led cognitive psychologists to model musical pitch

using a bidimensional model in which one dimension represents ‘pitch level’ or tone height and the other

dimension—tone chroma—represents the position of a tone within its octave ([Deu82a, 272], [She82, 352],

[WB82, 432–433]). Bachem used the term in this sense in 1950 ([Bac50]) and many other authors have

used it since including Shepard ([She64], [She65], [She82]), Burns and Ward ([BW82, 246, 262–264], [WB82,

432–433]), Deutsch ([Deu82a, 272]), Dowling ([Dow91, 35]), and Cross, West and Howell ([CWH91, 212,

223–224]).

Brinkman’s concept of pitch class (or pc) ([Bri90, 119–122]) is essentially identical to chroma in the MIPS

pitch system ψBrinkman defined in Equation 1.5 above. Cambouropoulos also uses the term pitch class in this

sense ([Cam98, 50], [Cam96, 234]) but unlike Brinkman, Cambouropoulos explicitly generalises the concept

to any equal-tempered pitch system of ‘N-tone’ division that uses ‘M-tone’ scales. The MIPS concept of

chroma is also essentially identical to the variable that Agmon consistently labels s in his definition of ‘octave

equivalence’ ([Agm89, 11], [Agm96, 44]).

1.2.7 Morphetic pitch equivalence, morph and morph equivalence

The A.S.A. pitch names of notes 1, 2 and 3 in Figure 1.7 are, respectively A\4, A]4 and A[[[4.
8 All three

notes have the same letter-name (A) and the same A.S.A. octave number (4) and this is represented in MIPS

by the fact that they all have the same morphetic pitch (in this case, 28). This form of equivalence is therefore

modelled in MIPS by the concept of morphetic pitch equivalence which is formally defined as follows:

Definition 126 (Morphetic pitch equivalence of pitches) Two pitches p1 and p2 in a well-formed pitch

system are morphetic pitch equivalent if and only if

pm (p1) = pm (p2)

The fact that two pitches are morphetic pitch equivalent will be denoted

p1 ≡pm p2

Notes 4, 5 and 6 in Figure 1.7 are also morphetic pitch equivalent but notes 1 and 4 are not because their

A.S.A. octave numbers are different. Nonetheless, all six notes in Figure 1.7 have the same letter-name (A)

and this is represented in MIPS by the fact that they all have the same morph.9 The morph of a MIPS pitch

is defined as follows:
8See footnote 6 for an explanation of the logic behind A.S.A. pitch names.
9The name morph derives from the Greek word for ‘shape’ on an analogy with the derivation of the word chroma from the

Greek word for ‘colour’. If one property of a pitch is called its ‘colour’ then another one might as well be called its ‘shape’ !
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Definition 76 (Morph of a pitch) If p is a pitch in the pitch system

ψ = [µc, µm, f0, pc,0]

then the following function returns the morph of p:

m (p) = pm (p) mod µm

The ‘letter-name equivalence’ exhibited by the six notes in Figure 1.7 is modelled in MIPS by the concept of

morph equivalence which is formally defined as follows:

Definition 131 (Morph equivalence of pitches) Two pitches p1 and p2 in a well-formed pitch system

are morph equivalent if and only if

m (p1) = m (p2)

The fact that two pitches are morph equivalent will be denoted

p1 ≡m p2

Brinkman’s concept of ‘name class’ (nc) ([Bri90, 124–126]) is essentially identical to morph within the MIPS

pitch system ψBrinkman (see Equation 1.5). However Brinkman does not explicitly generalise his concept of

‘name class’ to other pitch systems. Cambouropoulos also uses the term ‘name class’ to refer to the concept

in his GPIR that corresponds to morph in MIPS. In Agmon’s definition of ‘octave equivalence’ ([Agm89, 11],

[Agm96, 44]) the function that morph serves within MIPS is carried out by the variable that he consistently

labels t.

In [Clo79], Clough elaborates a ‘theory of diatonic pc sets’ that corresponds to the morph set theory for

a MIPS pitch system in which µm = 7 and the letter-name C in the Western diatonic system is represented

by the morph 0. In [Clo80], Clough continues to use the term ‘pitch class’ for the concept that is called

morph in MIPS but specifies that although ‘the term pitch class (PC) will be employed in the usual sense’,

‘a universe of seven PC’s is posited’ ([Clo80, 468]). In [CD91], Clough and Douthett avoid using a concept

that corresponds to morph in MIPS by considering ‘subset[s] of d pcs selected from the chromatic universe

of c pcs’ which they label in the following way

Dc,d = {D0, D1, D2, . . . , Dd−1}

In this system, each Dk is a pitch class in the 12-tone chromatic (that is, Dk is a chroma) and the subscript

k actually fulfills the function of morph since it indicates which chroma corresponds to which morph.

1.2.8 Chromatic octave and morphetic octave

If the notes in Figure 1.8 are interpreted as being in the equal-tempered pitch system ψW, then the frequency

(and chromatic pitch) of note 1 (B]4) is higher than that of note 2 (C[5). However, the A.S.A. octave number

and morphetic pitch of note 1 is lower than that of note 2. This suggests the utility of distinguishing between

two types of octave designation—one for sounding pitch (chromatic pitch) and one for morphetic pitch.

In MIPS, the chromatic octave of a pitch is defined as follows:

Definition 68 (Chromatic octave of a pitch) If p is a pitch in the pitch system

ψ = [µc, µm, f0, pc,0]

then the following function returns the chromatic octave of p:

oc (p) = pc (p) div µc



CHAPTER 1. INTRODUCTION TO MIPS AND THE GENUS REPRESENTATION OF OCTAVE EQUIVALENCE22

Figure 1.8: Examples of morphetic octave equivalence and chromatic octave equivalence in ψW.

The morphetic octave of a pitch is defined as follows:

Definition 69 (Morphetic octave of a pitch) If p is a pitch in the pitch system

ψ = [µc, µm, f0, pc,0]

then the following function returns the morphetic octave of p:

om (p) = pm (p) div µm

In Figure 1.8, notes 3 and 4 have the same chromatic octave but different morphetic octaves; and notes 5

and 6 have the same morphetic octave but different chromatic octaves. This suggests the utility of defining

two more equivalence relations: morphetic octave equivalence and chromatic octave equivalence. These are

defined as follows:

Definition 128 (Chromatic octave equivalence of pitches) Two pitches p1 and p2 in a well-formed

pitch system are chromatic octave equivalent if and only if

oc (p1) = oc (p2)

The fact that two pitches are chromatic octave equivalent will be denoted

p1 ≡oc p2

Definition 129 (Morphetic octave equivalence of pitches) Two pitches p1 and p2 in a well-formed

pitch system are morphetic octave equivalent if and only if

om (p1) = om (p2)

The fact that two pitches are morphetic octave equivalent will be denoted

p1 ≡om p2

We can now say, therefore, that in Figure 1.8, notes 3 and 4 are chromatic octave equivalent but not

morphetic octave equivalent; and that notes 5 and 6 are morphetic octave equivalent but not chromatic

octave equivalent.

If one takes the MIPS pitch system ψBrinkman defined in Equation 1.5 and sets the pitch-name C\0 to

correspond to the MIPS pitch [0, 0] then, for any pitch p in this pitch system, the morphetic octave is equal to

the A.S.A. octave number. In other words, the octave number in the A.S.A. pitch naming system corresponds
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to morphetic octave in the MIPS pitch system ψBrinkman with the pitch name C\0 set to correspond to the

MIPS pitch [0, 0]. As already mentioned above (see section 1.2.5), Brinkman’s concept of ‘continuous pitch

code’ corresponds to chromatic pitch within ψBrinkman and it can be shown that for any pitch p in any MIPS

pitch system

ψ = [µc, µm, f0, pc,0]

it is true that

pc (p) = (oc (p)× µc) + c (p) (1.7)

(See Theorem 75 in Chapter 4.) However, Brinkman states that his continuous pitch code, ‘cpc’, can be

calculated using the following formula

cpc = (oct× 12) + pc (1.8)

where oct is the A.S.A. octave number and pc is his ‘pitch class’ which corresponds exactly to chroma in

ψBrinkman. But, as mentioned above, A.S.A octave number corresponds exactly to morphetic octave in the

pitch system ψBrinkman when C\0 is set to correspond to the MIPS pitch [0, 0]. Therefore, in MIPS terms,

Brinkman’s definition of ‘cpc’ can be stated as follows:

pc (p) = (om (p)× µc) + c (p) (1.9)

where µc = 12 and the pitch [0, 0] corresponds to C\0. But Equation 1.9 and Equation 1.7 together imply

that

om (p) = oc (p)

which was shown above not to be true in general (see, for example, note 3 in Figure 1.8). This, in turn,

implies that at least one of Equation 1.9 and Equation 1.7 is incorrect. Since 1.7 can be shown to be true,

this implies that 1.9 is incorrect.

An example will serve to demonstrate that Equation 1.9 is incorrect. Let p1 = [48, 27], the MIPS pitch

representation of B]3 in ψBrinkman with C\0 corresponding to [0, 0]. From Definition 71 it follows that

c (p1) = pc (p1) mod µc

= 48 mod 12

= 0

(1.10)

and from Definition 69 it follows that

om (p1) = pm (p1) div µm

= 27 div 7

= 3

(1.11)

Substituting into Equation 1.9 the values of om (p1) and c (p1) found in Equations 1.10 and 1.11 gives

pc (p) = (om (p)× µc) + c (p)

= (3× 12) + 0

= 36

(1.12)

which we know to be incorrect because p1 was defined to be equal to [48, 27]. In fact, Equation 1.12 implies

that B]3 has the same frequency as C\3 which is clearly incorrect. This arises because oc (p1) 6= om (p1).

Equations 1.10 and 1.11 are known to be correct therefore Equation 1.9 is incorrect.
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It is interesting to note that in his definition of ‘continuous binomial representation’ (‘cbr’) ([Bri90, 133–

134]) (which corresponds to pitch in the MIPS pitch system ψBrinkman), Brinkman correctly specifies that

[cpc, cnc] = [(poct× 12) + pc, (noct× 7) + nc]

where poct corresponds to chromatic octave in ψBrinkman and noct corresponds to morphetic octave in the

same pitch system with C\0 represented by [0, 0]. However, Brinkman claims that one only needs to use

‘separate octave designators’ if one needs ‘to represent notes with any number of accidentals’ and goes on

to claim that ‘in practice this is not really necessary, so long as we are willing to accept the limitation of

quintuple accidentals and quintuple augmentation and diminution for intervals’. As shown in the previous

paragraph, this is not true: one needs to distinguish between chromatic and morphetic octave whenever ‘the

notated pitch (cnc) is in a different octave from the sounding pitch (cpc)’ ([Bri90, 134]) and this occurs even

for pitches such as C[4 or B]3 which have just a single sharp or flat.

It is therefore disappointing that Brinkman downplays the importance of distinguishing between chromatic

and morphetic octave and, as a consequence, incorrectly concludes that ‘we can use a single octave number,

that in which the pitch is notated, and calculate the correct pitch level with minimal computation’ ([Bri90,

134]).

Like Brinkman, Cambouropoulos decides to use only morphetic octave in his GPIR. However this, in

itself, does not cause a problem because he explicitly represents the accidental of the pitch name. In Cam-

bouropoulos’ GPIR, a pitch is represented as an ordered quadruple, [nc,mdf, pc, oct], where nc and pc are

name class and pitch class as in Brinkman’s system, oct is essentially the same as morphetic octave and

mdf is a numerical representation of the accidental with −1 corresponding to [, 0 corresponding to \, 1

corresponding to ] and so on. Cambouropoulos specifies that mdf takes values from {−u, . . . ,−1, 0, 1, . . . , u}

where ‘u is the number of pitch interval units in the largest scale-step interval’ ([Cam98, 50]). This implies

that Cambouropoulos’ system cannot be used to represent notes with more than two sharps or flats. The

reason for this restriction is unclear.

1.2.9 The concept of a MIPS pitch interval

In MIPS, the traditional concept of a pitch interval is modelled by the MIPS concept of a pitch interval.

However, before defining the concept of a MIPS pitch interval, it is necessary to define the ideas of morphetic

pitch interval and chromatic pitch interval :

Definition 236 (Chromatic pitch interval) If pc,1 and pc,2 are two chromatic pitches in a well-formed

pitch system ψ, then the chromatic pitch interval from pc,1 to pc,2 is defined and denoted as follows:

∆ pc (pc,1, pc,2) = pc,2 − pc,1

Definition 240 (Morphetic pitch interval) If pm,1 and pm,2 are two morphetic pitches in a well-formed

pitch system ψ, then the morphetic pitch interval from pm,1 to pm,2 is defined and denoted as follows:

∆ pm (pm,1, pm,2) = pm,2 − pm,1

It is now possible to present definitions for the chromatic pitch interval between two pitches and the morphetic

pitch interval between two pitches:

Definition 259 (Definition of ∆ pc (p1, p2)) If p1 and p2 are two pitches in a pitch system ψ then the

chromatic pitch interval from p1 to p2 is defined and denoted as follows:

∆ pc (p1, p2) = ∆ pc (pc (p1) , pc (p2))
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Definition 261 (Definition of ∆ pm (p1, p2)) If p1 and p2 are two pitches in a pitch system ψ then the

morphetic pitch interval from p1 to p2 is defined and denoted as follows:

∆ pm (p1, p2) = ∆ pm (pm (p1) , pm (p2))

The concept of a MIPS pitch interval can then be defined as follows:

Definition 265 (Pitch interval) If p1 and p2 are two pitches in a pitch system ψ then the pitch interval

from p1 to p2 is defined and denoted as follows:

∆ p (p1, p2) = [∆ pc (p1, p2) ,∆ pm (p1, p2)]

It is useful to define two functions, one for calculating the chromatic pitch interval of a pitch interval and

one for calculating the morphetic pitch interval of a pitch interval:

Definition 266 (Chromatic pitch interval of a pitch interval) If p1 and p2 are any two pitches in a

pitch system ψ then

∆p = ∆ p (p1, p2) ⇒ ∆ pc (∆p) = ∆ pc (p1, p2)

Definition 268 (Morphetic pitch interval of a pitch interval) If p1 and p2 are any two pitches in a

pitch system ψ then

∆p = ∆ p (p1, p2) ⇒ ∆ pm (∆p) = ∆ pm (p1, p2)

These two definitions can be used to prove the following theorems which provide formulae for calculating the

chromatic pitch interval of a pitch interval and the morphetic pitch interval of a pitch interval:

Theorem 269 (Formula for ∆ pm (∆p)) If ∆p = [∆pc,∆pm] in a pitch system ψ then

∆ pm (∆p) = ∆pm

Theorem 267 (Formula for ∆ pc (∆p)) If ∆p = [∆pc,∆pm] in a pitch system ψ then

∆ pc (∆p) = ∆pc

It is now possible to define a function for transposing a chromatic pitch by a chromatic pitch interval:

Definition 426 (Definition of τpc (pc,∆pc)) If ψ is a pitch system and pc,1 and pc,2 are chromatic pitches

in ψ and ∆pc is a chromatic pitch interval in ψ then

∆pc = ∆ pc (pc,1, pc,2) ⇒ τpc (pc,1,∆pc) = pc,2

This definition can be used in conjunction with other MIPS definitions and theorems to prove the following

theorem which provides us with a formula for calculating the chromatic pitch that results when one transposes

a chromatic pitch by a chromatic pitch interval:

Theorem 427 (Formula for τpc (pc,∆pc)) If ψ is a pitch system and pc is a chromatic pitch in ψ and ∆pc

is a chromatic pitch interval in ψ then

τpc (pc,∆pc) = pc + ∆pc

The definition of the morphetic pitch transposition function is strictly analogous to that of the chromatic

pitch transposition function:
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Definition 431 (Definition of τpm (pm,∆pm)) If ψ is a pitch system and pm,1 and pm,2 are morphetic

pitches in ψ and ∆pm is a morphetic pitch interval in ψ then

∆pm = ∆ pm (pm,1, pm,2) ⇒ τpm (pm,1,∆pm) = pm,2

This definition can be used in conjunction with other MIPS definitions and theorems to prove the following

theorem which provides us with a formula for calculating the morphetic pitch that results when a morphetic

pitch is transposed by a morphetic pitch interval:

Theorem 432 (Formula for τpm (pm,∆pm)) If ψ is a pitch system and pm is a morphetic pitch in ψ and

∆pm is a morphetic pitch interval in ψ then

τpm (pm,∆pm) = pm + ∆pm

It is now possible to define the pitch transposition function:

Definition 441 (Definition of τp (p,∆p)) If ψ is a pitch system and p1 and p2 are pitches in ψ and ∆p is

a pitch interval in ψ then

∆p = ∆ p (p1, p2) ⇒ τp (p1,∆p) = p2

This definition can be used in conjunction with certain other MIPS definitions and theorems to prove the

following theorem which provides us with a formula for calculating the pitch that results when a MIPS pitch

is transposed by a MIPS pitch interval:

Theorem 442 (Formula for τp (p,∆p)) If ψ is a pitch system and p is a pitch in ψ and ∆p is a pitch

interval in ψ then

τp (p,∆p) = [τpc (pc (p) ,∆ pc (∆p)) , τpm (pm (p) ,∆ pm (∆p))]

The concept of the inverse of a pitch interval will now be be defined:

Definition 561 (Inverse of a pitch interval) If ψ is a pitch system and ∆p is a pitch interval in ψ and

p is a pitch in ψ then the inverse of ∆p, denoted ιp (∆p), is the pitch interval that satisfies the following

equation

τp (τp (p,∆p) , ιp (∆p)) = p

This definition together with other definitions and theorems from MIPS can be used to prove the following

theorem which provides a formula for calculating the inverse of a pitch interval:

Theorem 563 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆p is a pitch interval in ψ then

ιp (∆p) = [−∆ pc (∆p) ,−∆ pm (∆p)]

1.3 The genus representation of octave equivalence

This section is devoted to introducing, defining and discussing the genus representation of octave equivalence.



CHAPTER 1. INTRODUCTION TO MIPS AND THE GENUS REPRESENTATION OF OCTAVE EQUIVALENCE27

Figure 1.9: The traditional concept of ‘octave equivalence’ in ψW.

1.3.1 Chromamorph and genus

In traditional Western tonal theory, two notes are considered to be ‘octave equivalent’ if and only if they are

an integer number of perfect octaves apart. Thus, in Figure 1.9, notes 1, 2 and 3 are ‘octave equivalent’ in

this traditional sense. It is clear from Figure 1.9 that if two notes are separated by an integer number of

perfect octaves then they will have the same chroma and the same morph. So as a first attempt at modelling

the traditional concept of ‘octave equivalence,’ let us define the concept of a chromamorph and its associated

equivalence relation, chromamorph equivalence:

Definition 80 (Chromamorph of a pitch) If p is a pitch in a well-formed pitch system, then the following

function returns the chromamorph of p:

q (p) = [c (p) ,m (p)]

Definition 132 (Chromamorph equivalence of pitches) Two pitches p1 and p2 in a well-formed pitch

system are chromamorph equivalent if and only if

q (p1) = q (p2)

The fact that two pitches are chromamorph equivalent will be denoted

p1 ≡q p2

Notes 1, 2 and 3 in Figure 1.9 all have the same chromamorph and are therefore chromamorph equivalent.

A number of authors have attempted to model the traditional concept of ‘octave equivalence’ using a

concept essentially identical to chromamorph equivalence of pitches.10 However, chromamorph equivalence

does not correctly model the traditional concept of ‘octave equivalence’ within the 12-tone equal-tempered

tonal pitch system and pitch notation system.

Notes 1 and 2 in Figure 1.10 have the same chromamorph—[4, 6] in ψW. They are therefore chromamorph

equivalent. However, the interval between them is certainly not an integer number of perfect octaves—it is,

10See, for example, Brinkman’s ‘binomial representation’ ([Bri90, 128]) and Agmon’s definition of ‘octave equivalence’ ([Agm89,

11], [Agm96, 44]).
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Figure 1.10: The difference between genus and chromamorph.

in fact, a ‘12×diminished octave’. The two notes are therefore not ‘octave equivalent’ in the traditional tonal

sense.

As defined above (Definition 71) the chroma of a pitch p = [pc, pm] is given by the following equation:

c (p) = pc mod µc

and the morph of p = [pc, pm] (see Definition 76) is given by the following equation:

m (p) = pm mod µm

Informally speaking, the chroma of a pitch is found by taking the chromatic pitch and subtracting the

chromatic modulus a certain number of times until one has a remainder c that is between 0 and µc − 1. The

number of times we have to subtract the chromatic modulus from the chromatic pitch to get the chroma is

equal to the chromatic octave (see Definition 68):

oc (p) = pc (p) div µc

Similarly, the morph of a pitch is found by taking the morphetic pitch and subtracting the morphetic modulus

a certain number of times until one has a remainder m that is between 0 and µm−1. The number of times we

have to subtract the morphetic modulus from the morphetic pitch to get the morph is equal to the morphetic

octave (see Definition 69):

om (p) = pm (p) div µm

But, of course, om (p) and oc (p) for a given pitch are not necessarily the same because pc (p) and pm (p) are

mutually independent and can each take any integer value.

For example, to find the chroma of note 1 in Figure 1.10 we find the least positive remainder when we

divide the chromatic pitch (52) by the chromatic modulus. To do this in this case we effectively subtract the

chromatic modulus from the chromatic pitch four times:

52− (4× 12) = 4
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To find the morph we find the least positive remainder when we divide the morphetic pitch by the morphetic

modulus which, in this case involves subtracting the morphetic modulus three times from the morphetic pitch:

27− (3× 7) = 6

To find the chroma of note 2 in Figure 1.10 we have to subtract the chromatic modulus four times from the

chromatic pitch

52− (4× 12) = 4

and to find the morph we subtract the morphetic modulus four times from the morphetic pitch

34− (4× 7) = 6

For note 2, the chromatic octave is the same as the morphetic octave but for note 1, the chromatic octave

is not equal to the morphetic octave. Let us define the concept of octave difference as follows:

Definition 81 (Octave difference of a pitch) If p is a pitch in a well-formed pitch system, then the

following function returns the octave difference of p:

do (p) = oc (p)− om (p)

This implies that the octave difference of note 1 is

4− 3 = 1

but the octave difference of note 2 is

4− 4 = 0

For two notes to be ‘octave equivalent’ in the traditional tonal sense they must have not only the same morph

and the same chroma but also the same octave difference.

This example suggests that we can achieve a correct representation of tonal octave equivalence simply by

using a representation in which we replace the chroma in a chromamorph with a value that is the result of

subtracting the chromatic modulus from the chromatic pitch the same number of times that we subtract the

morphetic modulus from the morphetic pitch to get the morph. In MIPS, this replacement for the chroma

in a chromamorph is called the chromatic genus of a pitch and it is defined as follows:

Definition 82 (Chromatic genus of a pitch) If p is a pitch in a well-formed pitch system

ψ = [µc, µm, f0, pc,0]

then the following function returns the chromatic genus of p:

gc (p) = pc (p)− µc × om (p)

This gives us a new representation of octave equivalence which in this document will be called genus. A genus

is an ordered pair similar to a chromamorph, except that the first element is the chromatic genus of the pitch

and the second element is the morph of the pitch. The genus of a pitch is defined as follows:

Definition 84 (Genus of a pitch) If p is a pitch in a well-formed pitch system then the following function

returns the genus of p:

g (p) = [gc (p) ,m (p)]

The corresponding concept of genus equivalence is defined as follows:



CHAPTER 1. INTRODUCTION TO MIPS AND THE GENUS REPRESENTATION OF OCTAVE EQUIVALENCE30

Definition 135 (Genus equivalence of pitches) Two pitches p1 and p2 in a well-formed pitch system are

genus equivalent if and only if

g (p1) = g (p2)

The fact that two pitches are genus equivalent will be denoted

p1 ≡g p2

It can be shown (see Definition 87 in Chapter 4) that two pitches will have the same genus if and only if they

have the same chroma, the same morph and the same octave difference.

Note that the genus of a pitch can be calculated directly from the chromatic pitch and morphetic pitch

of the pitch. This implies that in order to find the genus of a pitch within a pitch system, one does not

need first to know which sets within that pitch system correspond to the diatonic sets in the Western tonal

system. Genus equivalence therefore correctly models the logic of the Western tonal pitch system and can be

generalised to any other pitch system without first specifying which sets in that pitch system correspond to

the diatonic sets of the Western tonal system.

1.3.2 Deriving MIPS objects from a genus

Given a MIPS pitch, it is possible to calculate its chromatic pitch (Definition 63), its morphetic pitch (Def-

inition 64), its chroma (Definition 71) and so on. In a similar way, it is possible to calculate the chroma,

morph, chromamorph and chromatic genus of a genus.

The function for returning the chromatic genus of a genus is defined as follows:

Definition 114 (Chromatic genus of a genus) If g is the genus of a pitch p in a pitch system ψ then the

function gc (g) must return the chromatic genus of p. In other words, by definition, it must be true that

(g = g (p)) ⇒ (gc (g) = gc (p))

This definition can be used to prove the following theorem which provides a formula for calculating the

chromatic genus of a genus:

Theorem 115 (Chromatic genus of a genus) If g = [gc,m] is the genus of a pitch in the pitch system ψ

then

gc (g) = gc

The function for returning the morph of a genus is defined as follows:

Definition 116 (Morph of a genus) If g is the genus of a pitch p in a pitch system ψ then the function

m(g) must return the morph of p. In other words, by definition, it must be true that

(g = g (p)) ⇒ (m (g) = m (p))

This definition can be used to prove the following theorem which provides a formula for calculating the morph

of a genus:

Theorem 117 (Morph of a genus) If g = [gc,m] is the genus of a pitch in the pitch system ψ then

m (g) = m

Theorems 115 and 117 can be used to prove the following simple but useful theorem:
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Theorem 118 If g is a genus in a pitch system ψ then

g = [gc (g) ,m (g)]

The function for returning the chroma of a genus is defined as follows:

Definition 119 (Chroma of a genus) If g is the genus of a pitch p in a pitch system ψ then the function

c (g) must return the chroma of p. In other words, by definition, it must be true that

(g = g (p)) ⇒ (c (g) = c (p))

This definition can be used to prove the following theorem which provides a formula for calculating the

chroma of a genus:

Theorem 120 (Chroma of a genus) If g is the genus of a pitch in the pitch system

ψ = [µc, µm, f0, pc,0]

then

c (g) = gc (g) mod µc

Finally, the function that returns the chromamorph of a genus is defined as follows:

Definition 121 (Chromamorph of a genus) If g is the genus of a pitch p in a pitch system ψ then the

function q (g) must return the chromamorph of p. In other words, by definition, it must be true that

(g = g (p)) ⇒ (q (g) = q (p))

This definition can be used to prove the following theorem which provides a formula for calculating the

chromamorph of a genus:

Theorem 122 (Chromamorph of a genus) If g is the genus of a pitch in the pitch system ψ then

q (g) = [c (g) ,m (g)]

1.3.3 The concept of a genus interval

Before defining the concept of a genus interval, it is necessary to define that of a morph interval :

Definition 217 (Morph interval) If m1 and m2 are two morphs in a well-formed pitch system

ψ = [µc, µm, f0, pc,0]

then the morph interval from m1 to m2 is given by the following equation:

∆ m (m1,m2) = (m2 −m1) mod µm

This definition specifies how to calculate the morph interval from one morph to another. The following

definition specifies how to calculate the morph interval from one genus to another.

Definition 228 (Morph interval between two genera) If g1 and g2 are two genera in a pitch system ψ

then the morph interval from g1 to g2 is defined and denoted as follows:

∆ m (g1, g2) = ∆ m (m (g1) ,m (g2))
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The following definition provides a formula for calculating the chromatic genus interval between two genera:

Definition 230 (Chromatic genus interval between two genera) If g1 and g2 are two genera in a pitch

system

ψ = [µc, µm, f0, pc,0]

then the chromatic genus interval from g1 to g2 is defined and denoted as follows:

∆ gc (g1, g2) = gc (g2)− gc (g1)− µc × ((m (g2)−m (g1)) div µm)

The following definition uses Definitions 230 and 228 to provide an expression for the genus interval between

two genera:

Definition 231 (Genus interval between two genera) If g1 and g2 are two genera in a pitch system ψ

then the genus interval from g1 to g2 is defined and denoted as follows:

∆ g (g1, g2) = [∆ gc (g1, g2) ,∆ m (g1, g2)]

1.3.4 Transposing a genus

Having defined the concepts of genus and genus interval, it is now possible to define a function for transposing

a genus by a genus interval:

Definition 421 (Genus transposition function) If ψ is a pitch system and g1 and g2 are genera in ψ

and ∆g is a genus interval in ψ then the genus transposition function is defined as follows:

∆ g (g1, g2) = ∆g ⇒ τg (g1,∆g) = g2

This definition in combination with a number of other MIPS theorems and definitions can be used to prove

a theorem which provides a formula for calculating the genus that results from transposing any given genus

by any given genus interval. However, before stating this theorem, it is necessary to introduce three more

concepts, namely, the morph interval of a genus interval, the chromatic genus interval of a genus interval

and the morph transposition function.

The concept of the morph interval of a genus interval is defined as follows:

Definition 315 (Morph interval of a genus interval) If g1 and g2 are two genera in a pitch system ψ

then

∆g = ∆ g (g1, g2) ⇒ ∆ m (∆g) = ∆ m (g1, g2)

This definition can be used together with Definition 231 to prove the following theorem which provides a

formula for calculating the morph interval of a genus interval:

Theorem 316 (Formula for morph interval of a genus interval) If ∆g is a genus interval in a pitch

system ψ then

∆g = [∆gc,∆m] ⇒ ∆ m (∆g) = ∆m

The concept of the chromatic genus interval of a genus interval is defined as follows:

Definition 309 (Chromatic genus interval of a genus interval) If g1 and g2 are two genera in a pitch

system ψ then

∆g = ∆ g (g1, g2) ⇒ ∆ gc (∆g) = ∆ gc (g1, g2)
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This definition can be used together with Definition 231 to prove the following theorem which provides a

formula for calculating the chromatic genus interval of a genus interval:

Theorem 310 (Formula for chromatic genus interval of a genus interval) If ∆g is a genus interval

in a pitch system ψ then

∆g = [∆gc,∆m] ⇒ ∆ gc (∆g) = ∆gc

The morph transposition function is defined as follows:

Definition 411 (Morph transposition function) If ψ is a pitch system and m1 and m2 are morphs in ψ

and ∆m is a morph interval in ψ then the morph transposition function is defined as follows:

∆ m (m1,m2) = ∆m⇒ τm (m1,∆m) = m2

This definition, together with other theorems and definitions from MIPS can be used to prove the following

theorem which provides a formula for calculating the morph that results when one transposes a morph by a

morph interval:

Theorem 412 (Formula for morph transposition function) If m is a morph and ∆m is a morph

interval in a pitch system

ψ = [µc, µm, f0, pc,0]

then

τm (m,∆m) = (m+ ∆m) mod µm

It is now possible to state a theorem that provides a formula for calculating the genus that results when one

transposes a genus by a genus interval:

Theorem 422 (Formula for genus transposition function) If

ψ = [µc, µm, f0, pc,0]

is a pitch system and g is a genus in ψ and ∆g is a genus interval in ψ then

τg (g,∆g) = [gc (g) + ∆ gc (∆g)− µc × ((m (g) + ∆ m (∆g)) div µm) , τm (m (g) ,∆ m (∆g))]

This theorem can be used in conjunction with a number of other MIPS definitions and theorems to prove the

following two theorems that state certain important properties of the genus transposition function:

Theorem 424 If ψ is a pitch system and g1 and g2 are genera in ψ and ∆g is a genus interval in ψ then

τg (g1,∆g) = g2 ⇐⇒ ∆ g (g1, g2) = ∆g

Theorem 425 If ψ is a pitch system and ∆g1 and ∆g2 are genus intervals in ψ and g is a genus in ψ then

(τg (g,∆g1) = τg (g,∆g2)) ⇒ (∆g1 = ∆g2)

1.3.5 Summation of genus intervals

The following definition provides a formula for calculating the sum of a collection of genus intervals:

Definition 491 (Summation of genus intervals) If

ψ = [µc, µm, f0, pc,0]
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is a pitch system and

∆g1,∆g2, . . .∆gn

is a collection of genus intervals in ψ then

σg (∆g1,∆g2, . . .∆gn) =

[(

n
∑

k=1

∆ gc (∆gk)

)

− µc ×

((

n
∑

k=1

∆ m (∆gk)

)

div µm

)

,

(

n
∑

k=1

∆ m (∆gk)

)

mod µm

]

This definition in conjunction with other MIPS definitions and theorems can be used to prove the following

theorem which provides a formula for calculating the genus that results when a genus is transposed by the

sum of a collection of genus intervals:

Theorem 492 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, g is a genus in ψ and

∆g1,∆g2, . . .∆gn

is a collection of genus intervals in ψ then

τg (g, σg (∆g1,∆g2, . . .∆gn)) =







gc (g) + (
∑n

k=1 ∆ gc (∆gk))− µc × (((
∑n

k=1 ∆ m (∆gk)) + m (g)) div µm) ,

(m (g) + (
∑n

k=1 ∆ m (∆gk))) mod µm







The following theorem simply states that transposing a genus g by the sum of a collection of genus inter-

vals ∆g1,∆g2, . . .∆gn gives the same result as transposing g by ∆g1, then transposing the result of this

transposition by ∆g2, the result of that transposition by ∆g3 and so on:

Theorem 493 If ψ is a pitch system and

∆g1,∆g2, . . .∆gn

is a collection of genus intervals in ψ and g is a genus in ψ then

τg (g, σg (∆g1,∆g2, . . .∆gn)) = τg (. . . τg (τg (g,∆g1) ,∆g2) . . . ,∆gn)

1.3.6 Inverse of a genus interval

The Inverse of a genus interval is defined as follows:

Definition 494 (Inverse of a genus interval) If ψ is a pitch system and ∆g is a genus interval in ψ and

g is a genus in ψ then the inverse of ∆g, denoted ιg (∆g), is the genus interval that satisfies the following

equation

τg (τg (g,∆g) , ιg (∆g)) = g

The following theorem provides a formula for calculating the inverse of a genus interval:

Theorem 496 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆g is a genus interval in ψ then

ιg (∆g) = [µc −∆ gc (∆g) , (−∆ m (∆g)) mod µm]
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1.3.7 Exponentiation of a genus interval

The concept of genus interval exponentiation is defined as follows:

Definition 500 (Exponentiation of a genus interval) Given that:

1. ψ is a pitch system;

2. g is a genus in ψ;

3. ∆g is a genus interval in ψ;

4. n is an integer;

5. k is an integer and 1 ≤ k ≤ abs (n);

6. ∆g1,k = ∆g for all k; and

7. ∆g2,k = ιg (∆g) for all k;

then εg,n (∆g) returns a genus interval that satisfies the following equation:

τg (g, εg,n (∆g)) =











τg (g, σg (∆g1,1,∆g1,2, . . .∆g1,n))

g

τg (g, σg (∆g2,1,∆g2,2, . . .∆g2,−n))

if

if

if

n > 0

n = 0

n < 0

This definition effectively states that if n is a positive integer, then transposing a genus g by the nth power

of the genus interval ∆g must give the same result as that obtained when one transposes g by the sum of n

genus intervals all of which are equal to ∆g. The definition also states that if n is a negative integer, then the

result of transposing a genus by the nth power of ∆g must be the same as that obtained when one transposes

g by the sum of a collection of −n intervals, all of which are equal to the inverse of ∆g. Transposing a genus

by the zeroth power of any genus interval must result in no change in the genus.

The following theorem provides a formula for calculating the nth power of a genus interval:

Theorem 501 (Formula for εg,n (∆g)) If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆g is a genus interval in ψ and n is an integer then

εg,n (∆g) =







n×∆ gc (∆g)− µc × ((n×∆ m (∆g)) div µm) ,

(n×∆ m (∆g)) mod µm







The following three theorems state some interesting properties of the exponentiation function for genus

intervals:

Theorem 502 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆g is any genus interval in ψ then

ιg (∆g) = εg,−1 (∆g)

Theorem 503 If

ψ = [µc, µm, f0, pc,0]
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is a pitch system, n1, n2, . . . nk is a collection of integers and ∆g is a genus interval in ψ then

εg,nk
(. . . εg,n2 (εg,n1 (∆g)) . . .) = εg,

∏

k
j=1 nj

(∆g)

Theorem 508 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n1, n2, . . . nk is a collection of integers and ∆g is a genus interval in ψ then

σg (εg,n1 (∆g) , εg,n2 (∆g) , . . . , εg,nk
(∆g)) = εg,

∑

k
j=1 nj

(∆g)

1.3.8 Exponentiation of the genus transposition function

It is useful to define the concept of exponentiating the genus transposition function. This concept is defined

as follows:

Definition 509 (Definition of τg,n (g,∆g)) If ψ is a pitch system and g is a genus in ψ and ∆g is a genus

interval in ψ then

τg,n (g,∆g) = τg (g, εg,n (∆g))

This definition, in combination with a number of other MIPS definitions and theorems can be used to prove

the following theorem:

Theorem 510 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n1, n2, . . . , nk is a collection of integers, g is a genus in ψ and ∆g is a genus interval in ψ

then

τg,nk
(. . . τg,n2 (τg,n1 (g,∆g) ,∆g) . . . ,∆g) = τg,

∑

k
j=1 nj

(g,∆g)

1.4 Using MIPS to model the A.S.A. pitch naming system and the

Western tonal system of pitch interval names

The concepts introduced above can be used to construct four useful algorithms:

1. an algorithm that takes a MIPS pitch in ψW as input and generates the A.S.A. pitch name that

corresponds to that pitch as output;

2. an algorithm that takes an A.S.A. pitch name as input and generates as output the MIPS pitch in ψW

that corresponds to that pitch name;

3. an algorithm that takes a normal Western tonal pitch interval name as input (e.g. “Rising major third”)

and generates the corresponding pitch interval in ψW as output; and

4. an algorithm that takes a pitch interval in ψW as input and generates the normal Western tonal pitch

interval name as output.

This section is devoted to describing these four algorithms.
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1.4.1 Using the MIPS concept of a pitch to model the A.S.A. pitch naming

system

As already mentioned above, in the A.S.A. pitch-naming system, a note has a letter-name (A to G), an

inflection (. . . , [[, [, \, ], ]], . . .) and an octave number (for example, middle C—C\4—has an octave number

of 4 and the C above middle C (C\5) has an octave number of 5). This naming system derives from the staff

notation system which has evolved over the past four hundred years or so to be a highly effective means of

notating Western tonal music. To this extent, the pitch-naming system correctly models the Western tonal

pitch system.

There is a one-to-one correspondence between a pitch in ψW (see Equation 1.1 above) and an A.S.A. pitch-

name. Two algorithms can therefore be defined: one for returning the A.S.A. pitch-name that corresponds to

any particular pitch; and another for returning the pitch that corresponds to any given A.S.A. pitch-name.

The first of these algorithms uses the concept of chromatic genus defined above (see Definition 82).

Before describing these algorithms, it is necessary to define the concept of concatenation with respect

to strings of characters. Let a string a be any sequence of characters a1a2 . . . am and let b be any string

b1b2 . . . bn. The concatenation of b onto a, denoted a ⊕ b, is equal to the string a1a2 . . . amb1b2 . . . bn. The

operation of concatenation on strings is associative: that is, for any three strings, a, b and c,

a⊕ (b⊕ c) = (a⊕ b)⊕ c

Both of these expressions can therefore be written a⊕ b⊕ c without ambiguity.

The following algorithm, which will be called the p-pn algorithm, returns the A.S.A. pitch-name that

corresponds to any given pitch:

1. Let p be a pitch in the pitch system ψW. For example, assume p = [52, 34] (see Figure 1.10).

2. Let m be a numerical value used to represent the morph of p and set m to equal the value m (p). For

example, if p = [52, 34] then m would be made equal to 6.

3. Let l be a string of characters that is used to represent the letter-name of the A.S.A. pitch-name. Let l

become equal to the value given in the second row of the following table that corresponds to the value

of m.

m 0 1 2 3 4 5 6

l “A” “B” “C” “D” “E” “F” “G”

For example, if m = 6 then l will be made equal to “G”.

4. Let gc become equal to gc (p). For example, if p = [52, 34] then gc would be made equal to 4.

5. Let c′ become equal to the value in the second row of the following table that corresponds to the value

of m.

m 0 1 2 3 4 5 6

c′ 0 2 3 5 7 8 10

The second row in this table gives, in order, the chroma of A\,B\, . . . G\. In our example, m = 6 so c′

will be made equal to 10.
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6. Find the value e = gc − c′. (For p = [52, 34], gc = 4 and c′ = 10 therefore e would be made equal to

−6.) If e = 0, this implies that the note is a natural note—that is, no sharps and no flats. If e > 0 then

the note has e sharps and if e < 0 then the note has −e flats.

7. Let i be a string of characters that is used to represent the inflection of the A.S.A. pitch-name. If e = 0

then let i become equal to the string “n”. If e > 0 then let i become equal to a string consisting of e

‘s’ characters (for example, if e = 3 then i should become equal to the string “sss”). If e < 0 then let i

become equal to a string consisting of −e ‘f’ characters (for example, if e = −3 then i should become

equal to “fff”.)11

8. Let om become equal to om (p). If m is 0 or 1 then let oA.S.A. become equal to om. Otherwise, let

oA.S.A. become equal to om + 1.

9. Let o become equal to the string of characters that represents in decimal the value of oA.S.A.. For

example, if oA.S.A. = 3 then o should become equal to the string “3” and if oA.S.A. = −6 then o should

become equal to the string “−6”.

10. Let n become equal to the string l⊕ i⊕ o and output n. For example, for p = [52, 34], l would be “G”,

i would be “ffffff” and o would be “5” giving a value for n of “Gffffff5” which is the desired result.

The Lisp function p-pn in Chapter 2 is an implementation of the p-pn algorithm. The following table

gives some examples of the output generated by p-pn for a number of input pitches:

p [0, 0] [−1, 0] [0,−1] [−9,−5] [−10,−5] [−9,−6] [39, 23] [52, 27] [52, 34] [39, 22] [38, 23]

n “An0” “Af0” “Gss0” “Cn0” “Cf0” “Bs-1” “Cn4” “Gssssss4” “Gffffff5” “Bs3” “Cf4”

The actual Lisp function call evaluated to generate these values looked like this in the Lisp Listener:

? (mapcar #’p-pn

’((0 0) (-1 0) (0 -1) (-9 -5) (-10 -5) (-9 -6) (39 23) (52 27) (52 34) (39 22) (38 23)))

("An0" "Af0" "Gss0" "Cn0" "Cf0" "Bs-1" "Cn4" "Gssssss4" "Gffffff5" "Bs3" "Cf4")

?

The following algorithm performs the reverse process: when given an A.S.A. pitch-name n as input in the

form of a string of the type generated as output by the p-pn algorithm just described, the following algorithm

calculates the MIPS pitch that corresponds to the pitch-name n. The following algorithm is called the pn-p

algorithm.

1. Let n be a string of characters representing a pitch-name (e.g. “Cn4”, “Gssssss4”, “Bf3”).

2. If k is a string of characters then let |k| be equal to the length of k (that is, the number of characters

in k.)

3. Let l be the string that only contains the first character in the string n. So, for example, if n is

“Gssssss4” then l will be equal to “G”, if n is “Cn4” then l will be equal to “C”.

11In the algorithm descriptions, characters will be enclosed between single quotes (e.g. ‘s’, ‘f’) and strings will be enclosed by

double quotes (e.g. “sss”, “fff”).
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4. Let n [x] return the xth character in the string n. For example, if n is equal to “Cn4” then n [2] would

be equal to the character ‘n’.

5. Let i be the string that is constructed using the following procedure:

(a) Let i become equal to the empty string, “”.

(b) Let x become equal to 2.

(c) Let j become equal to the string that consists of the single character n [x].

(d) Let i become equal to i⊕ j.

(e) Let x become equal to x+ 1.

(f) If n [x] is a member of the set of characters

{‘-’,‘1’,‘2’,‘3’,‘4’,‘5’,‘6’,‘7’,‘8’,‘9’}

or if x is greater than the length of n then go to step 6 and return i. Otherwise go to step 5c.

6. If i is equal to the string “n” or a string consisting entirely of ‘s’ characters (e.g. “sssss”) or a string

consisting entirely of ‘f’ characters (“fffff”) then go to step 7. Otherwise return an error.

7. Let o become equal to the string that is returned by the following procedure:

(a) Let y become equal to the length of i.

(b) Let x become equal to y + 2.

(c) Let o become equal to the string that contains the single character n [x].

(d) Let x become equal to x+ 1.

(e) If n [x] exists then let j become equal to the string that consists of the single character n [x].

Otherwise let j become equal to the empty string “”.

(f) If j is non-empty then let o become equal to o⊕ j.

(g) If j is non-empty then go to step 7d. Otherwise go to step 8 and return o.

8. Let oA.S.A. become equal to the decimal value expressed by the string o. For example, if o is equal to

the string “−23” then oA.S.A would become equal to −23.

9. Let m become equal to the value in the second row of the following table that corresponds to the value

of l.

l “A” “B” “C” “D” “E” “F” “G”

m 0 1 2 3 4 5 6

10. Let c′ be made equal to the value in the second row of the following table that corresponds to the value

of m.

m 0 1 2 3 4 5 6

c′ 0 2 3 5 7 8 10
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Figure 1.11: Pitch intervals and pitch interval names.

11. If i is equal to “n” then let e become equal to 0. If i is a string of ‘f’ characters (e.g. “fff”) then let e

become equal to the value −1× |i|. If i is a string of ‘s’ characters then let e become equal to the value

|i|.

12. If m is 0 or 1, then let om become equal to oA.S.A.. Otherwise let om become equal to oA.S.A. − 1.

13. Let pc, the chromatic pitch of the pitch that will be generated as output, become equal to the value

e+ c′ + µc × om where µc is the chromatic modulus of the pitch system ψW, that is, µc = 12.

14. Let pm, the morphetic pitch of the pitch that will be generated as output, become equal to the value

om × µm +m where µm is the morphetic modulus of the pitch system ψW, that is, µm = 7.

15. Let p become equal to the ordered pair, [pc, pm] and output p.

The Lisp function pn-p in Chapter 2 is an implementation of the pn-p algorithm. The following table

gives some examples of the output generated by p-pn for a number of input pitch names:

n “An0” “Af0” “Gss0” “Cn0” “Cf0” “Bs-1” “Cn4” “Gssssss4” “Gffffff5” “Bs3” “Cf4”

p [0, 0] [−1, 0] [0,−1] [−9,−5] [−10,−5] [−9,−6] [39, 23] [52, 27] [52, 34] [39, 22] [38, 23]

The actual Lisp function call evaluated to generate these values looked like this in the Lisp Listener:

? (mapcar #’pn-p

’("An0" "Af0" "Gss0" "Cn0" "Cf0" "Bs-1" "Cn4" "Gssssss4" "Gffffff5" "Bs3" "Cf4"))

((0 0) (-1 0) (0 -1) (-9 -5) (-10 -5) (-9 -6) (39 23) (52 27) (52 34) (39 22) (38 23))

?

1.4.2 Using the MIPS concept of a pitch interval to model the Western tonal

pitch interval naming system

Figure 1.11 shows a number of pairs of notes and written beneath each pair is a code which is an abbreviation

for the traditional pitch interval name for the pitch interval from the first note in the pair to the second note.
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Direction Abbreviation

rising r

falling f

Type Abbreviation

perfect p

major ma

minor mi

augmented a

double-augmented aa

triple-augmented aaa

. . . . . .

diminished d

double-diminished dd

triple-diminished ddd

. . . . . .

Size Abbreviation

prime 1

second 2

third 3

fourth 4

. . . . . .

Table 1.1: Code for abbreviated notation of traditional Western tonal pitch interval names.

A pitch interval name in the traditional Western tonal pitch interval naming system has three parts: a

direction which can either be rising or falling12; a type which is a member of the infinite set,

{. . . , double-augmented, augmented, major, perfect, minor, diminished, double-diminished,. . . }

and a size which is a member of the set

{prime, second, third, fourth, fifth, sixth, seventh, octave, ninth, tenth,. . . }

In this document, an abbreviated format will be used to denote traditional pitch interval names. Table 1.1

describes this abbreviated notation. For example, a rising major third would be denoted ‘rma3’, a falling

double-diminished sixth would be denoted ‘fdd6’ and a perfect prime would be denoted ‘p1’.

There is a one-to-one correspondence between a pitch interval name in the traditional Western tonal

pitch-naming system and a MIPS pitch interval in the pitch system ψW (see Equation 1.1). In Figure 1.11

each pair of notes has written beneath it the traditional pitch name in abbreviated format together with the

pitch interval in ψW that corresponds to that pitch name. As can be seen in Figure 1.11, the chromatic pitch

interval associated with the interval gives the change in chromatic pitch and the morphetic pitch interval

12The interval of a prime does not have a direction because it does not result in a change in morphetic pitch.
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gives the change in morphetic pitch (i.e. the number of steps moved on the staff). A positive chromatic or

morphetic pitch interval corresponds to an increase in chromatic or morphetic pitch respectively. In Figure

1.11, intervals (b), (d) and (f) are the inverses of intervals (a), (c) and (e) respectively.

The remainder of this section will be devoted to describing two algorithms. The first one, called pi-pin,

takes as input a pitch interval ∆p in ψW and generates as output the traditional pitch interval name that

corresponds to ∆p. The second algorithm, pin-pi, performs the reverse process: when given as input a pitch

name ∆n it generates as output the corresponding pitch interval in ψW.

Before presenting these algorithms, it is necessary to define a function that returns the chromatic genus

interval of a pitch interval, denoted ∆ gc (∆p). This concept is defined as follows:

Definition 279 (Chromatic genus interval of a pitch interval) If p1 and p2 are any two pitches in a

pitch system ψ then

∆p = ∆ p (p1, p2) ⇒ ∆ gc (∆p) = ∆ gc (p1, p2)

This definition along with other definitions and theorems in MIPS can be used to prove the following theorem

which provides us with a formula for calculating the chromatic genus interval of a pitch interval:

Theorem 280 (Formula for ∆ gc (∆p)) If ∆p is a pitch interval in

ψ = [µc, µm, f0, pc,0]

then:

∆ gc (∆p) = ∆ pc (∆p)− µc × (∆ pm (∆p) div µm)

The algorithm pi-pin takes the following form:

1. Let ∆p be a pitch interval in ψW.

2. Let d be a string that will be used to represent the direction of the pitch interval name. If ∆ pm (∆p) = 0

then let d be made equal to the empty string “”. If ∆ pm (∆p) > 0 then d should be made equal to the

string “r”. If ∆ pm (∆p) < 0 then d should be made equal to the string “f”.

3. Let s′ be made equal to the value abs (∆ pm (∆p)) + 1 and let s, the string that will represent the size

of the pitch interval name generated as output, be made equal to the string that represents in decimal

format the value of s′. For example, if s′ = 3 then s will be made equal to the string “3”.

4. Let ∆m′ be made equal to the value abs (∆ pm (∆p)) mod µm where µm is the morphetic modulus which

in the case of ψW is equal to 7.

5. Let ∆c′ become equal to the value in the second row of the following table that corresponds to the

value of ∆m′ in the top row.

∆m′ 0 1 2 3 4 5 6

∆c′ 0 2 4 5 7 9 11

6. Let t′ become equal to the value in the second row of the following table that corresponds to the value

of ∆m′ in the top row.
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∆m′ 0 1 2 3 4 5 6

t′ “p” “ma” “ma” “p” “p” “ma” “ma”

7. If ∆ pm (∆p) ≥ 0 then let e be made equal to the value ∆ gc (∆p)−∆c′. Otherwise, let e become equal

to ∆ gc (ιp (∆p))−∆c′.

8. (a) If t′ is equal to the string “p” and e = 0 then let t become equal to the string “p”.

(b) If t′ is equal to the string “p” and e > 0 then let t become equal to the string that consists of e ‘a’

characters. (For example, if e = 3 then t should be made equal to “aaa”.)

(c) If t′ is equal to “p” and e < 0 then let t become equal to the string that consists of −e ‘d’ characters.

(For example, if e = −3 then t should be made equal to “ddd”.)

(d) If t′ is equal to “ma” and e = 0 then let t become equal to “ma”.

(e) If t′ is equal to “ma” and e = −1 then let t become equal to “mi”.

(f) If t′ is equal to “ma” and e < −1 then let t become equal to the string that consists of −e− 1 ‘d’

characters. (For example, if e = −4 then t should be made equal to “ddd”.)

(g) If t′ is equal to “ma” and e > 0 then let t become equal to the string that consists of e ‘a’ characters.

(For example, if e = 2 then t should be made equal to “aa”.)

9. Let ∆n become equal to the string d⊕ t⊕ s and generate ∆n as output.

The Lisp function pi-pin in Chapter 2 is an implementation of the pi-pin algorithm. The following

table gives some examples of the output generated by pi-pin for a number of input pitch intervals:

∆p [2, 1] [3, 1] [0, 1], [−1, 1] [−7,−4] [−6,−4] [−17,−10] [0, 7] [−1, 0] [1, 0]

∆n “rma2” “ra2” “rd2” “rdd2” “fp5” “fd5” “fp11” “rdddddddddddd8” “d1” “a1”

The actual Lisp function call evaluated to generate these values looked like this in the Lisp Listener:

? (mapcar #’pi-pin

’((2 1) (3 1) (0 1) (-1 1) (-7 -4) (-6 -4) (-17 -10) (0 7) (-1 0) (1 0)))

("rma2" "ra2" "rd2" "rdd2" "fp5" "fd5" "fp11" "rdddddddddddd8" "d1" "a1")

?

The algorithm pin-pi performs the reverse task to pi-pin: it takes a traditional Western tonal pitch

interval name as input and generates as output the pitch interval in ψW that corresponds to that pitch interval

name. This algorithm takes the following form:

1. Let ∆n be a string that represents a pitch interval name such as “rma3”, “fd11”, “d1” etc.

2. If the first character in ∆n is a member of the set {‘r’,‘f’} then let d be the string that contains only

the first character in ∆n. Otherwise, let d be made equal to the empty string, “”. For example, if ∆n

is “rma3” then d should be made equal to the string “r”; if ∆n is “fmi6” then d should be made equal

to the string “f”; and if ∆n is “p1” then d should be made equal to the string “”.
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3. If d is equal to the empty string, then let t be made equal to the substring of ∆n that begins with the

first character in ∆n and ends with the character that precedes the earliest character in the string that

is a member of the set

{‘1’,‘2’,‘3’,‘4’,‘5’,‘6’,‘7’,‘8’,‘9’}

For example, if ∆n is equal to “ddd1” then t should be made equal to the string “ddd”. If d is a

member of the set {“r”,“f”} then let t be made equal to the substring of ∆n that begins with the

second character in ∆n and ends with the character that precedes the earliest character in ∆n that is

a member of the set

{‘1’,‘2’,‘3’,‘4’,‘5’,‘6’,‘7’,‘8’,‘9’}

For example, if ∆n is equal to “rma3” then t should be made equal to the string “ma”.

4. If t is not a member of the set

{“p”,“ma”,“mi”}

and t is not a string that only contains ‘d’ characters (e.g. “ddd”) and t is not a string that contains

only ‘a’ characters (e.g. “aaa”) then stop the algorithm and return an error. Otherwise, go on to the

next step.

5. Let s be the substring of ∆n that begins with the first character in ∆n that is a member of the set

{‘1’,‘2’,‘3’,‘4’,‘5’,‘6’,‘7’,‘8’,‘9’}

and ends with the last character in ∆n. For example, if ∆n is equal to “rma10” then s should be made

equal to the string “10”.

6. If s is a non-empty string that only contains characters that are members of the set

{‘1’,‘2’,‘3’,‘4’,‘5’,‘6’,‘7’,‘8’,‘9’}

then go on to the next step. Otherwise stop and return an error.

7. Let s′ be made equal to the decimal value represented by the string s. For example, if s is the string

“12” then s′ would be made equal to the value 12.

8. If d is equal to the string “f” then ∆pm should be made equal to the value 1− s′ otherwise, ∆pm should

be made equal to the value s′ − 1.

9. Let ∆m′ be made equal to the value abs (∆pm) mod µm where µm is the morphetic modulus which in

the case of ψW is equal to 7.

10. Let ∆c′ be made equal to the value in the second row of the following table that corresponds to the

value of ∆m′ found in the previous step.

∆m′ 0 1 2 3 4 5 6

∆c′ 0 2 4 5 7 9 11

11. Let ∆pc,1 be made equal to the value

∆c′ + µc × (abs (∆pm) div µm)
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12. Let t′ be made equal to the value in the table that corresponds to the value of ∆m′ found in step 9:

∆m′ 0 1 2 3 4 5 6

t′ “p” “ma” “ma” “p” “p” “ma” “ma”

13. (a) If t′ is equal to the string “p” and t is also equal to the string “p” then let e become equal to 0.

(b) If t′ is equal to the string “p” and t is a string that consists entirely of ‘d’ characters (e.g. “ddd”)

then let e become equal to −1× |t|.

(c) If t′ is equal to “p” and “t” is equal to a string that consists entirely of ‘a’ characters (e.g. “aaa”)

then let e become equal to |t|.

(d) If t′ is equal to “ma” and t is equal to “ma” then let e become equal to 0.

(e) If t′ is equal to “ma” and t is equal to “mi” then let e become equal to −1.

(f) If t′ is equal to “ma” and t is equal to a string that consists entirely of ‘d’ characters then let e

become equal to −1× (|t|+ 1).

(g) If t′ is equal to “ma” and t is equal to a string that consists entirely of ‘a’ characters then let e

become equal to |t|.

14. If ∆pm < 0 then let ∆pc become equal to the value

−1× (∆pc,1 + e)

otherwise let ∆pc become equal to the value ∆pc,1 + e.

15. Let ∆p become equal to the ordered pair [∆pc,∆pm] and return the value ∆p.

The Lisp function pin-pi in Chapter 2 is an implementation of the pin-pi algorithm. The following

table gives some examples of the output generated by pin-pi for a number of input pitch interval names:

∆n “rma2” “ra2” “rd2” “rdd2” “fp5” “fd5” “fp11” “rdddddddddddd8” “d1” “a1”

∆p [2, 1] [3, 1] [0, 1], [−1, 1] [−7,−4] [−6,−4] [−17,−10] [0, 7] [−1, 0] [1, 0]

The actual Lisp function call evaluated to generate these values looked like this in the Lisp Listener:

? (mapcar #’pin-pi

’(rma2 ra2 rd2 rdd2 fp5 fd5 fp11 rdddddddddddd8 d1 a1))

((2 1) (3 1) (0 1) (-1 1) (-7 -4) (-6 -4) (-17 -10) (0 7) (-1 0) (1 0))

?

1.5 Summary

1. MIPS is a formal language invented by the author that is designed to be used for investigating the

mathematical properties of pitch systems and collections of pitches within those systems.

2. MIPS is based on two fundamental concepts: the concept of a pitch system and the concept of a pitch.
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3. A MIPS pitch system,

ψ = [µc, µm, f0, pc,0]

models a pitch system that employs scales containing µm notes, performed in an equal-tempered tuning

system where the frequency f0 is associated with the chromatic pitch pc,0 and where the octave is

divided into µc equal frequency intervals.

4. In principle, if the frequency of a pitch within a pitch system can be calculated from its MIPS pitch,

then the pitch system can be modelled in MIPS (provided that one defines an appropriate frequency

function in place of that given in Definition 66). This provides a way for modelling non-equal-tempered

pitch systems in MIPS.

5. MIPS is constructed around four mathematical representations of octave equivalence: chroma, morph,

chromamorph and genus. The chroma, morph and chromamorph representations have been used else-

where but the genus representation is presented here for the first time. The concepts of chroma, morph

and chromamorph fail to model correctly the traditional tonal concept of octave equivalence. However,

the genus representation of octave equivalence not only correctly models the traditional tonal concept

but also can be generalised to any other pitch system without first having to know which sets in that

pitch system correspond to the diatonic sets of the Western pitch system.

6. Definitions and formulae have been given for deriving the chroma, morph, chromatic genus and chro-

mamorph of a genus. Formulae and theorems have also been provided for transposing a genus by a

genus interval and for summing, inverting and exponentiating genus intervals. Many more concepts and

formulae relating to the genus representation of octave equivalence (including formulae for manipulating

genus sets and genus interval sets) can be found in Chapter 4.

7. Two algorithms, pn-p and p-pn, were presented for converting between A.S.A. pitch names and MIPS

pitches in the pitch system ψW.

8. Two algorithms, pin-pi and pi-pin, were presented for converting between Western tonal pitch interval

names (e.g. “rma3”) and MIPS pitch intervals.

9. All the theorems in this chapter have been presented without proof. However, all the theorems in this

chapter are proved in Chapter 4.



Chapter 2

Lisp implementation of the algorithms

p-pn, pn-p, pi-pin and pin-pi

Given below is the full Lisp source code for implementations of the algorithms p-pn, pn-p, pi-pin and pin-pi

described in sections 1.4.1 and 1.4.2 above.

#|

Algorithms for converting between A.S.A. pitch names and MIPS pitches.

|#

(setf *save-local-symbols* t)

(setf *verbose-eval-selection* t)

(defvar mum 7)

(setf mum 7)

(defvar muc 12)

(setf muc 12)

(defun p-pn (p)

(let* ((m (p-m p))

(l (elt ’("A" "B" "C" "D" "E" "F" "G") m))

(gc (p-gc p))

(cdash (elt ’(0 2 3 5 7 8 10) m))

(e (- gc cdash))

(i "")

(i (cond ((< e 0) (dotimes (j (- e) i) (setf i (concatenate ’string i "f"))))

((> e 0) (dotimes (j e i) (setf i (concatenate ’string i "s"))))

((= e 0) "n")))

(om (p-om p))

(oasa (if (or (= m 0) (= m 1))

om

(+ 1 om)))

(o (format nil "~D" oasa)))

(concatenate ’string l i o)))

47
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(defun p-m (p)

(bmod (p-pm p) mum))

(defun bmod (x y)

(- x

(* y

(int (/ x y)))))

(defun p-pm (p)

(second p))

(defun int (x)

(values (floor x)))

(defun p-gc (p)

(- (p-pc p)

(* muc (p-om p))))

(defun p-pc (p)

(first p))

(defun p-om (p)

(div (p-pm p) mum))

(defun div (x y)

(int (/ x y)))

(defun pn-p (pn-as-input)

(let* ((n (if (stringp pn-as-input)

(string-upcase pn-as-input)

(string-upcase (string pn-as-input))))

(l (string (elt n 0)))

(i (do* ((i "")

(x 2)

(j (string (elt n (- x 1))) (string (elt n (- x 1))))

(i (concatenate ’string i j) (concatenate ’string i j))

(x (+ 1 x) (+ 1 x)))

((or (>= x (length n))

(member (elt n (- x 1)) ’(#\- #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9)))

i)))

(is-good-i (well-formed-inflection-p i))

(o (if is-good-i

(do* ((y (length i))

(x (+ y 2))
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(o (string (elt n (- x 1))))

(x (+ 1 x) (+ 1 x))

(j (if (<= x (length n))

(string (elt n (- x 1)))

"")

(if (<= x (length n))

(string (elt n (- x 1)))

""))

(o (if (equalp j "") o

(concatenate ’string o j))

(if (equalp j "") o

(concatenate ’string o j))))

((equalp j "")

o))))

(oasa (if is-good-i (string-to-number o)))

(m (if is-good-i (position l

’("A" "B" "C" "D" "E" "F" "G")

:test #’equalp)))

(cdash (if is-good-i (elt ’(0 2 3 5 7 8 10) m)))

(e (if is-good-i (cond ((equalp i "N") 0)

((equalp (elt i 0) #\F) (* -1 (length i)))

((equalp (elt i 0) #\S) (length i)))))

(om (if is-good-i (if (or (= m 1) (= m 0))

oasa (- oasa 1))))

(pc (if is-good-i (+ e cdash (* muc om))))

(pm (if is-good-i (+ m (* om mum)))))

(if is-good-i (list pc pm))))

(defun string-to-number (s)

(if (well-formed-number-string-p s)

(if (string-is-negative-p s)

(let ((n 0))

(dotimes (i (- (length s) 1) (* -1 n))

(setf n (+ (* 10 n)

(- (char-code (elt s (+ 1 i)))

(char-code #\0))))))

(let ((n 0))

(dotimes (i (length s) n)

(setf n (+ (* 10 n)

(- (char-code (elt s i))

(char-code #\0)))))))))

(defun string-is-negative-p (s)

(equalp #\- (char s 0)))
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;(string-is-negative-p "23")

(defun well-formed-number-string-p (s)

(let ((wf t))

(dotimes (i (length s) wf)

(if (not (or (<= (char-code #\0) (char-code (char s i)) (char-code #\9))

(and (= i 0)

(equalp (char s i) #\-))))

(setf wf nil)))))

#|

(well-formed-number-string-p "23")

|#

(defun well-formed-inflection-p (i)

(or (equalp i "N")

(let ((wf t))

(dotimes (j (length i) wf)

(if (not (equalp (char i j) #\F))

(setf wf nil))))

(let ((wf t))

(dotimes (j (length i) wf)

(if (not (equalp (char i j) #\S))

(setf wf nil))))))

#|

TESTS FOR p-pn and pn-p

(mapcar #’p-pn

’((0 0) (-1 0) (0 -1) (-9 -5) (-10 -5) (-9 -6) (39 23) (52 27) (52 34) (39 22) (38 23)))

(mapcar #’pn-p

’("An0" "Af0" "Gss0" "Cn0" "Cf0" "Bs-1" "Cn4" "Gssssss4" "Gffffff5" "Bs3" "Cf4"))

|#

(defun pi-pin (pint)

(let* ((pmint (p-int-pm-int pint))

(d (cond ((= 0 pmint) "")

((> pmint 0) "r")

((< pmint 0) "f")))

(sdash (+ 1 (abs pmint)))

(s (format nil "~D" sdash))

(mintdash (bmod (abs pmint) mum))

(cintdash (elt ’(0 2 4 5 7 9 11) mintdash))

(tdash (elt ’("p" "ma" "ma" "p" "p" "ma" "ma") mintdash))
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(e (if (>= pmint 0) (- (p-int-gc-int pint) cintdash) (- (p-int-gc-int (invp pint)) cintdash)))

(ty (cond ((and (equalp tdash "p") (= e 0))

"p")

((and (equalp tdash "p") (> e 0))

(let ((x "")) (dotimes (i e x) (setf x (concatenate ’string x "a")))))

((and (equalp tdash "p") (< e 0))

(let ((x "")) (dotimes (i (- e) x) (setf x (concatenate ’string x "d")))))

((and (equalp tdash "ma") (= e 0))

"ma")

((and (equalp tdash "ma") (= e -1))

"mi")

((and (equalp tdash "ma") (< e -1))

(let ((x "")) (dotimes (i (- (- e) 1) x) (setf x (concatenate ’string x "d")))))

((and (equalp tdash "ma") (> e 0))

(let ((x "")) (dotimes (i e x) (setf x (concatenate ’string x "a"))))))))

(concatenate ’string d ty s)))

(defun p-int-pm-int (pint)

(second pint))

(defun p-int-gc-int (pint)

(- (p-int-pc-int pint)

(* muc

(div (p-int-pm-int pint)

mum))))

(defun p-int-pc-int (pint)

(first pint))

(defun invp (pint)

(list (- (p-int-pc-int pint))

(- (p-int-pm-int pint))))

#|

Tests for pi-pin and pin-pi

(mapcar #’pi-pin

’((0 0) (2 1) (1 1) (3 1) (0 1) (-1 1) (4 1) (-7 -4)

(-6 -4) (-5 -4) (-17 -10) (0 7) (-1 0) (1 0)))

|#

(defun pin-pi (pitch-interval-name)

(let* ((pin (if (stringp pitch-interval-name)

(string-upcase pitch-interval-name)

(string-upcase (string pitch-interval-name))))
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(d (char pin 0))

(d (if (member d ’(#\F #\R) :test #’equalp) (string d) ""))

(ty (do* ((ty "")

(x (if (equalp d "") 0 1))

(j (string (elt pin x)) (string (elt pin x)))

(ty (concatenate ’string ty j) (concatenate ’string ty j))

(x (+ 1 x) (+ 1 x)))

((or (>= x (length pin))

(member (elt pin x) ’(#\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9)))

ty)))

(ty-error (not (well-formed-interval-type-p ty)))

(s (if (not ty-error)

(do* ((y (length ty))

(x (if (equalp d "") y (+ y 1)))

(s (string (elt pin x)))

(x (+ 1 x) (+ 1 x))

(j (if (< x (length pin))

(string (elt pin x))

"")

(if (< x (length pin))

(string (elt pin x))

""))

(s (if (equalp j "") s

(concatenate ’string s j))

(if (equalp j "") s

(concatenate ’string s j))))

((equalp j "")

s))))

(s-error (if (not ty-error) (not (well-formed-number-string-p s))))

(s-dash (if (or s-error ty-error) nil (string-to-number s)))

(pmintvar (if (or s-error ty-error) nil (if (equalp d "f") (- 1 s-dash) (- s-dash 1))))

(mint-dash (if (or s-error ty-error) nil (bmod (abs pmintvar) mum)))

(cint-dash (if (or s-error ty-error) nil (elt ’(0 2 4 5 7 9 11) mint-dash)))

(pcintone (if (or s-error ty-error) nil (+ cint-dash

(* muc

(div (abs pmintvar)

mum)))))

(t-dash (if (or s-error ty-error) nil (elt ’("p" "ma" "ma" "p" "p" "ma" "ma") mint-dash)))

(e (if (or s-error ty-error) nil

(cond ((and (equalp ty "p") (equalp t-dash "p")) 0)

((and (equalp t-dash "p") (equalp (char ty 0) #\D)) (* (- 1) (length ty)))

((and (equalp t-dash "p") (equalp (char ty 0) #\A)) (length ty))

((and (equalp ty "ma") (equalp t-dash "ma")) 0)

((and (equalp t-dash "ma") (equalp ty "mi")) (- 1))

((and (equalp t-dash "ma") (equalp (char ty 0) #\D)) (* (- 1)
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(+ (length ty) 1)))

((and (equalp t-dash "ma") (equalp (char ty 0) #\A)) (length ty)))))

(pcintvar (if (or s-error ty-error) nil

(if (< pmintvar 0) (* (- 1) (+ e pcintone)) (+ e pcintone)))))

(list pcintvar pmintvar)))

(defun well-formed-interval-type-p (ty)

(or (member ty ’("MA" "MI" "P") :test #’equalp)

(let ((wf t))

(dotimes (j (length ty) wf)

(if (not (equalp (char ty j) #\D))

(setf wf nil))))

(let ((wf t))

(dotimes (j (length ty) wf)

(if (not (equalp (char ty j) #\A))

(setf wf nil))))))

#|

(mapcar #’pin-pi

’(rma2 ra2 rd2 rdd2 fp5 fd5 fp11 rdddddddddddd8 d1 a1))

(pin-pi ’d1)

(setf pitch-interval-name ’d1)

|#



Chapter 3

How to read the tabular proofs

In this document the proof of each theorem is presented in the form of a table with four columns. For

example, Table 3.1 shows the proof of Theorem 582.

Each row in the proof has a label of the form Rn which is given in the first column. Each row is either an

inference, an assumption or a statement of a well-known mathematical result that is not proved within this

document. In Table 3.1, rows R2, R3 and R4 are inferences and row R1 is an assumption.

If a row simply states a well-known mathematical result without proof then it will take the following form:

R3 sin2 x+ cos2 x = 1

Such a row will consist of just two elements: the label of the row (in this case ‘R3’) in the first column of the

table and the expression that states the mathematical result in the fourth column.

A row of the form of row R1 in Table 3.1 expresses a condition that is assumed to be true for the remainder

of the proof in which the row occurs. A row that expresses an assumption consists of three elements: the

first element is the label (e.g. ‘R1’) which occurs in the first column of the table; the second element consists

of the word ‘Let’ which occurs in the second column of the table; and the third element is a statement of the

condition that is assumed to be true (e.g. ‘p = [pc, pm] is any pitch whatsoever in a pitch system ψ’). This

statement occurs in the fourth column of the table.

A row of the form of R2 in Table 3.1 expresses an inference and consists of four elements. The first

element is the label (e.g. ‘R2’) which occurs in the first column of the table. The second element is the list

of premises which occurs in the second column of the table. The third element consists of the symbol ‘⇒’

(implies) and occurs in the third column of the table. Finally, the fourth element consists of the conclusion

R1 Let p = [pc, pm] be any pitch whatsoever in a pitch system ψ.

R2 R1 & 62 ⇒ pc can only take any integer value.

R3 R1 & 62 ⇒ pm can only take any integer value.

R4 R2, R3 & 581 ⇒ p
u

= {[pc, pm] : pc, pm ∈ Z} where Z is the universal set of integers.

Table 3.1: Proof of Theorem 582
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of the inference. Taken as a whole, an inference is a statement that the conclusion (the fourth element in the

row) can be logically deduced from the list of premises (the second element in the row). The list of premises

can contain two different types of element: the label of an earlier row in the current proof (e.g. R1 in the

list of premises in row R2 in Table 3.1) or the reference number of a previous definition or theorem (e.g. the

number 62 in the list of premises in row R2). Thus, the row R2 in Table 3.1 should be read: “The row R1 in

this proof and Definition 62, taken together, logically imply that the value pc may take any integer value.”

In some cases, the conclusion of an inference is itself an implication. Consider, for example, the following

row:

R12 R3 & 4 ⇒ x⇒ y

This proof row states that line R3 in the current proof, taken with the previously stated theorem or definition

whose reference number is 4 together imply that x implies y. Note that this row should not be understood

to mean that line R3 and theorem/definition 4 together imply x which in turn implies y.

The definitions and theorems in the specification of MIPS given in Chapter 4 are numbered in the order

in which they appear in the specification in one, single sequence—that is, the definitions are not numbered

separately from the theorems. This means that any theorem or definition can be uniquely identified by its

reference number—each theorem and definition has a unique number that it does not share with any other

theorem or definition. For example, Theorem 582 has the number 582 which is unique to that theorem—no

definition has the number 582 and no other theorem has this number.

The proofs are intended to be as easy to understand and as complete as possible. It should be possible

for anyone with elementary school algebra (and enough patience) to be able to understand all the proofs.



Chapter 4

Formal specification of MIPS

4.1 Sets and ordered sets

4.1.1 Definitions of set and ordered set

Definition 1 (Universal set) An object is a well-formed universal set if and only if it is a well-defined

collection of objects that are all distinct in some specified way.

Definition 2 (Universal set membership) If S is a universal set then a is an element or member of S,

denoted a ∈ S, if and only if a is equal to one of the objects in S. If a is not equal to any of the objects in S

then one can say that a is not an element of S and denote this fact as follows: a 6∈ S.

Definition 3 (Set) An object is a well-formed set if and only if it is a collection of objects that are all

distinct members of a single specified universal set. When written out in full, a set is enclosed within braces

and the objects in the set are separated from each other by commas:

S = {s1, s2, . . .}

Definition 4 (Ordered set) An object is a well-formed ordered set if and only if it is a collection of objects

(not necessarily distinct and not necessarily all from the same universal set). When written out in full, an

ordered set is enclosed in square brackets and the objects in the ordered set are separated from each other by

commas:

S = [s1, s2, . . .]

Definition 5 (Set membership) If S is a set or ordered set then a is an element or member of S, denoted

a ∈ S, if and only if a is equal to one of the objects in S. If a is not equal to any member of S then one can

say that a is not an element of S and denote this fact as follows: a 6∈ S.

Definition 6 (Set order) If S is a set or ordered set then the order or cardinality of S, denoted |S|, is

equal to the number of elements in S.

Definition 7 (Empty set) The empty set is that unique set that contains no members. It is denoted ∅ or

{ }.

Definition 8 (Empty ordered set) The empty ordered set is that unique ordered set that contains no

members. It is denoted [ ].
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4.1.2 Operations on ordered sets

Definition 9 (Element of an ordered set) If S is an ordered set,

S = [s1, s2, . . . sk, . . .]

then, by definition,

e (S, k) = sk

for all integer k such that 1 ≤ k ≤ |S|. That is, the function e (S, k) returns the kth element of S.

Definition 10 (Concatenation of ordered sets) Given any two ordered sets,

S =
[

s1, s2, . . . , sk, . . . , s|S|
]

and

T =
[

t1, t2, . . . , tk, . . . , t|T |
]

then, by definition,

S ⊕ T =
[

s1, s2, . . . , sk, . . . , s|S|, t1, t2, . . . , tk, . . . , t|T |
]

S ⊕ T is called the concatenation of T onto S.

Theorem 11 (Associativity of ordered set concatenation) The concatenation operation on ordered sets

is associative. That is, if R, S and T are ordered sets then

R⊕ (S ⊕ T ) = (R⊕ S)⊕ T

The expressions R ⊕ (S ⊕ T ) and (R⊕ S)⊕ T can therefore both be written

R⊕ S ⊕ T

Proof

R1 Let R =
[

r1, r2, . . . r|R|
]

S =
[

s1, s2, . . . s|S|
]

T =
[

t1, t2, . . . t|T |
]

R2 10 & R1 ⇒ R⊕ (S ⊕ T ) = R⊕
[

s1, s2, . . . s|S|, t1, t2, . . . t|T |
]

=
[

r1, r2, . . . r|R|, s1, s2, . . . s|S|, t1, t2, . . . t|T |
]

R3 10 & R1 ⇒ (R⊕ S)⊕ T =
[

r1, r2, . . . r|R|, s1, s2, . . . s|S|
]

⊕ T

=
[

r1, r2, . . . r|R|, s1, s2, . . . s|S|, t1, t2, . . . t|T |
]

R4 R2 & R3 ⇒ R⊕ (S ⊕ T ) = (R⊕ S)⊕ T

Definition 12 If S1, S2, . . . Sk, . . . Sn is a collection of ordered sets then, by definition,

S1 ⊕ S2 ⊕ . . .⊕ Sk ⊕ . . .⊕ Sn =

n
⊕

k=1

Sk
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Definition 13 (Rotation of ordered sets) Given an ordered set,

S =
[

s1, s2, . . . , sk, . . . , s|S|
]

and given that n is a natural number that satisfies the condition

0 < n < |S|

then, by definition,

ρ0 (S) = S

and

ρn (S) =
[

sn+1, sn+2, . . . , s|S|
]

⊕ [s1, s2, . . . , sn]

Definition 14 (Ordered set equality) If S and T are two ordered sets,

S =
[

s1, s2, . . . s|S|
]

T =
[

t1, t2, . . . t|T |
]

then S = T if and only if |S| = |T | and e (S, k) = e (T, k) for all integer values of k such that 1 ≤ k ≤ |S|.

4.1.3 Operations on sets

Definition 15 (Set equality) If S and T are two sets then S is equal to T , denoted S = T , if and only if

one of the following two conditions is satisfied:

1. Both S and T are equal to the empty set.

2. Every element in S is an element in T and every element in T is an element in S.

If S is not equal to T then this is denoted S 6= T .

Definition 16 (Subset) If S and T are two sets then S is a subset of T , denoted S ⊆ T , if and only if one

of the following two conditions is satisfied:

1. S is the empty set.

2. Every element of S is also an element of T .

If S is not a subset of T then this is denoted S * T .

Definition 17 (Superset) If S and T are two sets then S is a superset of T , denoted S ⊇ T , if and only

if one of the following two conditions is satisfied:

1. T is the empty set.

2. Every element of T is also an element of S.

If S is not a superset of T then this is denoted S + T .

Definition 18 (Proper subset) If S and T are two sets then S is a proper subset of T , denoted S ⊂ T ,

if and only if every element of S is also an element of T , S is not the empty set and S 6= T . If S is not a

proper subset of T then this is denoted S 6⊂ T .

Definition 19 (Proper superset) If S and T are two sets then S is a proper superset of T , denoted

S ⊃ T , if and only if every element of T is also an element of S, T is not the empty set and S 6= T . If S is

not a proper superset of T then this is denoted S 6⊃ T .
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Definition 20 (Set union) If S and T are two sets then the union of S and T , denoted S ∪ T , is the set

that only contains every object that is an element of S or an element of T or an element of both S and T .

That is

(s ∈ (S ∪ T )) ⇐⇒ ((s ∈ S) ∨ (s ∈ T ))

Theorem 21 (Associativity of set union) The union operation on sets is associative. That is, if R, S

and T are sets then

R ∪ (S ∪ T ) = (R ∪ S) ∪ T

The expressions R ∪ (S ∪ T ) and (R ∪ S) ∪ T can therefore both be written

R ∪ S ∪ T

Proof

R1 Let R, S and T be sets.

R2 R1 & 20 ⇒ (v ∈ (R ∪ S)) ⇐⇒ ((v ∈ R) ∨ (v ∈ S))

R3 R1 & 20 ⇒ (v ∈ ((R ∪ S) ∪ T )) ⇐⇒ ((v ∈ (R ∪ S)) ∨ (v ∈ T ))

R4 R2 & R3 ⇒ (v ∈ ((R ∪ S) ∪ T )) ⇐⇒ ((v ∈ R) ∨ (v ∈ S) ∨ (v ∈ T ))

R5 R1 & 20 ⇒ (v ∈ (S ∪ T )) ⇐⇒ ((v ∈ S) ∨ (v ∈ T ))

R6 R1 & 20 ⇒ (v ∈ (R ∪ (S ∪ T ))) ⇐⇒ ((v ∈ R) ∨ (v ∈ (S ∪ T )))

R7 R5 & R6 ⇒ (v ∈ (R ∪ (S ∪ T ))) ⇐⇒ ((v ∈ R) ∨ (v ∈ S) ∨ (v ∈ T ))

R8 R4 & R7 ⇒ (v ∈ ((R ∪ S) ∪ T )) ⇐⇒ (v ∈ (R ∪ (S ∪ T )))

R9 R8 ⇒ (R ∪ S) ∪ T = R ∪ (S ∪ T )

Definition 22 (Union of sequence of sets) If S1, S2, . . . Sk, . . . Sn is a collection of sets then, by defini-

tion,

S1 ∪ S2 ∪ . . . ∪ Sk ∪ . . . ∪ Sn =

n
⋃

k=1

Sk

Also, if S is a set, then
⋃

s∈S

F (s)

returns the set that contains all and only those objects that are members of one or more of the sets F (s)

where s only takes any value such that s ∈ S and where F (s) is some function of s that returns a set.

Definition 23 (Set intersection) If S and T are two sets then the intersection of S and T , denoted S∩T ,

is the set that only contains every object s that is a member of S and a member of T :

(s ∈ (S ∩ T )) ⇐⇒ ((s ∈ S) ∧ (s ∈ T ))
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Theorem 24 The intersection operation on sets is associative. That is, if R, S and T are sets then

R ∩ (S ∩ T ) = (R ∩ S) ∩ T

The expressions R ∩ (S ∩ T ) and (R ∩ S) ∩ T can therefore both be written

R ∩ S ∩ T

Proof

R1 Let R, S and T be sets.

R2 R1 & 23 ⇒ (v ∈ (R ∩ S)) ⇐⇒ ((v ∈ R) ∧ (v ∈ S))

R3 R1 & 23 ⇒ (v ∈ ((R ∩ S) ∩ T )) ⇐⇒ ((v ∈ (R ∩ S)) ∧ (v ∈ T ))

R4 R2 & R3 ⇒ (v ∈ ((R ∩ S) ∩ T )) ⇐⇒ ((v ∈ R) ∧ (v ∈ S) ∧ (v ∈ T ))

R5 R1 & 23 ⇒ (v ∈ (S ∩ T )) ⇐⇒ ((v ∈ S) ∧ (v ∈ T ))

R6 R1 & 23 ⇒ (v ∈ (R ∩ (S ∩ T ))) ⇐⇒ ((v ∈ R) ∧ (v ∈ (S ∩ T )))

R7 R5 & R6 ⇒ (v ∈ (R ∩ (S ∩ T ))) ⇐⇒ ((v ∈ R) ∧ (v ∈ S) ∧ (v ∈ T ))

R8 R4 & R7 ⇒ (v ∈ ((R ∩ S) ∩ T )) = (v ∈ (R ∩ (S ∩ T )))

Definition 25 If S1, S2, . . . Sk, . . . Sn is a collection of sets then, by definition,

S1 ∩ S2 ∩ . . . ∩ Sk ∩ . . . ∩ Sn =

n
⋂

k=1

Sk

Definition 26 (Set partition) If S is a set then P (S) is a partition on S if and only if the following

conditions are satisfied:

1. P (S) is a set.

2.
⋃

s∈P(S) s = S.

3. (s1, s2 ∈ P (S)) ∧ (s1 6= s2) ⇒ (s1 ∩ s2 = ∅).

4.2 Arithmetic

4.2.1 int

Definition 27 (int) The function int (x) takes any real number x as its argument and returns the largest

integer less than or equal to x. In other words, int (x) is defined as follows:

int (x) = y : (x− 1 < y ≤ x) ∧ (y ∈ Z)

where Z is the universal set of integers.
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Theorem 28 For any pair of real numbers a and b,

int (a− int (b)) = int (a)− int (b)

Proof

R1 27 ⇒ a− int (b)− 1 < int (a− int (b)) ≤ a− int (b)

R2 27 ⇒ a− 1 < int (a) ≤ a

R3 R2 ⇒ a− 1− int (b) < int (a)− int (b) ≤ a− int (b)

R4 27 ⇒ int (a− int (b)) ∈ Z and (int (a)− int (b)) ∈ Z

R5 R1, R3 & R4 ⇒ int (a− int (b)) = int (a)− int (b)

Theorem 29 For any pair of real numbers a and b,

int (a+ int (b)) = int (a) + int (b)

Proof

R1 27 ⇒ a+ int (b)− 1 < int (a+ int (b)) ≤ a+ int (b)

R2 27 ⇒ a− 1 < int (a) ≤ a

R3 R2 ⇒ a− 1 + int (b) < int (a) + int (b) ≤ a+ int (b)

R4 27 ⇒ int (a+ int (b)) ∈ Z and (int (a) + int (b)) ∈ Z

R5 R1, R3 & R4 ⇒ int (a+ int (b)) = int (a) + int (b)

Theorem 30 For any pair of real numbers a and b,

int (a+ b) = int (a) + int (b) + int (a+ b− int (a)− int (b))

Proof

R1 29 ⇒ int (a) + int (b) + int (a+ b− int (a)− int (b))

= int (a) + int (b) + int (a+ b− (int (a) + int (b)))

= int (a+ int (b)) + int (a+ b− int (a+ int (b)))

R2 R1 & 28 ⇒ int (a) + int (b) + int (a+ b− int (a)− int (b))

= int (a+ int (b)) + int (a+ b)− int (a+ int (b))

= int (a+ b)

Theorem 31 For any pair of real numbers a and b,

int (a− b) = int (a)− int (b) + int (a− b− int (a) + int (b))
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Proof

R1 28 ⇒ int (a)− int (b) + int (a− b− int (a) + int (b))

= int (a− int (b)) + int (a− b− int (a− int (b)))

= int (a− int (b)) + int (a− b)− int (a− int (b))

= int (a− b)

Theorem 32 Given any two real numbers, a and c; an integer, b; and a non-zero real number y then

int (a+ b× int (c)) = int (a) + b× int (c)

Proof

R1 Let b ∈ Z

R2 27 ⇒ (a+ b× int (c)− 1 < int (a+ b× int (c)) ≤ a+ b× int (c)) ∧ (int (a+ b× int (c)) ∈ Z)

R3 R1 & 27 ⇒ (b× int (c)) ∈ Z

R4 27 ⇒ (a− 1 < int (a) ≤ a) ∧ (int (a) ∈ Z)

R5 R3 & R4 ⇒ (a− 1 + b× int (c) < int (a) + b× int (c) ≤ a+ b× int (c)) ∧ ((int (a) + b× int (c)) ∈ Z)

R6 R2 & R5 ⇒ int (a+ b× int (c)) = int (a) + b× int (c)

4.2.2 mod

Definition 33 (mod) Given that x is a real number and y is a non-zero real number, then the binary

operation mod is defined as follows:

x mod y = x− y × int

(

x

y

)

Theorem 34 For any pair of real numbers a and b and any non-zero real number y,

(a+ b) mod y = (a mod y + b mod y) mod y
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Proof

R1 33 ⇒ (a+ b) mod y = (a+ b)− y × int
(

a+b
y

)

R2 33 ⇒ (a mod y + b mod y) mod y

=
(

a− y × int
(

a
y

)

+ b− y × int
(

b
y

))

−y × int

(

(a−y×int( a
y )+b−y×int( b

y ))
y

)

R3 R2 ⇒ (a mod y + b mod y) mod y

= a+ b− y ×

(

int
(

a
y

)

+ int
(

b
y

)

+ int

(

(a−y×int( a
y )+b−y×int( b

y ))
y

))

= a+ b− y ×
(

int
(

a
y

)

+ int
(

b
y

)

+ int
(

a
y − int

(

a
y

)

+ b
y − int

(

b
y

)))

R4 30 ⇒ int
(

a
y − int

(

a
y

)

+ b
y − int

(

b
y

))

= int
(

a
y + b

y

)

− int
(

a
y

)

− int
(

b
y

)

R5 R3 & R4 ⇒ (a mod y + b mod y) mod y

= a+ b− y ×
(

int
(

a
y

)

+ int
(

b
y

)

+ int
(

a
y + b

y

)

− int
(

a
y

)

− int
(

b
y

))

= (a+ b)− y × int
(

a
y + b

y

)

= (a+ b)− y × int
(

a+b
y

)

R6 R1 & R5 ⇒ (a mod y + b mod y) mod y = (a+ b) mod y

Theorem 35 For any real number a and any non-zero real number y,

(a mod y) mod y = a mod y

Proof

R1 33 ⇒ a mod y = a− y × int
(

a
y

)

R2 33 ⇒ (a mod y) mod y = a− y × int
(

a
y

)

− y × int
(

a−y×int(a/y)
y

)

R3 R2 ⇒ (a mod y) mod y = a− y × int
(

a
y

)

− y × int
(

a
y − int

(

a
y

))

R4 R3 & 28 ⇒ (a mod y) mod y

= a− y × int
(

a
y

)

− y ×
(

int
(

a
y

)

− int
(

a
y

))

= a− y × int
(

a
y

)

R5 R1 & R4 ⇒ (a mod y) mod y = a mod y

Theorem 36 For any integer b and any non-zero real number y,

by mod y = 0
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Proof

R1 33 ⇒ by mod y = by − y × int
(

by
y

)

= by − y × int (b)

R2 Let b ∈ Z

R3 R2 & 27 ⇒ int (b) = b

R4 R1 & R3 ⇒ by mod y = by − y × b = 0

Theorem 37 For any real number a, any integer b and any non-zero real number y,

(a+ by) mod y = a mod y

Proof

R1 34 ⇒ (a+ by) mod y = (a mod y + by mod y) mod y

R2 36 ⇒ by mod y = 0

R3 R1 & R2 ⇒ (a+ by) mod y = (a mod y) mod y

R4 R3 & 35 ⇒ (a+ by) mod y = a mod y

Theorem 38 For any pair of real numbers a and b and any non-zero real number y,

(a mod y + b) mod y = (a+ b) mod y
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Proof

R1 33 ⇒ (a+ b) mod y = (a+ b)− y × int
(

a+b
y

)

R2 33 ⇒ (a mod y + b) mod y

=
(

a− y × int
(

a
y

)

+ b
)

− y × int

(

a−y×int( a
y )+b

y

)

R3 R2 ⇒ (a mod y + b) mod y

= a+ b− y ×
(

int
(

a
y

)

+ int
(

a−y×int(a/y)+b
y

))

= a+ b− y ×
(

int
(

a
y

)

+ int
(

a
y − int

(

a
y

)

+ b
y

))

R4 28 ⇒ int
(

a
y − int

(

a
y

)

+ b
y

)

= int
(

a
y + b

y

)

− int
(

a
y

)

R5 R3 & R4 ⇒ (a mod y + b) mod y

= a+ b− y ×
(

int
(

a
y

)

+ int
(

a
y + b

y

)

− int
(

a
y

))

= (a+ b)− y × int
(

a
y + b

y

)

R6 R1 & R5 ⇒ (a mod y + b) mod y = (a+ b) mod y

Theorem 39 Given a real number b, a collection of real numbers a1, a2, . . . ak and a non-zero real number

y,




k
∑

j=1

((aj × b) mod y)



 mod y =









k
∑

j=1

aj



× b



 mod y
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Proof

R1 33 ⇒
(

∑k
j=1 ((ajb) mod y)

)

mod y

=
(

∑k
j=1

(

(ajb)− y × int
(

ajb
y

)))

−y × int

(

∑k
j=1

(

(ajb)−y×int
(

aj b

y

))

y

)

=
(

∑k
j=1 (ajb)

)

− y ×
(

∑k
j=1

(

int
(

ajb
y

)))

−y × int

(

∑k
j=1(ajb)

y −
(

∑k
j=1

(

int
(

ajb
y

)))

)

=
(

∑k
j=1 (ajb)

)

−y ×







(

∑k
j=1

(

int
(

ajb
y

)))

+ int

(

∑k
j=1(ajb)

y −
(

∑k
j=1

(

int
(

ajb
y

)))

)







=
(

∑k
j=1 (ajb)

)

−y ×







int
(

∑k
j=1

(

int
(

ajb
y

)))

+ int

(

∑k
j=1(ajb)

y − int
(

∑k
j=1

(

int
(

ajb
y

)))

)







R2 R1 & 28 ⇒
(

∑k
j=1 ((ajb) mod y)

)

mod y

=
(

∑k
j=1 (ajb)

)

−y ×













int
(

∑k
j=1

(

int
(

ajb
y

)))

+ int

(

∑k
j=1(ajb)

y

)

− int
(

∑k
j=1

(

int
(

ajb
y

)))













=
(

∑k
j=1 (ajb)

)

− y × int

(

∑k
j=1(ajb)

y

)

R3 R2 & 33 ⇒
(

∑k
j=1 ((ajb) mod y)

)

mod y =
(

∑k
j=1 (ajb)

)

mod y

Theorem 40 Given any three real numbers a, b and c and a non-zero real number y,

((a+ b) mod y = (a+ c) mod y) ⇐⇒

(

c− b

y
∈ Z

)

where Z is the universal set of integers.
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Proof

R1 33 ⇒ (a+ b) mod y = (a+ b)− y × int
(

a+b
y

)

R2 33 ⇒ (a+ c) mod y = (a+ c)− y × int
(

a+c
y

)

R3 Let (a+ b) mod y = (a+ c) mod y

R4 R1, R2, R3 & 27 ⇒ (a+ b)− y × int
(

a+b
y

)

= (a+ c)− y × int
(

a+c
y

)

⇒ b = c− y × int
(

a+c
y

)

+ y × int
(

a+b
y

)

⇒ b = c− y ×
(

int
(

a+c
y

)

− int
(

a+b
y

))

⇒ c−b
y = int

(

a+c
y

)

− int
(

a+b
y

)

⇒ c−b
y ∈ Z

R5 R1 to R4 ⇒ ((a+ b) mod y = (a+ c) mod y)⇒
(

c−b
y ∈ Z

)

R6 Let c−b
y = n where n ∈ Z

R7 R6 ⇒ c = n× y + b

R8 R7 ⇒ (a+ c) mod y = (a+ b+ n× y) mod y

R9 R8 & 37 ⇒ (a+ c) mod y = (a+ b) mod y

R10 R6 to R9 ⇒
(

c−b
y ∈ Z

)

⇒((a+ b) mod y = (a+ c) mod y)

R11 R5 & R10 ⇒ ((a+ b) mod y = (a+ c) mod y) ⇐⇒
(

c−b
y ∈ Z

)

Theorem 41 Given any real number a and any non-zero real number y,

(y > 0) ⇒ (y > a mod y ≥ 0)
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Proof

R1 Let y > 0

R2 33 ⇒ a mod y = a− y × int
(

a
y

)

R3 27 ⇒ a
y − 1 < int

(

a
y

)

≤ a
y

R4 R1 & R3 ⇒ a− y < y × int
(

a
y

)

≤ a

R5 R4 ⇒ y − a > −y × int
(

a
y

)

≥ −a

R6 R5 ⇒ y > a− y × int
(

a
y

)

≥ 0

R7 R2 & R6 ⇒ y > a mod y ≥ 0

R8 R1 to R7 ⇒ (y > 0) ⇒ (y > a mod y ≥ 0)

Theorem 42 Given any real number a and any non-zero real number y,

(y < 0) ⇒ (y < a mod y ≤ 0)

Proof

R1 Let y < 0

R2 33 ⇒ a mod y = a− y × int
(

a
y

)

R3 27 ⇒ a
y − 1 < int

(

a
y

)

≤ a
y

R4 R1 & R3 ⇒ a− y > y × int
(

a
y

)

≥ a

R5 R4 ⇒ y − a < −y × int
(

a
y

)

≤ −a

R6 R5 ⇒ y < a− y × int
(

a
y

)

≤ 0

R7 R2 & R6 ⇒ y < a mod y ≤ 0

R8 R1 to R7 ⇒ (y < 0) ⇒ (y < a mod y ≤ 0)

Theorem 43 If a, b, c and y are real numbers then

(y > a, b, c ≥ 0) ∧ (a = (b− c) mod y) ⇒ (b = (a+ c) mod y)
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Proof

R1 Let y > a, b, c ≥ 0

R2 Let a = (b− c) mod y

R3 R2 & 33 ⇒ a = b− c− y × int
(

b−c
y

)

R4 R1 & 27 ⇒ c > b⇒ int
(

b−c
y

)

= −1

R5 R1 & 27 ⇒ c ≤ b⇒ int
(

b−c
y

)

= 0

R6 R3 & R4 ⇒ c > b⇒ a = b− c+ y ⇒ a+ c = b+ y

R7 R1 & R6 ⇒ c > b⇒ a+ c ≥ y

R8 R3 & R5 ⇒ c ≤ b⇒ a = b− c⇒ a+ c = b

R9 R1 & R8 ⇒ c ≤ b⇒ a+ c < y

R10 R9 ⇒ a+ c ≥ y ⇒ c 6≤ b⇒ c > b

R11 R7 ⇒ a+ c < y ⇒ c 6> b⇒ c ≤ b

R12 R6 & R10 ⇒ a+ c ≥ y ⇒ b = a+ c− y

R13 R8 & R11 ⇒ a+ c < y ⇒ b = a+ c

R14 R12 & R13 ⇒ b =

{

a+ c− y

a+ c

if

if

a+ c ≥ y

a+ c < y

R15 Let z = (a+ c) mod y

R16 R15 & 33 ⇒ z = a+ c− y × int
(

a+c
y

)

R17 R1 & 27 ⇒ a+ c ≥ y ⇒ int
(

a+c
y

)

= 1

R18 R1 & 27 ⇒ a+ c < y ⇒ int
(

a+c
y

)

= 0

R19 R16 & R17 ⇒ a+ c ≥ y ⇒ z = a+ c− y
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R20 R16 & R18 ⇒ a+ c < y ⇒ z = a+ c

R21 R19 & R20 ⇒ z =

{

a+ c− y

a+ c

if

if

a+ c ≥ y

a+ c < y

R22 R14 & R21 ⇒ b = z

R23 R15 & R22 ⇒ b = (a+ c) mod y

R24 R1, R2 & R23 ⇒
y > a, b, c ≥ 0

a = (b− c) mod y

}

⇒ b = (a+ c) mod y

Theorem 44 If a and y are real numbers then

(y > a ≥ 0) ⇒ (a mod y = a)

Proof

R1 Let y > a ≥ 0

R2 33 ⇒ a mod y = a− y × int (a/y)

R3 R1 & 27 ⇒ int (a/y) = 0

R4 R2 & R3 ⇒ a mod y = a

R5 R1 to R4 ⇒ (y > a ≥ 0) ⇒ (a mod y = a)

Theorem 45 For any real number a, any integer b and any non-zero real number y

(a× (b mod y)) mod y = (ab) mod y
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Proof

R1 33 ⇒ (a× (b mod y)) mod y

= a× (b mod y)− y × int
(

a×(b mod y)
y

)

= a×
(

b− y × int
(

b
y

))

− y × int

(

a×(b−y×int( b
y ))

y

)

= ab− ay × int
(

b
y

)

− y × int
(

ab
y − a× int

(

b
y

))

R2 R1 & 32 ⇒ (a× (b mod y)) mod y

= ab− ay × int
(

b
y

)

− y ×
(

int
(

ab
y

)

− a× int
(

b
y

))

= ab− ay × int
(

b
y

)

− y × int
(

ab
y

)

+ ay × int
(

b
y

)

= ab− y × int
(

ab
y

)

R3 R2 & 33 ⇒ (a× (b mod y)) mod y = (ab) mod y

Theorem 46 For any non-zero real number y and any real number a such that 0 ≤ a < y,

a+ (−a) mod y = y

Proof

R1 Let 0 ≤ a < y

R2 33 ⇒ (−a) mod y = −a− y × int
(

−a
y

)

R3 R1 ⇒ int
(

−a
y

)

= −1

R4 R2 & R3 ⇒ (−a) mod y = −a− y × (−1) = −a+ y = y − a

R5 R4 ⇒ (−a) mod y = a+ y − a = y

Theorem 47 For any non-zero real number y, any pair of real numbers x1 and x2, and any pair of integers

n1 and n2,

(x1 − yn1 = x2 − yn2) ⇒ (x1 mod y = x2 mod y)
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Proof

R1 Let x1 − yn1 = x2 − yn2

R2 34 & R1 ⇒ (x1 − yn1) mod y = (x2 − yn2) mod y

⇒ (x1 mod y − yn1 mod y) mod y = (x2 mod y − yn2 mod y) mod y

R3 36 & R2 ⇒ (x1 mod y − 0) mod y = (x2 mod y − 0) mod y

R4 R3 & 35 ⇒ x1 mod y = x2 mod y

R5 R1 to R4 ⇒ (x1 − yn1 = x2 − yn2) ⇒ (x1 mod y = x2 mod y)

4.2.3 div

Definition 48 (div) If x is a real number and y is a non-zero real number then the binary operation div is

defined as follows:

x div y = int

(

x

y

)

Theorem 49 For any real number x and any non-zero real number y,

x = x mod y + y × (x div y)

Proof

R1 33 ⇒ x mod y = x− y × int
(

x
y

)

R2 48 ⇒ x div y = int
(

x
y

)

R3 R1 & R2 ⇒ x mod y + y × (x div y) = x− y × int
(

x
y

)

+ y × int
(

x
y

)

= x

Theorem 50 For any real number a, any non-zero real number y and any integer b,

(a− by) div y = (a div y)− b
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Proof

R1 48 ⇒ a div y − b = int
(

a
y

)

− b

R2 48 ⇒ (a− by) div y = int
(

a−by
y

)

= int
(

a
y − b

)

R3 Let b ∈ Z

R4 R3 ⇒ b = int (b)

R5 R2 & 31 ⇒ (a− by) div y = int
(

a
y

)

− int (b) + int
(

a
y − b− int

(

a
y

)

+ int (b)
)

R6 R4 & R5 ⇒ (a− by) div y

= int
(

a
y

)

− b+ int
(

a
y − b− int

(

a
y

)

+ b
)

= int
(

a
y

)

− b+ int
(

a
y − int

(

a
y

))

R7 R6 & 28 ⇒ (a− by) div y

= int
(

a
y

)

− b+ int
(

a
y

)

− int
(

a
y

)

= int
(

a
y

)

− b

R8 R1 & R7 ⇒ (a− by) div y = (a div y)− b

Theorem 51 For any pair of real numbers a and b and any non-zero real number y,

(a+ b) div y + ((a+ b) mod y − a) div y = int

(

b

y

)
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Proof

R1 33 & 48 ⇒ (a+ b) div y + ((a+ b) mod y − a) div y

= int
(

a+b
y

)

+ int

(

(a+b)−y×int( a+b
y )−a

y

)

= int
(

a+b
y

)

+ int
(

a
y + b

y − int
(

a+b
y

)

− a
y

)

= int
(

a+b
y

)

+ int
(

b
y − int

(

a+b
y

))

R2 R1 & 28 ⇒ (a+ b) div y + ((a+ b) mod y − a) div y

= int
(

a+b
y

)

+ int
(

b
y

)

− int
(

a+b
y

)

= int
(

b
y

)

Theorem 52 For any pair of real numbers a and b and any non-zero real number y,

(a div y) + (b+ a mod y) div y = (a+ b) div y

Proof

R1 48 ⇒ (a div y) + (b+ a mod y) div y = int
(

a
y

)

+ int
(

b+a mod y
y

)

R2 R1 & 33 ⇒ (a div y) + (b+ a mod y) div y

= int
(

a
y

)

+ int
(

b+(a−y×int(a/y))
y

)

= int
(

a
y

)

+ int
(

b
y + a

y − int
(

a
y

))

R3 R2 & 28 ⇒ (a div y) + (b+ a mod y) div y

= int
(

a
y

)

+ int
(

b
y + a

y

)

− int
(

a
y

)

= int
(

b
y + a

y

)

= int
(

a+b
y

)

R4 R3 & 48 ⇒ (a div y) + (b+ a mod y) div y = (a+ b) div y

Theorem 53 For any real number a and any non-zero real number y,

(a mod y) div y = 0
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Proof

R1 33 & 48 ⇒ (a mod y) div y

= int
(

a−y×int(a/y)
y

)

= int
(

a
y − int

(

a
y

))

R2 R1 & 28 ⇒ (a mod y) div y = int
(

a
y

)

− int
(

a
y

)

= 0

Theorem 54 Given a set of real numbers a1, a2, . . . , ak, a real number b and a non-zero real number y,





k
∑

j=1

((ajb) div y)



+









k
∑

j=1

((ajb) mod y)



 div y



 =



b×
k
∑

j=1

aj



 div y
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Proof

R1 48 & 27 ⇒
∑k

j=1 ((ajb) div y) =
∑k

j=1

(

int
(

ajb
y

))

= int
(

∑k
j=1

(

int
(

ajb
y

)))

R2 33 & 48 ⇒
(

∑k
j=1 ((ajb) mod y)

)

div y

= int

(

∑k
j=1((ajb)−y×int((ajb)/y))

y

)

= int

(

∑k
j=1(ajb)−y×

∑k
j=1(int((ajb)/y))

y

)

= int

(

∑k
j=1(ajb)

y −
∑k

j=1

(

int
(

ajb
y

))

)

R3 R1, R2 & 28 ⇒
(

∑k
j=1 ((ajb) mod y)

)

div y

= int

(

∑k
j=1(ajb)

y

)

− int
(

∑k
j=1

(

int
(

ajb
y

)))

R4 R1 & R3 ⇒
(

∑k
j=1 ((ajb) div y)

)

+
((

∑k
j=1 ((ajb) mod y)

)

div y
)

= int
(

∑k
j=1

(

int
(

ajb
y

)))

+ int

(

∑k
j=1(ajb)

y

)

− int
(

∑k
j=1

(

int
(

ajb
y

)))

= int

(

∑k
j=1(ajb)

y

)

= int

(

b×
∑k

j=1 aj

y

)

R5 48 ⇒
(

b×
∑k

j=1 aj

)

div y = int

(

b×
∑k

j=1 aj

y

)

R6 R4 & R5 ⇒





(

∑k
j=1 ((ajb) div y)

)

+
((

∑k
j=1 ((ajb) mod y)

)

div y
)



 =
(

b×
∑k

j=1 aj

)

div y

Theorem 55 If a and b are any two real numbers and y is any non-zero real number then

(b div y)− (a div y) + (((b mod y)− (a mod y)) div y) = (b− a) div y
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Proof

R1 Let z = (b div y)− (a div y) + (((b mod y)− (a mod y)) div y)

R2 R1 & 33 ⇒ z = (b div y)− (a div y) + (((b− y × int (b/y))− (a− y × int (a/y))) div y)

R3 R2 & 48 ⇒ z = int
(

b
y

)

− int
(

b
y

)

+ int
(

b−y×int(b/y)−a+y×int(a/y)
y

)

= int
(

b
y

)

− int
(

a
y

)

+ int
(

b
y −

a
y − int

(

b
y

)

+ int
(

a
y

))

R4 R3 & 29 ⇒ z = int
(

b
y

)

− int
(

a
y

)

+ int
(

b
y −

a
y − int

(

b
y

))

+ int
(

a
y

)

= int
(

b
y

)

+ int
(

b−a
y − int

(

b
y

))

R5 R4 & 28 ⇒ z = int
(

b
y

)

+ int
(

b−a
y

)

− int
(

b
y

)

= int
(

b−a
y

)

R6 48 ⇒ int
(

b−a
y

)

= (b− a) div y

R7 R1, R5 & R6 ⇒ (b div y)− (a div y) + (((b mod y)− (a mod y)) div y) = (b− a) div y

Theorem 56 If a is an integer and y is a positive, non-zero real number and b is a real number such that

0 ≤ b < y, then

a+ (−a× ((−b) mod y)) div y = (ba) div y
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Proof

R1 Let a be an integer

R2 Let b be a real number such that 0 ≤ b < y

R3 Let z = a+ (−a× ((−b) mod y)) div y

R4 R2 & 46 ⇒ (−b) mod y = y − b

R5 R3 & R4 ⇒ z = a+ (−a× (y − b)) div y = a+ (ba− ay) div y

R6 R5 & 48 ⇒ z = a+ int
(

ba−ay
y

)

= a+ int
(

ba
y − a

)

R7 R1 ⇒ a = int (a)

R8 R6 & R7 ⇒ z = a+ int
(

ba
y − int (a)

)

R9 R8 & 28 ⇒ z = a+ int
(

ba
y

)

− int (a)

R10 R7 & R9 ⇒ z = int
(

ba
y

)

R11 R10 & 48 ⇒ z = (ba) div y

R12 R3 & R11 ⇒ a+ (−a× ((−b) mod y)) div y = (ba) div y

Theorem 57 If a is an integer, b is real and y is a non-zero integer then

(ab− a× (b mod y)) div y + (a× (b mod y)) div y = ab div y
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Proof

R1 Let a be an integer, b be a real number and y be a non-zero integer

R2 Let x = (ab− a× (b mod y)) div y + (a× (b mod y)) div y

R3 R2, 48 & 33 ⇒ x = int
(

ab−a×(b−y×int(b/y))
y

)

+ int
(

a×(b−y×int(b/y))
y

)

= int
(

ab
y − a

y ×
(

b− y × int
(

b
y

)))

+ int
(

a
y ×

(

b− y × int
(

b
y

)))

= int
(

ab
y − ab

y + a× int
(

b
y

))

+ int
(

ab
y − a× int

(

b
y

))

= int
(

a× int
(

b
y

))

+ int
(

ab
y − a× int

(

b
y

))

R4 R1 ⇒ a× int
(

b
y

)

= int
(

a× int
(

b
y

))

R5 R3 & R4 ⇒ x = int
(

a× int
(

b
y

))

+ int
(

ab
y − int

(

a× int
(

b
y

)))

R6 R5 & 28 ⇒ x = int
(

a× int
(

b
y

))

+ int
(

ab
y

)

− int
(

a× int
(

b
y

))

= int
(

ab
y

)

R7 R6 & 48 ⇒ x = (ab) div y

R8 R7 & R2 ⇒ (ab− a× (b mod y)) div y + (a× (b mod y)) div y = ab div y

Theorem 58 If a and b are integers and y is a non-zero integer then

ab div y = a× (b div y) + (a× (b mod y)) div y
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Proof

R1 Let a and b be integers and y be a non-zero integer

R2 49 ⇒ b = b mod y + y × (b div y)

⇒ ab
y = a

y × (b mod y) + a× (b div y)

⇒ a× (b div y) = ab
y − a

y × (b mod y)

R3 R1 & 48 ⇒ a× (b div y) is an integer

R4 R2 & R3 ⇒ ab
y − a

y × (b mod y) is an integer

⇒ ab
y − a

y × (b mod y) = int
(

ab
y − a

y × (b mod y)
)

R5 R2 & R4 ⇒ a× (b div y) = int
(

ab
y − a

y × (b mod y)
)

R6 48 & R5 ⇒ a× (b div y) = (ab− a× (b mod y)) div y

R7 R6 ⇒ a× (b div y) + (a× (b mod y)) div y = (ab− a× (b mod y)) div y + (a× (b mod y)) div y

R8 R7 & 57 ⇒ a× (b div y) + (a× (b mod y)) div y = ab div y

4.2.4 log

Theorem 59 If a, b and c are any three positive real numbers then

log a b× log b c = log a c

Proof

R1 Let c = ax = by

R2 R1 ⇒ x = y log a b

R3 R1 ⇒ x = log a c

R4 R1 ⇒ y = log b c

R5 R2 & R4 ⇒ x = log b c× log a b

R6 R3 & R5 ⇒ log a c = log a b× log b c
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4.2.5 abs

Definition 60 (abs) If x is a real number then

abs (x) =

{

x

−x

if

if

x ≥ 0

x < 0

4.3 MIPS objects

4.3.1 Pitch system and pitch: the primary MIPS concepts

Definition 61 (Pitch system) An object ψ is a well-formed pitch system if and only if it is an ordered

quadruple

ψ = [µc, µm, f0, pc,0]

such that the following conditions are satisfied:

1. µc is a natural number called the chromatic modulus;

2. µm is a natural number called the morphetic modulus;

3. µc ≥ µm;

4. f0 is a positive real number called the standard frequency;

5. pc,0 is an integer called the standard chromatic pitch.

Definition 62 (Pitch) An object p is a well-formed pitch in a pitch system if and only if it is an ordered

pair

p = [pc, pm]

that satisfies the following conditions:

1. pc is an integer called the chromatic pitch;

2. pm is an integer called the morphetic pitch.

4.3.2 Derived MIPS objects

Deriving objects from a MIPS pitch

Definition 63 (Chromatic pitch of a pitch) If p = [pc, pm] is a pitch in a well-formed pitch system then

the following function returns the chromatic pitch of p:

pc (p) = pc

Definition 64 (Morphetic pitch of a pitch) If p = [pc, pm] is a pitch in a well-formed pitch system then

the following function returns the morphetic pitch of p:

pm (p) = pm

Theorem 65 If ψ is a pitch system and p is a pitch in ψ then

p = [pc (p) , pm (p)]
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Proof

R1 Let p = [pc, pm]

R2 R1 & 63 ⇒ pc (p) = pc

R3 R1 & 64 ⇒ pm (p) = pm

R4 R1, R2 & R3 ⇒ p = [pc (p) , pm (p)]

Definition 66 (Frequency of a pitch) If p is a pitch in the pitch system

ψ = [µc, µm, f0, pc,0]

then the function

f (p) = f0 × 2(pc(p)−pc,0)/µc

returns the frequency of p.

Theorem 67 If f is the frequency of a pitch p in a pitch system ψ then f can only take any value such that

f ∈ R+

where R+ is the universal set of real numbers greater than zero.

Proof

R1 Let p be any pitch in ψ = [µc, µm, f0, pc,0]

R2 Let f = f (p)

R3 66 & R2 ⇒ f = f0 × 2(pc(p)−pc,0)/µc

R4 61 ⇒ f0 can only take any positive real value.

R5 2x can only take any positive real value when x is real.

R6 R3, R4 & R5 ⇒ f can only take any value such that f ∈ R+

where R+ is the universal set of real numbers greater than zero.

Definition 68 (Chromatic octave of a pitch) If p is a pitch in the pitch system

ψ = [µc, µm, f0, pc,0]

then the following function returns the chromatic octave of p:

oc (p) = pc (p) div µc
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Definition 69 (Morphetic octave of a pitch) If p is a pitch in the pitch system

ψ = [µc, µm, f0, pc,0]

then the following function returns the morphetic octave of p:

om (p) = pm (p) div µm

Theorem 70 (om (p) ∈ Z) If p is a pitch in a pitch system ψ then

om (p) ∈ Z

where Z is the universal set of integers.

Proof

R1 69 ⇒ om (p) = pm (p) div µm

R2 R1 & 48 ⇒ om (p) = int (pm (p) /µm)

R3 R2 & 27 ⇒ om (p) ∈ Z where Z is the universal set of integers

Definition 71 (Chroma of a pitch) If p is a pitch in a pitch system

ψ = [µc, µm, f0, pc,0]

then the following function returns the chroma of p:

c (p) = pc (p) mod µc

Theorem 72 If c is the chroma of a pitch p in a pitch system

ψ = [µc, µm, f0, pc,0]

then c can only take any value such that

(0 ≤ c < µc) ∧ (c ∈ Z)

where Z is the universal set of integers.



CHAPTER 4. FORMAL SPECIFICATION OF MIPS 84

Proof

R1 Let c = c (p)

R2 71 ⇒ c (p) = pc (p) mod µc

R3 R1 & R2 ⇒ c = pc (p) mod µc

R4 61 ⇒ µc can only take any positive integer value.

R5 R4 & 41 ⇒ µc > pc (p) mod µc ≥ 0

R6 R3 & R5 ⇒ µc > c ≥ 0

R7 63 & 62 ⇒ pc (p) can only take any integer value.

R8 R3 & 33 ⇒ c = pc (p)− µc × int
(

pc(p)
µc

)

R9 R8, R7, R4 & 27 ⇒ c is an integer

R10 R9 & R6 ⇒ (0 ≤ c < µc) ∧ (c ∈ Z) where Z is the universal set of integers.

R11 R7 ⇒ pc (p) can take any integer value such that µc > pc (p) ≥ 0.

R12 45 & R3 ⇒ c = pc (p) for each value of pc (p) such that µc > pc (p) ≥ 0.

R13 R11 & R12 ⇒ c can take any integer value such that µc > c ≥ 0.

R14 R13 & R10 ⇒ c can only take any value such that (0 ≤ c < µc) ∧ (c ∈ Z).

Theorem 73 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and c is a chroma in ψ then

c mod µc = c

Proof

R1 72 ⇒ (0 ≤ c < µc) ∧ (c ∈ Z)

R2 R1 & 44 ⇒ c mod µc = c

Theorem 74 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and c is a chroma in ψ then

c div µc = 0
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Proof

R1 72 ⇒ (0 ≤ c < µc) ∧ (c ∈ Z)

R2 48 ⇒ c div µc = int
(

c
µc

)

R3 R1 & R2 ⇒ c div µc = 0

Theorem 75 If ψ = [µc, µm, f0, pc,0] is a pitch system and p is a pitch in ψ then

pc (p) = c (p) + oc (p)× µc

Proof

R1 68 ⇒ oc (p) = pc (p) div µc

R2 71 ⇒ c (p) = pc (p) mod µc

R3 49, 63 & 61 ⇒ pc (p) = pc (p) mod µc + µc × (pc (p) div µc)

R4 R1, R2 & R3 ⇒ pc (p) = c (p) + oc (p)× µc

Definition 76 (Morph of a pitch) If p is a pitch in the pitch system

ψ = [µc, µm, f0, pc,0]

then the following function returns the morph of p:

m (p) = pm (p) mod µm

Theorem 77 If m is the morph of a pitch p in a pitch system

ψ = [µc, µm, f0, pc,0]

then m can only take any value such that

(0 ≤ m < µm) ∧ (m ∈ Z)

where Z is the universal set of integers.
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Proof

R1 Let m = m (p)

R2 76 ⇒ m (p) = pm (p) mod µm

R3 R1 & R2 ⇒ m = pm (p) mod µm

R4 61 ⇒ µm can only take any positive integer value.

R5 R4 & 41 ⇒ µm > pm (p) mod µm ≥ 0

R6 R3 & R5 ⇒ µm > m ≥ 0

R7 64 & 62 ⇒ pm (p) can only take any integer value.

R8 R3 & 33 ⇒ m = pm (p)− µm × int
(

pm(p)
µm

)

R9 R8, R7, R4 & 27 ⇒ m is an integer

R10 R9 & R6 ⇒ (0 ≤ m < µm) ∧ (m ∈ Z) where Z is the universal set of integers.

R11 R7 ⇒ pm (p) can take any integer value such that µm > pm (p) ≥ 0.

R12 45 & R3 ⇒ m = pm (p) for each value of pm (p) such that µm > pm (p) ≥ 0.

R13 R11 & R12 ⇒ m can take any integer value such that µm > m ≥ 0.

R14 R13 & R10 ⇒ m can only take any value such that (0 ≤ m < µm) ∧ (m ∈ Z).

Theorem 78 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and m is a morph in ψ then

m mod µm = m

Proof

R1 77 ⇒ (0 ≤ m < µm) ∧ (m ∈ Z)

R2 R1 & 44 ⇒ m mod µm = m

Theorem 79 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and m is a morph in ψ then

m div µm = 0
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Proof

R1 77 ⇒ (0 ≤ m < µm) ∧ (m ∈ Z)

R2 48 ⇒ m div µm = int
(

m
µm

)

R3 R1 & R2 ⇒ m div µm = 0

Definition 80 (Chromamorph of a pitch) If p is a pitch in a well-formed pitch system, then the following

function returns the chromamorph of p:

q (p) = [c (p) ,m (p)]

Definition 81 (Octave difference of a pitch) If p is a pitch in a well-formed pitch system, then the fol-

lowing function returns the octave difference of p:

do (p) = oc (p)− om (p)

Definition 82 (Chromatic genus of a pitch) If p is a pitch in a well-formed pitch system

ψ = [µc, µm, f0, pc,0]

then the following function returns the chromatic genus of p:

gc (p) = pc (p)− µc × om (p)

Theorem 83 If p is any pitch in a pitch system ψ then gc (p) can only take any integer value.

Proof

R1 Let p be any pitch in ψ.

R2 82 ⇒ gc (p) = pc (p)− µc × om (p)

R3 62 & 63 ⇒ pc (p) can only take any integer value.

R4 61 ⇒ µc can only take any positive integer value.

R5 70 ⇒ om (p) is an integer.

R6 63, 69 & 61 ⇒ µc, pc (p) and om (p) are mutually independent values.

R7 R2 to R6 ⇒ gc (p) can only take any integer value.

Definition 84 (Genus of a pitch) If p is a pitch in a well-formed pitch system then the following function

returns the genus of p:

g (p) = [gc (p) ,m (p)]
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Theorem 85 If p1 and p2 are two pitches in a pitch system ψ then

(do (p1) = do (p2)) ∧ (c (p1) = c (p2)) ∧ (m (p1) = m (p2)) ⇒ (g (p1) = g (p2))

Proof

R1 81 ⇒ (do (p1) = do (p2)) ⇒ (oc (p1)− om (p1) = oc (p2)− om (p2))

R2 R1 & 75 ⇒
(

(do (p1) = do (p2)) ⇒
(

pc(p1)−c(p1)
µc

− om (p1) = pc(p2)−c(p2)
µc

− om (p2)
))

⇒ ((do (p1) = do (p2)) ⇒ (pc (p1)− c (p1)− µc × om (p1) = pc (p2)− c (p2)− µc × om (p2)))

⇒ ((do (p1) = do (p2) ∧ c (p1) = c (p2)) ⇒ (pc (p1)− µc × om (p1) = pc (p2)− µc × om (p2)))

R3 R2 & 82 ⇒ ((do (p1) = do (p2) ∧ c (p1) = c (p2)) ⇒ (gc (p1) = gc (p2)))

R4 R3 & 84 ⇒ ((do (p1) = do (p2) ∧ c (p1) = c (p2) ∧m (p1) = m (p2)) ⇒ (g (p1) = g (p2)))

Theorem 86 If p1 and p2 are two pitches in a pitch system ψ then

g (p1) = g (p2) ⇒ do (p1) = do (p2) ∧ c (p1) = c (p2) ∧m (p1) = m (p2)

Proof

R1 84 ⇒ (g (p1) = g (p2) ⇒ [gc (p1) ,m (p1)] = [gc (p2) ,m (p2)])

R2 R1 ⇒ (g (p1) = g (p2) ⇒ m (p1) = m (p2))

R3 R1 ⇒ (g (p1) = g (p2) ⇒ gc (p1) = gc (p2))

R4 R3 & 82 ⇒ (g (p1) = g (p2) ⇒ pc (p1)− µc × om (p1) = pc (p2)− µc × om (p2))

R5 R4 & 47 ⇒ (g (p1) = g (p2) ⇒ pc (p1) mod µc = pc (p2) mod µc)

R6 R5 & 71 ⇒ (g (p1) = g (p2) ⇒ c (p1) = c (p2))

R7 R4 & R6 ⇒ (g (p1) = g (p2) ⇒ pc (p1)− c (p1)− µc × om (p1) = pc (p2)− c (p2)− µc × om (p2))

⇒
(

g (p1) = g (p2) ⇒
pc(p1)−c(p1)

µc
− om (p1) = pc(p2)−c(p2)

µc
− om (p2)

)

R8 R7 & 75 ⇒ (g (p1) = g (p2) ⇒ oc (p1)− om (p1) = oc (p2)− om (p2))

R9 R8 & 81 ⇒ (g (p1) = g (p2) ⇒ do (p1) = do (p2))

R10 R2, R6 & R9 ⇒ (g (p1) = g (p2) ⇒ do (p1) = do (p2) ∧ c (p1) = c (p2) ∧m (p1) = m (p2))
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Theorem 87 If p1 and p2 are two pitches in a pitch system ψ then

g (p1) = g (p2) ⇐⇒ do (p1) = do (p2) ∧ c (p1) = c (p2) ∧m (p1) = m (p2)

Proof

R1 85 ⇒ (do (p1) = do (p2) ∧ c (p1) = c (p2) ∧m (p1) = m (p2) ⇒ g (p1) = g (p2))

R2 86 ⇒ (g (p1) = g (p2) ⇒ do (p1) = do (p2) ∧ c (p1) = c (p2) ∧m (p1) = m (p2))

R3 R1 & R2 ⇒ (g (p1) = g (p2) ⇐⇒ do (p1) = do (p2) ∧ c (p1) = c (p2) ∧m (p1) = m (p2))

Deriving MIPS objects from a chromatic pitch

Definition 88 (Definition of f (pc)) If pc is the chromatic pitch of a pitch p in a pitch system ψ then the

function f (pc) must return the frequency of p. In other words, by definition, it must be true that

(pc = pc (p)) ⇒ (f (pc) = f (p))

Theorem 89 (Formula for f (pc)) If pc is the chromatic pitch of a pitch in

ψ = [µc, µm, f0, pc,0]

then

f (pc) = f0 × 2(pc−pc,0)/µc

Proof

R1 Let pc = pc (p)

R2 66 ⇒ f (p) = f0 × 2(pc(p)−pc,0)/µc

R3 R1 & R2 ⇒ f (p) = f0 × 2(pc−pc,0)/µc

R4 R1, R3 & 88 ⇒ f (pc) = f0 × 2(pc−pc,0)/µc

Definition 90 (Definition of oc (pc)) If pc is the chromatic pitch of a pitch p in a pitch system ψ then the

function oc (pc) must return the chromatic octave of p. In other words, by definition, it must be true that

(pc = pc (p)) ⇒ (oc (pc) = oc (p))

Theorem 91 (Formula for oc (pc)) If pc is the chromatic pitch of a pitch in

ψ = [µc, µm, f0, pc,0]

then

oc (pc) = pc div µc
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Proof

R1 Let pc = pc (p)

R2 68 ⇒ oc (p) = pc (p) div µc

R3 R1 & R2 ⇒ oc (p) = pc div µc

R4 R1, R3 & 90 ⇒ oc (pc) = pc div µc

Definition 92 (Definition of c (pc)) If pc is the chromatic pitch of a pitch p in a pitch system ψ then the

function c (pc) must return the chroma of p. In other words, by definition, it must be true that

(pc = pc (p)) ⇒ (c (pc) = c (p))

Theorem 93 (Formula for c (pc)) If pc is the chromatic pitch of a pitch in the pitch system

ψ = [µc, µm, f0, pc,0]

then:

c (pc) = pc mod µc

Proof

R1 Let pc = pc (p)

R2 71 ⇒ c (p) = pc (p) mod µc

R3 R1 & R2 ⇒ c (p) = pc mod µc

R4 R1, R3 & 92 ⇒ c (pc) = pc mod µc

Deriving MIPS objects from a morphetic pitch

Definition 94 (Definition of om (pm)) If pm is the morphetic pitch of a pitch p in a pitch system ψ then

the function om (pm) must return the morphetic octave of p. In other words, by definition, it must be true

that

(pm = pm (p)) ⇒ (om (pm) = om (p))

Theorem 95 (Formula for om (pm)) If pm is the morphetic pitch of a pitch in

ψ = [µc, µm, f0, pc,0]

then

om (pm) = pm div µm
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Proof

R1 Let pm = pm (p)

R2 69 ⇒ om (p) = pm (p) div µm

R3 R1 & R2 ⇒ om (p) = pm div µm

R4 R1, R3 & 94 ⇒ om (pm) = pm div µm

Definition 96 (Definition of m (pm)) If pm is the morphetic pitch of a pitch p in a pitch system ψ then

the function m (pm) must return the morph of p. In other words, by definition, it must be true that

(pm = pm (p)) ⇒ (m (pm) = m (p))

Theorem 97 (Formula for m (pm)) If pm is the morphetic pitch of a pitch in the pitch system

ψ = [µc, µm, f0, pc,0]

then:

m (pm) = pm mod µm

Proof

R1 Let pm = pm (p)

R2 76 ⇒ m (p) = pm (p) mod µm

R3 R1 & R2 ⇒ m (p) = pm mod µm

R4 R1, R3 & 96 ⇒ m (pm) = pm mod µm

Deriving MIPS objects from a frequency

Definition 98 (Definition of pc (f)) If f is the frequency of a pitch p in a pitch system ψ then the function

pc (f) must return the chromatic pitch of p. In other words, by definition, it must be true that

(f = f (p)) ⇒ (pc (f) = pc (p))

Theorem 99 (Formula for pc (f)) If f is the frequency of a pitch in the pitch system

ψ = [µc, µm, f0, pc,0]

then

pc (f) = µc ×
ln (f/f0)

ln 2
+ pc,0
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Proof

R1 Let f = f (p)

R2 66 ⇒ f (p) = f0 × 2(pc(p)−pc,0)/µc

⇒ log 2 (f (p)) = log 2 f0 +
pc(p)−pc,0

µc

⇒ pc (p) = µc × log 2 (f (p) /f0) + pc,0

R3 R2 & 59 ⇒ pc (p) = µc ×
ln(f(p)/f0)

ln 2 + pc,0

R4 R3 & R1 ⇒ pc (p) = µc ×
ln(f/f0)

ln 2 + pc,0

R5 R4, R1 & 98 ⇒ pc (f) = µc ×
ln(f/f0)

ln 2 + pc,0

Theorem 100 (Second formula for pc (f)) If f is the frequency of a pitch in the pitch system

ψ = [µc, µm, f0, pc,0]

then

pc (f) = µc × log 2 (f/f0) + pc,0

Proof

R1 Let f = f (p)

R2 66 ⇒ f (p) = f0 × 2(pc(p)−pc,0)/µc

⇒ log 2 (f (p)) = log 2 f0 +
pc(p)−pc,0

µc

⇒ pc (p) = µc × log 2 (f (p) /f0) + pc,0

R3 R2, R1 & 98 ⇒ pc (f) = µc × log 2 (f/f0) + pc,0

Definition 101 (Definition of oc (f)) If f is the frequency of a pitch p in a pitch system ψ then the function

oc (f) must return the chromatic octave of p. In other words, by definition, it must be true that

(f = f (p)) ⇒ (oc (f) = oc (p))

Theorem 102 (Formula for oc (f)) If f is the frequency of a pitch in the pitch system

ψ = [µc, µm, f0, pc,0]

then

oc (f) = pc (f) div µc
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Proof

R1 Let f = f (p)

R2 68 ⇒ oc (p) = pc (p) div µc

R3 R1 & 98 ⇒ oc (p) = pc (f) div µc

R4 R1, R3 & 101 ⇒ oc (f) = pc (f) div µc

Definition 103 (Definition of c (f)) If f is the frequency of a pitch p in a pitch system ψ then the function

c (f) must return the chroma of p. In other words, by definition, it must be true that

(f = f (p)) ⇒ (c (f) = c (p))

Theorem 104 (Formula for c (f)) If f is the frequency of a pitch in the pitch system

ψ = [µc, µm, f0, pc,0]

then

c (f) = pc (f) mod µc

Proof

R1 Let f = f (p)

R2 71 ⇒ c (p) = pc (p) mod µc

R3 R1 & 98 ⇒ c (p) = pc (f) mod µc

R4 R1, R3 & 103 ⇒ c (f) = pc (f) mod µc

Deriving MIPS objects from a chromamorph

Definition 105 (Definition of c (q)) If q is the chromamorph of a pitch p in a pitch system ψ then the

function c (q) must return the chroma of p. In other words, by definition, it must be true that

(q = q (p)) ⇒ (c (q) = c (p))

Theorem 106 (Formula for c (q)) If q = [c,m] is the chromamorph of a pitch in a pitch system ψ =

[µc, µm, f0, pc,0] then

c (q) = c
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Proof

R1 Let q = q (p)

R2 Let q = [c,m]

R3 80 ⇒ q (p) = [c (p) ,m (p)]

R4 R1, R2 & R3 ⇒ c (p) = c

R5 R1, R4 & 105 ⇒ c (q) = c

Definition 107 (Definition of m (q)) If q is the chromamorph of a pitch p in a pitch system ψ then the

function m (q) must return the morph of p. In other words, by definition, it must be true that

(q = q (p)) ⇒ (m (q) = m (p))

Theorem 108 (Formula for m (q)) If q = [c,m] is the chromamorph of a pitch in a pitch system ψ then

m (q) = m

Proof

R1 Let q = q (p)

R2 Let q = [c,m]

R3 80 ⇒ q (p) = [c (p) ,m (p)]

R4 R1, R2 & R3 ⇒ m (p) = m

R5 R1, R4 & 107 ⇒ m (q) = m

Theorem 109 (q = [c (q) ,m (q)]) If q is a chromamorph in ψ then

q = [c (q) ,m (q)]

Proof

R1 Let q = [c,m]

R2 R1 & 106 ⇒ c (q) = c

R3 R1 & 108 ⇒ m (q) = m

R4 R1, R2 & R3 ⇒ q = [c (q) ,m (q)]
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Deriving MIPS objects from a chromatic genus

Definition 110 (Definition of c (gc)) If gc is the chromatic genus of a pitch p in a pitch system ψ then

the function c (gc) must return the chroma of p. In other words, by definition, it must be true that

(gc = gc (p)) ⇒ (c (gc) = c (p))

Theorem 111 (Formula for c (gc)) If gc is the chromatic genus of a pitch in the pitch system

ψ = [µc, µm, f0, pc,0]

then

c (gc) = gc mod µc

Proof

R1 Let gc = gc (p)

R2 82 ⇒ gc (p) = pc (p)− µc × om (p)

R3 R1 & R2 ⇒ gc = pc (p)− µc × om (p)

R4 71 ⇒ c (p) = pc (p) mod µc

R5 R1, R4 & 110 ⇒ c (gc) = pc (p) mod µc

R6 70 ⇒ om (p) is an integer

R7 R6 & 37 ⇒ (pc (p)− µc × om (p)) mod µc = pc (p) mod µc

R8 R7 & R3 ⇒ gc mod µc = pc (p) mod µc

R9 R5 & R8 ⇒ c (gc) = gc mod µc

Definition 112 (Definition of do (gc)) If gc is the chromatic genus of a pitch p in a pitch system ψ then

the function do (gc) must return the octave differenc of p. In other words, by definition, it must be true that

(gc = gc (p)) ⇒ (do (gc) = do (p))

Theorem 113 (Formula for do (gc)) If gc is the chromatic genus of a pitch in the pitch system

ψ = [µc, µm, f0, pc,0]

then

do (gc) = gc div µc
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Proof

R1 Let gc = gc (p)

R2 82 ⇒ gc (p) = pc (p)− µc × om (p)

R3 R1 & R2 ⇒ gc = pc (p)− µc × om (p)

R4 81 ⇒ do (p) = oc (p)− om (p)

R5 R1, R4 & 112 ⇒ do (gc) = oc (p)− om (p)

R6 68 ⇒ oc (p) = pc (p) div µc

R7 R6 & R5 ⇒ do (gc) = (pc (p) div µc)− om (p)

R8 70 ⇒ om (p) is an integer

R9 R8 & 50 ⇒ (pc (p) div µc)− om (p) = (pc (p)− µc × om (p)) div µc

R10 R9, R3 & R7 ⇒ do (gc) = gc div µc

Deriving MIPS objects from a genus

Definition 114 (Chromatic genus of a genus) If g is the genus of a pitch p in a pitch system ψ then

the function gc (g) must return the chromatic genus of p. In other words, by definition, it must be true that

(g = g (p)) ⇒ (gc (g) = gc (p))

Theorem 115 (Chromatic genus of a genus) If g = [gc,m] is the genus of a pitch in the pitch system

ψ then

gc (g) = gc

Proof

R1 Let g = [gc,m]

R2 Let g = g (p)

R3 84 ⇒ g (p) = [gc (p) ,m (p)]

R4 R2 & R3 ⇒ g = [gc (p) ,m (p)]

R5 R4 & R1 ⇒ gc = gc (p)

R6 R5, R2 & 114 ⇒ gc (g) = gc
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Definition 116 (Morph of a genus) If g is the genus of a pitch p in a pitch system ψ then the function

m(g) must return the morph of p. In other words, by definition, it must be true that

(g = g (p)) ⇒ (m (g) = m (p))

Theorem 117 (Morph of a genus) If g = [gc,m] is the genus of a pitch in the pitch system ψ then

m (g) = m

Proof

R1 Let g = [gc,m]

R2 Let g = g (p)

R3 84 ⇒ g (p) = [gc (p) ,m (p)]

R4 R2 & R3 ⇒ g = [gc (p) ,m (p)]

R5 R4 & R1 ⇒ m = m (p)

R6 R5, R2 & 116 ⇒ m (g) = m

Theorem 118 If g is a genus in a pitch system ψ then

g = [gc (g) ,m (g)]

Proof

R1 Let g = [gc,m]

R2 R1 & 117 ⇒ m (g) = m

R3 R1 & 115 ⇒ gc (g) = gc

R4 R1, R2 & R3 ⇒ g = [gc (g) ,m (g)]

Definition 119 (Chroma of a genus) If g is the genus of a pitch p in a pitch system ψ then the function

c (g) must return the chroma of p. In other words, by definition, it must be true that

(g = g (p)) ⇒ (c (g) = c (p))

Theorem 120 (Chroma of a genus) If g is the genus of a pitch in the pitch system

ψ = [µc, µm, f0, pc,0]

then

c (g) = gc (g) mod µc
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Proof

R1 Let g = g (p)

R2 84 ⇒ g (p) = [gc (p) ,m (p)]

R3 R1 & R2 ⇒ g = [gc (p) ,m (p)]

R4 71 ⇒ c (p) = pc (p) mod µc

R5 R1 & 119 ⇒ c (g) = pc (p) mod µc

R6 82 ⇒ gc (p) = pc (p)− µc × om (p)

R7 R6, R1 & 114 ⇒ gc (g) = pc (p)− µc × om (p)

R8 70 ⇒ om (p) is an integer

R9 R8 & 37 ⇒ (pc (p)− µc × om (p)) mod µc = pc (p) mod µc

R10 R9 & R5 ⇒ c (g) = (pc (p)− µc × om (p)) mod µc

R11 R10 & R7 ⇒ c (g) = gc (g) mod µc

Definition 121 (Chromamorph of a genus) If g is the genus of a pitch p in a pitch system ψ then the

function q (g) must return the chromamorph of p. In other words, by definition, it must be true that

(g = g (p)) ⇒ (q (g) = q (p))

Theorem 122 (Chromamorph of a genus) If g is the genus of a pitch in the pitch system ψ then

q (g) = [c (g) ,m (g)]

Proof

R1 Let g = g (p)

R2 R1 & 121 ⇒ q (g) = q (p)

R3 80 ⇒ q (p) = [c (p) ,m (p)]

R4 R2 & R3 ⇒ q (g) = [c (p) ,m (p)]

R5 R4, R1 & 119 ⇒ q (g) = [c (g) ,m (p)]

R6 R5, R1 & 116 ⇒ q (g) = [c (g) ,m (g)]
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Definition 123 (Definition of do (g)) If g is the genus of a pitch p in a pitch system ψ then the function

do (g) must return the octave difference of p. In other words, by definition, it must be true that

(g = g (p)) ⇒ (do (g) = do (p))

Theorem 124 (Formula for do (g)) If g is the genus of a pitch in the pitch system

ψ = [µc, µm, f0, pc,0]

then

do (g) = gc (g) div µc

Proof

R1 Let g = g (p)

R2 81 ⇒ do (p) = oc (p)− om (p)

R3 R1, R2 & 123 ⇒ do (g) = oc (p)− om (p)

R4 68 ⇒ oc (p) = pc (p) div µc

R5 R3 & R4 ⇒ do (g) = (pc (p) div µc)− om (p)

R6 82 ⇒ gc (p) = pc (p)− µc × om (p)

R7 70 ⇒ om (p) is an integer

R8 R7 & 50 ⇒ (pc (p) div µc)− om (p) = (pc (p)− µc × om (p)) div µc

R9 R8 & R6 ⇒ (pc (p) div µc)− om (p) = gc (p) div µc

R10 R9 & R5 ⇒ do (g) = gc (p) div µc

R11 R10, R1 & 114 ⇒ do (g) = gc (g) div µc

4.3.3 Equivalence relations between MIPS objects

Equivalence relations between pitches

Definition 125 (Chromatic pitch equivalence of pitches) Two pitches p1 and p2 in a well-formed pitch

system are chromatic pitch equivalent if and only if

pc (p1) = pc (p2)

The fact that two pitches are chromatic pitch equivalent will be denoted

p1 ≡pc p2
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Definition 126 (Morphetic pitch equivalence of pitches) Two pitches p1 and p2 in a well-formed pitch

system are morphetic pitch equivalent if and only if

pm (p1) = pm (p2)

The fact that two pitches are morphetic pitch equivalent will be denoted

p1 ≡pm p2

Definition 127 (Frequency equivalence of pitches) Two pitches p1 and p2 in a well-formed pitch sys-

tem are frequency equivalent if and only if

f (p1) = f (p2)

The fact that two pitches are frequency equivalent will be denoted

p1 ≡f p2

Definition 128 (Chromatic octave equivalence of pitches) Two pitches p1 and p2 in a well-formed

pitch system are chromatic octave equivalent if and only if

oc (p1) = oc (p2)

The fact that two pitches are chromatic octave equivalent will be denoted

p1 ≡oc p2

Definition 129 (Morphetic octave equivalence of pitches) Two pitches p1 and p2 in a well-formed

pitch system are morphetic octave equivalent if and only if

om (p1) = om (p2)

The fact that two pitches are morphetic octave equivalent will be denoted

p1 ≡om p2

Definition 130 (Chroma equivalence of pitches) Two pitches p1 and p2 in a well-formed pitch system

are chroma equivalent if and only if

c (p1) = c (p2)

The fact that two pitches are chroma equivalent will be denoted

p1 ≡c p2

Definition 131 (Morph equivalence of pitches) Two pitches p1 and p2 in a well-formed pitch system

are morph equivalent if and only if

m (p1) = m (p2)

The fact that two pitches are morph equivalent will be denoted

p1 ≡m p2
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Definition 132 (Chromamorph equivalence of pitches) Two pitches p1 and p2 in a well-formed pitch

system are chromamorph equivalent if and only if

q (p1) = q (p2)

The fact that two pitches are chromamorph equivalent will be denoted

p1 ≡q p2

Definition 133 (Octave difference equivalence of pitches) Two pitches p1 and p2 in a well-formed

pitch system are octave difference equivalent if and only if

do (p1) = do (p2)

The fact that two pitches are octave difference equivalent will be denoted

p1 ≡do p2

Definition 134 (Chromatic genus equivalence of pitches) Two pitches p1 and p2 in a well-formed pitch

system are chromatic genus equivalent if and only if

gc (p1) = gc (p2)

The fact that two pitches are chromatic genus equivalent will be denoted

p1 ≡gc p2

Definition 135 (Genus equivalence of pitches) Two pitches p1 and p2 in a well-formed pitch system are

genus equivalent if and only if

g (p1) = g (p2)

The fact that two pitches are genus equivalent will be denoted

p1 ≡g p2

Equivalence relations between chromatic pitches

Definition 136 (pc,1 ≡f pc,2) Two chromatic pitches pc,1 and pc,2 in a well-formed pitch system are fre-

quency equivalent if and only if

f (pc,1) = f (pc,2)

The fact that two chromatic pitches are frequency equivalent will be denoted

pc,1 ≡f pc,2

Definition 137 (pc,1 ≡oc pc,2) Two chromatic pitches pc,1 and pc,2 in a well-formed pitch system are chro-

matic octave equivalent if and only if

oc (pc,1) = oc (pc,2)

The fact that two chromatic pitches are chromatic octave equivalent will be denoted

pc,1 ≡oc pc,2

Definition 138 (pc,1 ≡c pc,2) Two chromatic pitches pc,1 and pc,2 in a well-formed pitch system are chroma

equivalent if and only if

c (pc,1) = c (pc,2)

The fact that two chromatic pitches are chroma equivalent will be denoted

pc,1 ≡c pc,2
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Equivalence relations between morphetic pitches

Definition 139 (pm,1 ≡om pm,2) Two morphetic pitches pm,1 and pm,2 in a well-formed pitch system are

morphetic octave equivalent if and only if

om (pm,1) = om (pm,2)

The fact that two morphetic pitches are morphetic octave equivalent will be denoted

pm,1 ≡om pm,2

Definition 140 (pm,1 ≡m pm,2) Two morphetic pitches pm,1 and pm,2 in a well-formed pitch system are

morph equivalent if and only if

m (pm,1) = m (pm,2)

The fact that two morphetic pitches are morph equivalent will be denoted

pm,1 ≡m pm,2

Equivalence relations between frequencies

Definition 141 (f1 ≡pc f2) Two frequencies f1 and f2 in a well-formed pitch system are chromatic pitch

equivalent if and only if

pc (f1) = pc (f2)

The fact that two frequencies are chromatic pitch equivalent will be denoted

f1 ≡pc f2

Definition 142 (f1 ≡oc f2) Two frequencies f1 and f2 in a well-formed pitch system are chromatic octave

equivalent if and only if

oc (f1) = oc (f2)

The fact that two frequencies are chromatic octave equivalent will be denoted

f1 ≡oc f2

Definition 143 (f1 ≡c f2) Two frequencies f1 and f2 in a well-formed pitch system are chroma equivalent

if and only if

c (f1) = c (f2)

The fact that two frequencies are chroma equivalent will be denoted

f1 ≡c f2

Equivalence relations between chromamorphs

Definition 144 (q1 ≡c q2) Two chromamorphs q1 and q2 in a well-formed pitch system are chroma equiva-

lent if and only if

c (q1) = c (q2)

The fact that two chromamorphs are chroma equivalent will be denoted

q1 ≡c q2
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Definition 145 (q1 ≡m q2) Two chromamorphs q1 and q2 in a well-formed pitch system are morph equiva-

lent if and only if

m (q1) = m (q2)

The fact that two chromamorphs are morph equivalent will be denoted

q1 ≡m q2

Equivalence relations between chromatic genera

Definition 146 (gc,1 ≡c gc,2) Two chromatic genera gc,1 and gc,2 in a well-formed pitch system are chroma

equivalent if and only if

c (gc,1) = c (gc,2)

The fact that two chromatic genera are chroma equivalent will be denoted

gc,1 ≡c gc,2

Definition 147 (gc,1 ≡do gc,2) Two chromatic genera gc,1 and gc,2 in a well-formed pitch system are octave

difference equivalent if and only if

do (gc,1) = do (gc,2)

The fact that two chromatic genera are octave difference equivalent will be denoted

gc,1 ≡do gc,2

Equivalence relations between genera

Definition 148 (g1 ≡gc g2) Two genera g1 and g2 in a well-formed pitch system are chromatic genus equiv-

alent if and only if

gc (g1) = gc (g2)

The fact that two genera are chromatic genus equivalent will be denoted

g1 ≡gc g2

Definition 149 (g1 ≡m g2) Two genera g1 and g2 in a well-formed pitch system are morph equivalent if

and only if

m (g1) = m (g2)

The fact that two genera are morph equivalent will be denoted

g1 ≡m g2

Definition 150 (g1 ≡c g2) Two genera g1 and g2 in a well-formed pitch system are chroma equivalent if

and only if

c (g1) = c (g2)

The fact that two genera are chroma equivalent will be denoted

g1 ≡c g2
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Definition 151 (g1 ≡q g2) Two genera g1 and g2 in a well-formed pitch system are chromamorph equivalent

if and only if

q (g1) = q (g2)

The fact that two genera are chromamorph equivalent will be denoted

g1 ≡q g2

Definition 152 (g1 ≡do g2) Two genera g1 and g2 in a well-formed pitch system are octave difference equiv-

alent if and only if

do (g1) = do (g2)

The fact that two genera are octave difference equivalent will be denoted

g1 ≡do g2

4.3.4 Inequalities between MIPS objects

Inequalities between two pitches

Definition 153 If p1 and p2 are any two pitches in a pitch system ψ then p1 is chromatic pitch less than

p2, denoted

p1 <pc p2

if and only if

pc (p1) < pc (p2)

Definition 154 If p1 and p2 are any two pitches in a pitch system ψ then p1 is chromatic pitch less than

or equal to p2, denoted

p1 ≤pc p2

if and only if

pc (p1) ≤ pc (p2)

Definition 155 If p1 and p2 are any two pitches in a pitch system ψ then p1 is chromatic pitch greater than

p2, denoted

p1 >pc p2

if and only if

pc (p1) > pc (p2)

Definition 156 If p1 and p2 are any two pitches in a pitch system ψ then p1 is chromatic pitch greater than

or equal to p2, denoted

p1 ≥pc p2

if and only if

pc (p1) ≥ pc (p2)

Definition 157 If p1 and p2 are any two pitches in a pitch system ψ then p1 is morphetic pitch less than

p2, denoted

p1 <pm p2

if and only if

pm (p1) < pm (p2)
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Definition 158 If p1 and p2 are any two pitches in a pitch system ψ then p1 is morphetic pitch less than

or equal to p2, denoted

p1 ≤pm p2

if and only if

pm (p1) ≤ pm (p2)

Definition 159 If p1 and p2 are any two pitches in a pitch system ψ then p1 is morphetic pitch greater than

p2, denoted

p1 >pm p2

if and only if

pm (p1) > pm (p2)

Definition 160 If p1 and p2 are any two pitches in a pitch system ψ then p1 is morphetic pitch greater than

or equal to p2, denoted

p1 ≥pm p2

if and only if

pm (p1) ≥ pm (p2)

Definition 161 If p1 and p2 are any two pitches in a pitch system ψ then p1 is frequency less than p2,

denoted

p1 <f p2

if and only if

f (p1) < f (p2)

Definition 162 If p1 and p2 are any two pitches in a pitch system ψ then p1 is frequency less than or equal

to p2, denoted

p1 ≤f p2

if and only if

f (p1) ≤ f (p2)

Definition 163 If p1 and p2 are any two pitches in a pitch system ψ then p1 is frequency greater than p2,

denoted

p1 >f p2

if and only if

f (p1) > f (p2)

Definition 164 If p1 and p2 are any two pitches in a pitch system ψ then p1 is frequency greater than or

equal to p2, denoted

p1 ≥f p2

if and only if

f (p1) ≥ f (p2)

Definition 165 If p1 and p2 are any two pitches in a pitch system ψ then p1 is chroma less than p2, denoted

p1 <c p2

if and only if

c (p1) < c (p2)
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Definition 166 If p1 and p2 are any two pitches in a pitch system ψ then p1 is chroma less than or equal

to p2, denoted

p1 ≤c p2

if and only if

c (p1) ≤ c (p2)

Definition 167 If p1 and p2 are any two pitches in a pitch system ψ then p1 is chroma greater than p2,

denoted

p1 >c p2

if and only if

c (p1) > c (p2)

Definition 168 If p1 and p2 are any two pitches in a pitch system ψ then p1 is chroma greater than or

equal to p2, denoted

p1 ≥c p2

if and only if

c (p1) ≥ c (p2)

Definition 169 If p1 and p2 are any two pitches in a pitch system ψ then p1 is morph less than p2, denoted

p1 <m p2

if and only if

m (p1) < m (p2)

Definition 170 If p1 and p2 are any two pitches in a pitch system ψ then p1 is morph less than or equal to

p2, denoted

p1 ≤m p2

if and only if

m (p1) ≤ m (p2)

Definition 171 If p1 and p2 are any two pitches in a pitch system ψ then p1 is morph greater than p2,

denoted

p1 >m p2

if and only if

m (p1) > m (p2)

Definition 172 If p1 and p2 are any two pitches in a pitch system ψ then p1 is morph greater than or equal

to p2, denoted

p1 ≥m p2

if and only if

m (p1) ≥ m (p2)

Definition 173 If p1 and p2 are any two pitches in a pitch system ψ then p1 is chromatic genus less than

p2, denoted

p1 <gc p2

if and only if

gc (p1) < gc (p2)
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Definition 174 If p1 and p2 are any two pitches in a pitch system ψ then p1 is chromatic genus less than

or equal to p2, denoted

p1 ≤gc p2

if and only if

gc (p1) ≤ gc (p2)

Definition 175 If p1 and p2 are any two pitches in a pitch system ψ then p1 is chromatic genus greater

than p2, denoted

p1 >gc p2

if and only if

gc (p1) > gc (p2)

Definition 176 If p1 and p2 are any two pitches in a pitch system ψ then p1 is chromatic genus greater

than or equal to p2, denoted

p1 ≥gc p2

if and only if

gc (p1) ≥ gc (p2)

Inequalities between two chromatic pitches

Definition 177 If pc,1 and pc,2 are any two chromatic pitches in a pitch system ψ then pc,1 is chroma less

than pc,2, denoted

pc,1 <c pc,2

if and only if

c (pc,1) < c (pc,2)

Definition 178 If pc,1 and pc,2 are any two chromatic pitches in a pitch system ψ then pc,1 is chroma less

than or equal to pc,2, denoted

pc,1 ≤c pc,2

if and only if

c (pc,1) ≤ c (pc,2)

Definition 179 If pc,1 and pc,2 are any two chromatic pitches in a pitch system ψ then pc,1 is chroma greater

than pc,2, denoted

pc,1 >c pc,2

if and only if

c (pc,1) > c (pc,2)

Definition 180 If pc,1 and pc,2 are any two chromatic pitches in a pitch system ψ then pc,1 is chroma greater

than or equal to pc,2, denoted

pc,1 ≥c pc,2

if and only if

c (pc,1) ≥ c (pc,2)
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Definition 181 If pc,1 and pc,2 are any two chromatic pitches in a pitch system ψ then pc,1 is frequency less

than pc,2, denoted

pc,1 <f pc,2

if and only if

f (pc,1) < f (pc,2)

Definition 182 If pc,1 and pc,2 are any two chromatic pitches in a pitch system ψ then pc,1 is frequency less

than or equal to pc,2, denoted

pc,1 ≤f pc,2

if and only if

f (pc,1) ≤ f (pc,2)

Definition 183 If pc,1 and pc,2 are any two chromatic pitches in a pitch system ψ then pc,1 is frequency

greater than pc,2, denoted

pc,1 >f pc,2

if and only if

f (pc,1) > f (pc,2)

Definition 184 If pc,1 and pc,2 are any two chromatic pitches in a pitch system ψ then pc,1 is frequency

greater than or equal to pc,2, denoted

pc,1 ≥f pc,2

if and only if

f (pc,1) ≥ f (pc,2)

Inequalities between two morphetic pitches

Definition 185 If pm,1 and pm,2 are any two morphetic pitches in a pitch system ψ then pm,1 is morph less

than pm,2, denoted

pm,1 <m pm,2

if and only if

m (pm,1) < m (pm,2)

Definition 186 If pm,1 and pm,2 are any two morphetic pitches in a pitch system ψ then pm,1 is morph less

than or equal to pm,2, denoted

pm,1 ≤m pm,2

if and only if

m (pm,1) ≤ m (pm,2)

Definition 187 If pm,1 and pm,2 are any two morphetic pitches in a pitch system ψ then pm,1 is morph

greater than pm,2, denoted

pm,1 >m pm,2

if and only if

m (pm,1) > m (pm,2)
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Definition 188 If pm,1 and pm,2 are any two morphetic pitches in a pitch system ψ then pm,1 is morph

greater than or equal to pm,2, denoted

pm,1 ≥m pm,2

if and only if

m (pm,1) ≥ m (pm,2)

Inequalities between two frequencies

Definition 189 If f1 and f2 are any two frequencies in a pitch system ψ then f1 is chromatic pitch less

than f2, denoted

f1 <pc f2

if and only if

pc (f1) < pc (f2)

Definition 190 If f1 and f2 are any two frequencies in a pitch system ψ then f1 is chromatic pitch less

than or equal to f2, denoted

f1 ≤pc f2

if and only if

pc (f1) ≤ pc (f2)

Definition 191 If f1 and f2 are any two frequencies in a pitch system ψ then f1 is chromatic pitch greater

than f2, denoted

f1 >pc f2

if and only if

pc (f1) > pc (f2)

Definition 192 If f1 and f2 are any two frequencies in a pitch system ψ then f1 is chromatic pitch greater

than or equal to f2, denoted

f1 ≥pc f2

if and only if

pc (f1) ≥ pc (f2)

Definition 193 If f1 and f2 are any two frequencies in a pitch system ψ then f1 is chroma less than f2,

denoted

f1 <c f2

if and only if

c (f1) < c (f2)

Definition 194 If f1 and f2 are any two frequencies in a pitch system ψ then f1 is chroma less than or

equal to f2, denoted

f1 ≤c f2

if and only if

c (f1) ≤ c (f2)
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Definition 195 If f1 and f2 are any two frequencies in a pitch system ψ then f1 is chroma greater than f2,

denoted

f1 >c f2

if and only if

c (f1) > c (f2)

Definition 196 If f1 and f2 are any two frequencies in a pitch system ψ then f1 is chroma greater than or

equal to f2, denoted

f1 ≥c f2

if and only if

c (f1) ≥ c (f2)

Inequalities between two chromatic genera

Definition 197 If gc,1 and gc,2 are any two chromatic genera in a pitch system ψ then gc,1 is chroma less

than gc,2, denoted

gc,1 <c gc,2

if and only if

c (gc,1) < c (gc,2)

Definition 198 If gc,1 and gc,2 are any two chromatic genera in a pitch system ψ then gc,1 is chroma less

than or equal to gc,2, denoted

gc,1 ≤c gc,2

if and only if

c (gc,1) ≤ c (gc,2)

Definition 199 If gc,1 and gc,2 are any two chromatic genera in a pitch system ψ then gc,1 is chroma greater

than gc,2, denoted

gc,1 >c gc,2

if and only if

c (gc,1) > c (gc,2)

Definition 200 If gc,1 and gc,2 are any two chromatic genera in a pitch system ψ then gc,1 is chroma greater

than or equal to gc,2, denoted

gc,1 ≥c gc,2

if and only if

c (gc,1) ≥ c (gc,2)

Inequalities between two genera

Definition 201 If g1 and g2 are any two genera in a pitch system ψ then g1 is chromatic genus less than

g2, denoted

g1 <gc g2

if and only if

gc (g1) < gc (g2)
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Definition 202 If g1 and g2 are any two genera in a pitch system ψ then g1 is chromatic genus less than

or equal to g2, denoted

g1 ≤gc g2

if and only if

gc (g1) ≤ gc (g2)

Definition 203 If g1 and g2 are any two genera in a pitch system ψ then g1 is chromatic genus greater than

g2, denoted

g1 >gc g2

if and only if

gc (g1) > gc (g2)

Definition 204 If g1 and g2 are any two genera in a pitch system ψ then g1 is chromatic genus greater than

or equal to g2, denoted

g1 ≥gc g2

if and only if

gc (g1) ≥ gc (g2)

Definition 205 If g1 and g2 are any two genera in a pitch system ψ then g1 is morph less than g2, denoted

g1 <m g2

if and only if

m (g1) < m (g2)

Definition 206 If g1 and g2 are any two genera in a pitch system ψ then g1 is morph less than or equal to

g2, denoted

g1 ≤m g2

if and only if

m (g1) ≤ m (g2)

Definition 207 If g1 and g2 are any two genera in a pitch system ψ then g1 is morph greater than g2,

denoted

g1 >m g2

if and only if

m (g1) > m (g2)

Definition 208 If g1 and g2 are any two genera in a pitch system ψ then g1 is morph greater than or equal

to g2, denoted

g1 ≥m g2

if and only if

m (g1) ≥ m (g2)

Definition 209 If g1 and g2 are any two genera in a pitch system ψ then g1 is chroma less than g2, denoted

g1 <c g2

if and only if

c (g1) < c (g2)
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Definition 210 If g1 and g2 are any two genera in a pitch system ψ then g1 is chroma less than or equal to

g2, denoted

g1 ≤c g2

if and only if

c (g1) ≤ c (g2)

Definition 211 If g1 and g2 are any two genera in a pitch system ψ then g1 is chroma greater than g2,

denoted

g1 >c g2

if and only if

c (g1) > c (g2)

Definition 212 If g1 and g2 are any two genera in a pitch system ψ then g1 is chroma greater than or equal

to g2, denoted

g1 ≥c g2

if and only if

c (g1) ≥ c (g2)

4.4 MIPS intervals

4.4.1 Intervals between two MIPS objects

Intervals between two chromae

Definition 213 (∆ c (c1, c2)) If c1 and c2 are two chromae in a well-formed pitch system

ψ = [µc, µm, f0, pc,0]

then the chroma interval from c1 to c2 is given by the following equation:

∆ c (c1, c2) = (c2 − c1) mod µc

Theorem 214 If ∆c = ∆ c (c1, c2) where c1 and c2 are any two chromae in a pitch system

ψ = [µc, µm, f0, pc,0]

then ∆c can only take any value such that

(0 ≤ ∆c < µc) ∧ (∆c ∈ Z)

where Z is the universal set of integers.
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Proof

R1 Let ∆c = ∆ c (c1, c2) where c1 and c2 are any two chromae in ψ.

R2 72 ⇒ c1 and c2 can only take any value such that (0 ≤ c1, c2 < µc) ∧ (c1, c2 ∈ Z)

R3 R1 & 213 ⇒ ∆c = (c2 − c1) mod µc

R4 R3 ⇒ ∆c = c2 mod µc when c1 = 0.

R5 61 ⇒ µc can only take any positive integer value.

R6 R5, 44 & R4 ⇒ ∆c = c2 when c1 = 0.

R7 R6 & R2 ⇒ ∆c can take any value such that (0 ≤ ∆c < µc) ∧ (∆c ∈ Z).

R8 R3 & 33 ⇒ ∆c = (c2 − c1)− µc × int
(

c2−c1

µc

)

R9 R8, 27, R5 & R2 ⇒ ∆c is an integer.

R10 41, R3 & R5 ⇒ 0 ≤ ∆c < µc

R11 R7, R9 & R10 ⇒ ∆c can only take any value such that (0 ≤ ∆c < µc) ∧ (∆c ∈ Z)

Theorem 215 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆c is a chroma interval in ψ then:

∆c mod µc = ∆c

Proof

R1 33 ⇒ ∆c mod µc = ∆c− µc × int
(

∆c
µc

)

R2 214 ⇒ int
(

∆c
µc

)

= 0

R3 R1 & R2 ⇒ ∆c mod µc = ∆c− µc × 0 = ∆c

Theorem 216 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆c is a chroma interval in ψ then:

∆c div µc = 0
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Proof

R1 48 ⇒ ∆c div µc = int
(

∆c
µc

)

R2 214 ⇒ int
(

∆c
µc

)

= 0

R3 R1 & R2 ⇒ ∆c div µc = 0

Intervals between two morphs

Definition 217 (Morph interval) If m1 and m2 are two morphs in a well-formed pitch system

ψ = [µc, µm, f0, pc,0]

then the morph interval from m1 to m2 is given by the following equation:

∆ m (m1,m2) = (m2 −m1) mod µm

Theorem 218 If ∆m = ∆ m (m1,m2) where m1 and m2 are any two morphs in a pitch system

ψ = [µc, µm, f0, pc,0]

then ∆m can only take any value such that

(0 ≤ ∆m < µm) ∧ (∆m ∈ Z)

where Z is the universal set of integers.
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Proof

R1 Let ∆m = ∆ m (m1,m2) where m1 and m2 are any two morphs in ψ.

R2 77 ⇒ m1 and m2 can only take any value such that (0 ≤ m1,m2 < µm) ∧ (m1,m2 ∈ Z)

R3 R1 & 217 ⇒ ∆m = (m2 −m1) mod µm

R4 R3 ⇒ ∆m = m2 mod µm when m1 = 0.

R5 61 ⇒ µm can only take any positive integer value.

R6 R5, 44 & R4 ⇒ ∆m = m2 when m1 = 0.

R7 R6 & R2 ⇒ ∆m can take any value such that (0 ≤ ∆m < µm) ∧ (∆m ∈ Z).

R8 R3 & 33 ⇒ ∆m = (m2 −m1)− µm × int
(

m2−m1

µm

)

R9 R8, 27, R5 & R2 ⇒ ∆m is an integer.

R10 41, R3 & R5 ⇒ 0 ≤ ∆m < µm

R11 R7, R9 & R10 ⇒ ∆m can only take any value such that (0 ≤ ∆m < µm) ∧ (∆m ∈ Z)

Theorem 219 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆m is a morph interval in ψ then:

∆m mod µm = ∆m

Proof

R1 33 ⇒ ∆m mod µm = ∆m− µm × int
(

∆m
µm

)

R2 218 ⇒ int
(

∆m
µm

)

= 0

R3 R1 & R2 ⇒ ∆m mod µm = ∆m− µm × 0 = ∆m

Theorem 220 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆m is a morph interval in ψ then:

∆m div µm = 0
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Proof

R1 48 ⇒ ∆m div µm = int
(

∆m
µm

)

R2 218 ⇒ int
(

∆m
µm

)

= 0

R3 R1 & R2 ⇒ ∆m div µm = 0

Intervals between two chromamorphs

Definition 221 (Definition of ∆ c (q1, q2)) If q1 and q2 are two chromamorphs in a pitch system ψ then

the chroma interval from q1 to q2 is defined and denoted as follows:

∆ c (q1, q2) = ∆ c (c (q1) , c (q2))

Definition 222 (Definition of ∆ m (q1, q2)) If q1 and q2 are two chromamorphs in a pitch system ψ then

the morph interval from q1 to q2 is defined and denoted as follows:

∆ m (q1, q2) = ∆ m (m (q1) ,m (q2))

Definition 223 (Definition of ∆ q (q1, q2)) If q1 and q2 are two chromamorphs in a pitch system ψ then

the chromamorph interval from q1 to q2 is defined and denoted as follows:

∆ q (q1, q2) = [∆ c (q1, q2) ,∆ m (q1, q2)]

Intervals between two chromatic genera

Definition 224 (Definition of ∆ c (gc,1, gc,2)) If gc,1 and gc,2 are two chromatic genera in a pitch system

ψ then the chroma interval from gc,1 to gc,2 is defined and denoted as follows:

∆ c (gc,1, gc,2) = ∆ c (c (gc,1) , c (gc,2))

Theorem 225 (Formula for ∆ c (gc,1, gc,2)) If gc,1 and gc,2 are two chromatic genera in a pitch system

ψ = [µc, µm, f0, pc,0]

then the chroma interval from gc,1 to gc,2 is given by the following expression:

∆ c (gc,1, gc,2) = (gc,2 − gc,1) mod µc
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Proof

R1 224 ⇒ ∆ c (gc,1, gc,2) = ∆ c (c (gc,1) , c (gc,2))

R2 111 ⇒ c (gc,1) = gc,1 mod µc

R3 111 ⇒ c (gc,2) = gc,2 mod µc

R4 213 ⇒ ∆ c (c (gc,1) , c (gc,2)) = (c (gc,2)− c (gc,1)) mod µc

R5 R2, R3 & R4 ⇒ ∆ c (c (gc,1) , c (gc,2)) = (gc,2 mod µc − gc,1 mod µc) mod µc

R6 R5 & 38 ⇒ ∆ c (c (gc,1) , c (gc,2)) = (gc,2 − gc,1 mod µc) mod µc

R7 R6 & 38 ⇒ ∆ c (c (gc,1) , c (gc,2)) = (gc,2 − gc,1) mod µc

R8 R7 & 224 ⇒ ∆ c (gc,1, gc,2) = (gc,2 − gc,1) mod µc

Intervals between two genera

Definition 226 (∆ c (g1, g2)) If g1 and g2 are two genera in a pitch system ψ then the chroma interval from

g1 to g2 is defined and denoted as follows:

∆ c (g1, g2) = ∆ c (c (g1) , c (g2))

Theorem 227 (Formula for ∆ c (g1, g2)) If g1 and g2 are two genera in a pitch system

ψ = [µc, µm, f0, pc,0]

then the chroma interval from g1 to g2 is given by the following expression:

∆ c (g1, g2) = (gc (g2)− gc (g1)) mod µc
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Proof

R1 226 ⇒ ∆ c (g1, g2) = ∆ c (c (g1) , c (g2))

R2 120 ⇒ c (g1) = gc (g1) mod µc

R3 120 ⇒ c (g2) = gc (g2) mod µc

R4 213 ⇒ ∆ c (c (g1) , c (g2)) = (c (g2)− c (g1)) mod µc

R5 R2, R3 & R4 ⇒ ∆ c (c (g1) , c (g2)) = (gc (g2) mod µc − gc (g1) mod µc) mod µc

R6 R5 & 38 ⇒ ∆ c (c (g1) , c (g2)) = (gc (g2)− gc (g1) mod µc) mod µc

R7 R6 & 38 ⇒ ∆ c (c (g1) , c (g2)) = (gc (g2)− gc (g1)) mod µc

R8 R1 & R7 ⇒ ∆ c (gc,1, gc,2) = (gc (g2)− gc (g1)) mod µc

Definition 228 (Morph interval between two genera) If g1 and g2 are two genera in a pitch system ψ

then the morph interval from g1 to g2 is defined and denoted as follows:

∆ m (g1, g2) = ∆ m (m (g1) ,m (g2))

Definition 229 (∆ q (g1, g2)) If g1 and g2 are two genera in a pitch system ψ then the chromamorph interval

from g1 to g2 is defined and denoted as follows:

∆ q (g1, g2) = ∆ q (q (g1) , q (g2))

Definition 230 (Chromatic genus interval between two genera) If g1 and g2 are two genera in a

pitch system

ψ = [µc, µm, f0, pc,0]

then the chromatic genus interval from g1 to g2 is defined and denoted as follows:

∆ gc (g1, g2) = gc (g2)− gc (g1)− µc × ((m (g2)−m (g1)) div µm)

Definition 231 (Genus interval between two genera) If g1 and g2 are two genera in a pitch system ψ

then the genus interval from g1 to g2 is defined and denoted as follows:

∆ g (g1, g2) = [∆ gc (g1, g2) ,∆ m (g1, g2)]

Intervals between two chromatic pitches

Definition 232 (Definition of ∆ c (pc,1, pc,2)) If pc,1 and pc,2 are two chromatic pitches in a pitch system

ψ then the chroma interval from pc,1 to pc,2 is defined and denoted as follows:

∆ c (pc,1, pc,2) = ∆ c (c (pc,1) , c (pc,2))
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Theorem 233 (Formula for ∆ c (pc,1, pc,2)) If pc,1 and pc,2 are two chromatic pitches in a pitch system

ψ = [µc, µm, f0, pc,0]

then the chroma interval from pc,1 to pc,2 is given by:

∆ c (pc,1, pc,2) = (pc,2 − pc,1) mod µc

Proof

R1 232 ⇒ ∆ c (pc,1, pc,2) = ∆ c (c (pc,1) , c (pc,2))

R2 R1 & 213 ⇒ ∆ c (pc,1, pc,2) = (c (pc,2)− c (pc,1)) mod µc

R3 93 ⇒ c (pc,1) = pc,1 mod µc

R4 93 ⇒ c (pc,2) = pc,2 mod µc

R5 R2, R3 & R4 ⇒ ∆ c (pc,1, pc,2) = (pc,2 mod µc − pc,1 mod µc) mod µc

R6 R5 & 38 ⇒ ∆ c (pc,1, pc,2) = (pc,2 − pc,1 mod µc) mod µc

R7 R6 & 38 ⇒ ∆ c (pc,1, pc,2) = (pc,2 − pc,1) mod µc

Definition 234 (Definition of ∆ f (pc,1, pc,2)) If pc,1 and pc,2 are two chromatic pitches in a pitch system

ψ then the frequency interval from pc,1 to pc,2 is defined and denoted as follows:

∆ f (pc,1, pc,2) = ∆ f (f (pc,1) , f (pc,2))

The function ∆ f (f1, f2) is defined in Definition 242 below.

Theorem 235 (Formula for ∆ f (pc,1, pc,2)) If pc,1 and pc,2 are two chromatic pitches in a pitch system

ψ = [µc, µm, f0, pc,0]

then the frequency interval from pc,1 to pc,2 is given by the following formula:

∆ f (pc,1, pc,2) = 2(pc,2−pc,1)/µc
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Proof

R1 234 ⇒ ∆ f (pc,1, pc,2) = ∆ f (f (pc,1) , f (pc,2))

R2 242 ⇒ ∆ f (f (pc,1) , f (pc,2)) = f(pc,2)

f(pc,1)

R3 89 ⇒ f (pc,2) = f0 × 2(pc,2−pc,0)/µc

R4 89 ⇒ f (pc,1) = f0 × 2(pc,1−pc,0)/µc

R5 R2, R3 & R4 ⇒ ∆ f (f (pc,1) , f (pc,2)) = f0×2(pc,2−pc,0)/µc

f0×2(pc,1−pc,0)/µc

= 2(pc,2−pc,0)/µc

2(pc,1−pc,0)/µc

= 2
(pc,2−pc,0)

µc
−

(pc,1−pc,0)
µc

= 2(pc,2−pc,1)/µc

Definition 236 (Chromatic pitch interval) If pc,1 and pc,2 are two chromatic pitches in a well-formed

pitch system ψ, then the chromatic pitch interval from pc,1 to pc,2 is defined and denoted as follows:

∆ pc (pc,1, pc,2) = pc,2 − pc,1

Theorem 237 If ∆pc is a chromatic pitch interval in a pitch system ψ then ∆pc can only take any integer

value.

Proof

R1 Let ∆pc = ∆ pc (pc,1, pc,2) where pc,1 and pc,2 are any two chromatic pitches in ψ.

R2 R1 & 236 ⇒ ∆ pc (pc,1, pc,2) = pc,2 − pc,1

R3 62 ⇒ pc,1 can only take any integer value.

R4 62 ⇒ pc,2 can only take any integer value.

R5 R2, R3 & R4 ⇒ ∆ pc (pc,1, pc,2) can only take any integer value.

R6 R5 & R1 ⇒ ∆pc can only take any integer value.

Intervals between two morphetic pitches

Definition 238 (Definition of ∆ m (pm,1, pm,2)) If pm,1 and pm,2 are two morphetic pitches in a pitch sys-

tem ψ then the morph interval from pm,1 to pm,2 is defined and denoted as follows:

∆ m (pm,1, pm,2) = ∆ m (m (pm,1) ,m (pm,2))



CHAPTER 4. FORMAL SPECIFICATION OF MIPS 121

Theorem 239 (Formula for ∆ m (pm,1, pm,2)) If pm,1 and pm,2 are two morphetic pitches in a pitch system

ψ = [µc, µm, f0, pc,0]

then the morph interval from pm,1 to pm,2 is given by:

∆ m (pm,1, pm,2) = (pm,2 − pm,1) mod µm

Proof

R1 238 ⇒ ∆ m (pm,1, pm,2) = ∆ m (m (pm,1) ,m (pm,2))

R2 R1 & 217 ⇒ ∆ m (pm,1, pm,2) = (m (pm,2)−m (pm,1)) mod µm

R3 97 ⇒ m (pm,1) = pm,1 mod µm

R4 97 ⇒ m (pm,2) = pm,2 mod µm

R5 R2, R3 & R4 ⇒ ∆ m (pm,1, pm,2) = (pm,2 mod µm − pm,1 mod µm) mod µm

R6 R5 & 38 ⇒ ∆ m (pm,1, pm,2) = (pm,2 − pm,1 mod µm) mod µm

R7 R6 & 38 ⇒ ∆ m (pm,1, pm,2) = (pm,2 − pm,1) mod µm

Definition 240 (Morphetic pitch interval) If pm,1 and pm,2 are two morphetic pitches in a well-formed

pitch system ψ, then the morphetic pitch interval from pm,1 to pm,2 is defined and denoted as follows:

∆ pm (pm,1, pm,2) = pm,2 − pm,1

Theorem 241 If ∆pm is a morphetic pitch interval in a pitch system ψ then ∆pm can only take any integer

value.

Proof

R1 Let ∆pm = ∆ pm (pm,1, pm,2) where pm,1 and pm,2 are any two morphetic pitches in ψ.

R2 R1 & 240 ⇒ ∆ pm (pm,1, pm,2) = pm,2 − pm,1

R3 62 ⇒ pm,1 can only take any integer value.

R4 62 ⇒ pm,2 can only take any integer value.

R5 R2, R3 & R4 ⇒ ∆ pm (pm,1, pm,2) can only take any integer value.

R6 R5 & R1 ⇒ ∆pm can only take any integer value.
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Intervals between two frequencies

Definition 242 (∆ f (f1, f2)) If f1 and f2 are two frequencies within a pitch system ψ then the frequency

interval from f1 to f2 is defined and denoted as follows:

∆ f (f1, f2) =
f2
f1

Theorem 243 If f1 and f2 are any two frequencies in a pitch system ψ and

∆f = ∆ f (f1, f2)

then ∆f can only take any real value greater than zero.

Proof

R1 Let ∆f = ∆ f (f1, f2) where f1 and f2 are any two frequencies in ψ.

R2 R1 & 242 ⇒ ∆f = f2

f1

R3 67 ⇒ f1 and f2 can only take any real values greater than zero.

R4 R2 & R3 ⇒ ∆f can only take any real value greater than zero.

Definition 244 (Definition of ∆ pc (f1, f2)) If f1 and f2 are two frequencies within a pitch system ψ then

the chromatic pitch interval from f1 to f2 is defined and denoted as follows:

∆ pc (f1, f2) = ∆ pc (pc (f1) , pc (f2))

Theorem 245 (Formula for ∆ pc (f1, f2)) If f1 and f2 are two frequencies within a pitch system

ψ = [µc, µm, f0, pc,0]

then the chromatic pitch interval from f1 to f2 can be calculated using the following formula:

∆ pc (f1, f2) = µc ×
ln (f2/f1)

ln 2

Proof

R1 244 ⇒ ∆ pc (f1, f2) = ∆ pc (pc (f1) , pc (f2))

R2 99 ⇒ pc (f1) = µc ×
ln(f1/f0)

ln 2 + pc,0

R3 99 ⇒ pc (f2) = µc ×
ln(f2/f0)

ln 2 + pc,0

R4 236 ⇒ ∆ pc (pc (f1) , pc (f2)) = pc (f2)− pc (f1)

R5 R2, R3 & R4 ⇒ ∆ pc (pc (f1) , pc (f2)) = µc ×
ln(f2/f0)

ln 2 + pc,0 −
(

µc ×
ln(f1/f0)

ln 2 + pc,0

)

= µc

ln 2 × (ln (f2/f0)− ln (f1/f0))

= µc

ln 2 × ln
(

f2

f0
× f0

f1

)

= µc ×
ln(f2/f1)

ln 2
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Definition 246 (Definition of ∆ c (f1, f2)) If f1 and f2 are two frequencies within a pitch system ψ then

the chroma interval from f1 to f2 is defined and denoted as follows:

∆ c (f1, f2) = ∆ c (c (f1) , c (f2))

Theorem 247 (Formula for ∆ c (f1, f2)) If f1 and f2 are two frequencies within a pitch system

ψ = [µc, µm, f0, pc,0]

then the chroma interval from f1 to f2 is given by the following formula:

∆ c (f1, f2) =

(

µc ×
ln (f2/f1)

ln 2

)

mod µc

Proof

R1 246 ⇒ ∆ c (f1, f2) = ∆ c (c (f1) , c (f2))

R2 104 ⇒ c (f1) = pc (f1) mod µc

R3 104 ⇒ c (f2) = pc (f2) mod µc

R4 213 ⇒ ∆ c (c (f1) , c (f2)) = (c (f2)− c (f1)) mod µc

R5 R2, R3 & R4 ⇒ ∆ c (c (f1) , c (f2)) = (pc (f2) mod µc − pc (f1) mod µc) mod µc

R6 R5 & 38 ⇒ ∆ c (c (f1) , c (f2)) = (pc (f2)− pc (f1) mod µc) mod µc

R7 R6 & 38 ⇒ ∆ c (c (f1) , c (f2)) = (pc (f2)− pc (f1)) mod µc

R8 236 & 98 ⇒ pc (f2)− pc (f1) = ∆ pc (pc (f1) , pc (f2))

R9 244 ⇒ ∆ pc (f1, f2) = ∆ pc (pc (f1) , pc (f2))

R10 245 ⇒ ∆ pc (f1, f2) = µc ×
ln(f2/f1)

ln 2

R11 R10, R9, R8, R7 & R1 ⇒ ∆ c (f1, f2) =
(

µc ×
ln(f2/f1)

ln 2

)

mod µc

Theorem 248 (Second formula for ∆ c (f1, f2)) If f1 and f2 are two frequencies within a pitch system

ψ = [µc, µm, f0, pc,0]

then the chroma interval from f1 to f2 is given by the following formula:

∆ c (f1, f2) = µc ×

(

ln (f2/f1)

ln 2
− int

(

ln (f2/f1)

ln 2

))
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Proof

R1 247 ⇒ ∆ c (f1, f2) =
(

µc ×
ln(f2/f1)

ln 2

)

mod µc

R2 R1 & 33 ⇒ ∆ c (f1, f2) =
(

µc ×
ln(f2/f1)

ln 2

)

− µc × int
(

µc×ln(f2/f1)
µc×ln 2

)

= µc ×
(

ln(f2/f1)
ln 2 − int

(

ln(f2/f1)
ln 2

))

Intervals between two pitches

Definition 249 (Definition of ∆ c (p1, p2)) If p1 and p2 are two pitches in a pitch system ψ then the

chroma interval from p1 to p2 is defined and denoted as follows:

∆ c (p1, p2) = ∆ c (c (p1) , c (p2))

Theorem 250 (Formula for ∆ c (p1, p2)) If p1 and p2 are two pitches in a pitch system ψ = [µc, µm, f0, pc,0]

then the chroma interval from p1 to p2 is given by the following expression:

∆ c (p1, p2) = (pc (p2)− pc (p1)) mod µc

Proof

R1 249 ⇒ ∆ c (p1, p2) = ∆ c (c (p1) , c (p2))

R2 R1 & 213 ⇒ ∆ c (p1, p2) = (c (p2)− c (p1)) mod µc

R3 R2 & 71 ⇒ ∆ c (p1, p2) = (pc (p2) mod µc − pc (p1) mod µc) mod µc

R4 R3 & 38 ⇒ ∆ c (p1, p2) = (pc (p2)− pc (p1)) mod µc

Definition 251 (Definition of ∆ m (p1, p2)) If p1 and p2 are two pitches in a pitch system ψ then the

morph interval from p1 to p2 is defined and denoted as follows:

∆ m (p1, p2) = ∆ m (m (p1) ,m (p2))

Theorem 252 (Formula for ∆ m (p1, p2)) If p1 and p2 are two pitches in a pitch system ψ = [µc, µm, f0, pc,0]

then the morph interval from p1 to p2 is given by the following expression:

∆ m (p1, p2) = (pm (p2)− pm (p1)) mod µm

Proof

R1 251 ⇒ ∆ m (p1, p2) = ∆ m (m (p1) ,m (p2))

R2 R1 & 217 ⇒ ∆ m (p1, p2) = (m (p2)−m (p1)) mod µm

R3 R2 & 76 ⇒ ∆ m (p1, p2) = (pm (p2) mod µm − pm (p1) mod µm) mod µm

R4 R3 & 38 ⇒ ∆ m (p1, p2) = (pm (p2)− pm (p1)) mod µm
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Definition 253 If p1 and p2 are two pitches in a pitch system ψ then the chromamorph interval from p1 to

p2 is defined and denoted as follows:

∆ q (p1, p2) = ∆ q (q (p1) , q (p2))

Definition 254 If p1 and p2 are two pitches in a pitch system ψ then the chromatic genus interval from p1

to p2 is defined and denoted as follows:

∆ gc (p1, p2) = ∆ gc (g (p1) , g (p2))

Theorem 255 If p1 and p2 are two pitches in a pitch system

ψ = [µc, µm, f0, pc,0]

then the chromatic genus interval from p1 to p2 is given by the following expression:

∆ gc (p1, p2) = gc (p2)− gc (p1)− µc × ((m (p2)−m (p1)) div µm)

Proof

R1 254 ⇒ ∆ gc (p1, p2) = ∆ gc (g (p1) , g (p2))

R2 230 & R1 ⇒ ∆ gc (p1, p2) = gc (g (p2))− gc (g (p1))− µc × ((m (g (p2))−m (g (p1))) div µm)

R3 114 & R2 ⇒ ∆ gc (p1, p2) = gc (p2)− gc (p1)− µc × ((m (g (p2))−m (g (p1))) div µm)

R4 116 & R3 ⇒ ∆ gc (p1, p2) = gc (p2)− gc (p1)− µc × ((m (p2)−m (p1)) div µm)

Theorem 256 If ∆gc = ∆ gc (p1, p2) where p1 and p2 are any two pitches in

ψ = [µc, µm, f0, pc,0]

then ∆gc can only take any integer value.

Proof

R1 Let ∆gc = ∆ gc (p1, p2) where p1 and p2 are

any two pitches in a pitch system ψ = [µc, µm, f0, pc,0].

R2 R1 & 255 ⇒ ∆gc = gc (p2)− gc (p1)− µc × ((m (p2)−m (p1)) div µm)

R3 61 ⇒ µc can only take any positive integer value.

R4 61 ⇒ µm can only take any positive integer value.

R5 77 ⇒ m (p1) and m (p2) can each only take any value such that

(0 ≤ m (p1) ,m (p2) < µm) ∧ (m (p1) ,m (p2) ∈ Z).

R6 83 ⇒ gc (p2) and gc (p1) can each only take any integer value.

R7 R2, 48, R3, R4, R5 & R6 ⇒ ∆gc can only take any integer value.
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Definition 257 (Definition of ∆ g (p1, p2)) If p1 and p2 are two pitches in a pitch system ψ then the genus

interval from p1 to p2 is defined and denoted as follows:

∆ g (p1, p2) = ∆ g (g (p1) , g (p2))

Theorem 258 (Formula for ∆ g (p1, p2)) If p1 and p2 are two pitches in a pitch system ψ then the genus

interval from p1 to p2 is given by the following expression:

∆ g (p1, p2) = [∆ gc (p1, p2) ,∆ m (p1, p2)]

Proof

R1 257 ⇒ ∆ g (p1, p2) = ∆ g (g (p1) , g (p2))

R2 R1 & 231 ⇒ ∆ g (p1, p2) = [∆ gc (g (p1) , g (p2)) ,∆ m (g (p1) , g (p2))]

R3 R2 & 254 ⇒ ∆ g (p1, p2) = [∆ gc (p1, p2) ,∆ m (g (p1) , g (p2))]

R4 R3 & 228 ⇒ ∆ g (p1, p2) = [∆ gc (p1, p2) ,∆ m (m (g (p1)) ,m (g (p2)))]

R5 R4 & 116 ⇒ ∆ g (p1, p2) = [∆ gc (p1, p2) ,∆ m (m (p1) ,m (p2))]

R6 R5 & 251 ⇒ ∆ g (p1, p2) = [∆ gc (p1, p2) ,∆ m (p1, p2)]

Definition 259 (Definition of ∆ pc (p1, p2)) If p1 and p2 are two pitches in a pitch system ψ then the

chromatic pitch interval from p1 to p2 is defined and denoted as follows:

∆ pc (p1, p2) = ∆ pc (pc (p1) , pc (p2))

Theorem 260 (Formula for ∆ pc (p1, p2)) If p1 and p2 are two pitches in a pitch system ψ then the chro-

matic pitch interval from p1 to p2 is given by

∆ pc (p1, p2) = pc (p2)− pc (p1)

Proof

R1 259 ⇒ ∆ pc (p1, p2) = ∆ pc (pc (p1) , pc (p2))

R2 R1 & 236 ⇒ ∆ pc (p1, p2) = pc (p2)− pc (p1)

Definition 261 (Definition of ∆ pm (p1, p2)) If p1 and p2 are two pitches in a pitch system ψ then the

morphetic pitch interval from p1 to p2 is defined and denoted as follows:

∆ pm (p1, p2) = ∆ pm (pm (p1) , pm (p2))

Theorem 262 (Formula for ∆ pm (p1, p2)) If p1 and p2 are two pitches in a pitch system ψ then the mor-

phetic pitch interval from p1 to p2 is given by

∆ pm (p1, p2) = pm (p2)− pm (p1)
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Proof

R1 261 ⇒ ∆ pm (p1, p2) = ∆ pm (pm (p1) , pm (p2))

R2 R1 & 240 ⇒ ∆ pm (p1, p2) = pm (p2)− pm (p1)

Definition 263 (Definition of ∆ f (p1, p2)) If p1 and p2 are two pitches in a pitch system ψ then the fre-

quency interval from p1 to p2 is defined and denoted as follows:

∆ f (p1, p2) = ∆ f (f (p1) , f (p2))

Theorem 264 (Formula for ∆ f (p1, p2)) If p1 and p2 are two pitches in a pitch system

ψ = [µc, µm, f0, pc,0]

then the frequency interval from p1 to p2 is given by the following formula:

∆ f (p1, p2) = 2(pc(p2)−pc(p1))/µc

Proof

R1 263 ⇒ ∆ f (p1, p2) = ∆ f (f (p1) , f (p2))

R2 R1 & 242 ⇒ ∆ f (p1, p2) = f(p1)

f(p2)

R3 R2 & 66 ⇒ ∆ f (p1, p2) = f0×2(pc(p2)−pc,0)/µc

f0×2(pc(p1)−pc,0)/µc

= 2(pc(p2)−pc,0)/µc

2(pc(p1)−pc,0)/µc

= 2
pc(p2)−pc,0

µc
−

pc(p1)−pc,0
µc

= 2(pc(p2)−pc(p1))/µc

Definition 265 (Pitch interval) If p1 and p2 are two pitches in a pitch system ψ then the pitch interval

from p1 to p2 is defined and denoted as follows:

∆ p (p1, p2) = [∆ pc (p1, p2) ,∆ pm (p1, p2)]

4.4.2 Derived MIPS intervals

Deriving MIPS intervals from a pitch interval

Definition 266 (Chromatic pitch interval of a pitch interval) If p1 and p2 are any two pitches in a

pitch system ψ then

∆p = ∆ p (p1, p2) ⇒ ∆ pc (∆p) = ∆ pc (p1, p2)

Theorem 267 (Formula for ∆ pc (∆p)) If ∆p = [∆pc,∆pm] in a pitch system ψ then

∆ pc (∆p) = ∆pc
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Proof

R1 Let ∆p = ∆ p (p1, p2)

R2 Let ∆p = [∆pc,∆pm]

R3 R1 & 266 ⇒ ∆ pc (∆p) = ∆ pc (p1, p2)

R4 259 ⇒ ∆ pc (p1, p2) = ∆ pc (pc (p1) , pc (p2))

R5 265 ⇒ ∆ p (p1, p2) = [∆ pc (p1, p2) ,∆ pm (p1, p2)]

R6 R4 & 261 & R5 ⇒ ∆ p (p1, p2) = [∆ pc (pc (p1) , pc (p2)) ,∆ pm (pm (p1) , pm (p2))]

R7 R1 & R2 ⇒ ∆ p (p1, p2) = [∆pc,∆pm]

R8 R6 & R7 ⇒ ∆ pc (pc (p1) , pc (p2)) = ∆pc

R9 R8 & R4 ⇒ ∆ pc (p1, p2) = ∆pc

R10 R9 & R3 ⇒ ∆ pc (∆p) = ∆pc

Definition 268 (Morphetic pitch interval of a pitch interval) If p1 and p2 are any two pitches in a

pitch system ψ then

∆p = ∆ p (p1, p2) ⇒ ∆ pm (∆p) = ∆ pm (p1, p2)

Theorem 269 (Formula for ∆ pm (∆p)) If ∆p = [∆pc,∆pm] in a pitch system ψ then

∆ pm (∆p) = ∆pm



CHAPTER 4. FORMAL SPECIFICATION OF MIPS 129

Proof

R1 Let ∆p = ∆ p (p1, p2)

R2 Let ∆p = [∆pc,∆pm]

R3 R1 & 268 ⇒ ∆ pm (∆p) = ∆ pm (p1, p2)

R4 261 ⇒ ∆ pm (p1, p2) = ∆ pm (pm (p1) , pm (p2))

R5 265 ⇒ ∆ p (p1, p2) = [∆ pc (p1, p2) ,∆ pm (p1, p2)]

R6 R4 & 261 & R5 ⇒ ∆ p (p1, p2) = [∆ pc (pc (p1) , pc (p2)) ,∆ pm (pm (p1) , pm (p2))]

R7 R1 & R2 ⇒ ∆ p (p1, p2) = [∆pc,∆pm]

R8 R6 & R7 ⇒ ∆ pm (pm (p1) , pm (p2)) = ∆pm

R9 R8 & R4 ⇒ ∆ pm (p1, p2) = ∆pm

R10 R9 & R3 ⇒ ∆ pm (∆p) = ∆pm

Theorem 270 If ψ is a pitch system and ∆p is a pitch interval in ψ then

∆p = [∆ pc (∆p) ,∆ pm (∆p)]

Proof

R1 Let ∆p = [∆pc,∆pm]

R2 R1 & 267 ⇒ ∆ pc (∆p) = ∆pc

R3 R1 & 269 ⇒ ∆ pm (∆p) = ∆pm

R4 R1, R2 & R3 ⇒ ∆p = [∆ pc (∆p) ,∆ pm (∆p)]

Definition 271 (Definition of ∆ f (∆p)) If p1 and p2 are any two pitches in a pitch system ψ then

∆p = ∆ p (p1, p2) ⇒ ∆ f (∆p) = ∆ f (p1, p2)

Theorem 272 (Formula for ∆ f (∆p)) If ∆p is a pitch interval in a pitch system ψ then

∆ f (∆p) = 2∆pc(∆p)/µc
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Proof

R1 Let ∆p = ∆ p (p1, p2)

R2 R1 & 271 ⇒ ∆ f (∆p) = ∆ f (p1, p2)

R3 264 ⇒ ∆ f (p1, p2) = 2(pc(p2)−pc(p1))/µc

R4 R1 & 266 ⇒ ∆ pc (∆p) = ∆ pc (p1, p2)

R5 260 ⇒ ∆ pc (p1, p2) = pc (p2)− pc (p1)

R6 R5 & R4 ⇒ ∆ pc (∆p) = pc (p2)− pc (p1)

R7 R6 & R3 ⇒ ∆ f (p1, p2) = 2∆pc(∆p)/µc

R8 R7 & R2 ⇒ ∆ f (∆p) = 2∆pc(∆p)/µc

Definition 273 (Definition of ∆ c (∆p)) If p1 and p2 are any two pitches in a pitch system ψ then

∆p = ∆ p (p1, p2) ⇒ ∆ c (∆p) = ∆ c (p1, p2)

Theorem 274 (Formula for ∆ c (∆p)) If ∆p is a pitch interval in a pitch system ψ then

∆ c (∆p) = ∆ pc (∆p) mod µc

Proof

R1 Let ∆p = ∆ p (p1, p2)

R2 R1 & 273 ⇒ ∆ c (∆p) = ∆ c (p1, p2)

R3 R2 & 250 ⇒ ∆ c (∆p) = (pc (p2)− pc (p1)) mod µc

R4 R1 & 266 ⇒ ∆ pc (∆p) = ∆ pc (p1, p2)

R5 R4 & 260 ⇒ ∆ pc (∆p) = pc (p2)− pc (p1)

R6 R5 & R3 ⇒ ∆ c (∆p) = ∆ pc (∆p) mod µc

Definition 275 (Definition of ∆ m (∆p)) If p1 and p2 are any two pitches in a pitch system ψ then

∆p = ∆ p (p1, p2) ⇒ ∆ m (∆p) = ∆ m (p1, p2)

Theorem 276 (Formula for ∆ m (∆p)) If ∆p is a pitch interval in a pitch system ψ then

∆ m (∆p) = ∆pm∆p mod µm
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Proof

R1 Let ∆p = ∆ p (p1, p2)

R2 R1 & 275 ⇒ ∆ m (∆p) = ∆ m (p1, p2)

R3 R2 & 252 ⇒ ∆ m (∆p) = (pm (p2)− pm (p1)) mod µm

R4 R1 & 268 ⇒ ∆ pm (∆p) = ∆ pm (p1, p2)

R5 R4 & 262 ⇒ ∆ pm (∆p) = pm (p2)− pm (p1)

R6 R5 & R3 ⇒ ∆ m (∆p) = ∆ pm (∆p) mod µm

Definition 277 (Definition of ∆ q (∆p)) If p1 and p2 are any two pitches in a pitch system ψ then

∆p = ∆ p (p1, p2) ⇒ ∆ q (∆p) = ∆ q (p1, p2)

Theorem 278 (Formula for ∆ q (∆p)) If ∆p is a pitch interval in a pitch system ψ then

∆ q (∆p) = [∆ c (∆p) ,∆ m (∆p)]
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Proof

R1 Let ∆p = ∆ p (p1, p2)

R2 R1 & 275 ⇒ ∆ m (∆p) = ∆ m (p1, p2)

R3 R1 & 273 ⇒ ∆ c (∆p) = ∆ c (p1, p2)

R4 R1 & 277 ⇒ ∆ q (∆p) = ∆ q (p1, p2)

R5 R4 & 253 ⇒ ∆ q (∆p) = ∆ q (q (p1) , q (p2))

R6 R5 & 223 ⇒ ∆ q (∆p) = [∆ c (q (p1) , q (p2)) ,∆ m (q (p1) , q (p2))]

R7 221 ⇒ ∆ c (q (p1) , q (p2)) = ∆ c (c (q (p1)) , c (q (p2)))

R8 105 & R7 ⇒ ∆ c (q (p1) , q (p2)) = ∆ c (c (p1) , c (p2))

R9 249 & R8 ⇒ ∆ c (q (p1) , q (p2)) = ∆ c (p1, p2)

R10 R9 & R3 ⇒ ∆ c (q (p1) , q (p2)) = ∆ c (∆p)

R11 222 ⇒ ∆ m (q (p1) , q (p2)) = ∆ m (m (q (p1)) ,m (q (p2)))

R12 107 & R11 ⇒ ∆ m (q (p1) , q (p2)) = ∆ m (m (p1) ,m (p2))

R13 251 & R12 ⇒ ∆ m (q (p1) , q (p2)) = ∆ m (p1, p2)

R14 R13 & R2 ⇒ ∆ m (q (p1) , q (p2)) = ∆ m (∆p)

R15 R6, R10 & R14 ⇒ ∆ q (∆p) = [∆ c (∆p) ,∆ m (∆p)]

Definition 279 (Chromatic genus interval of a pitch interval) If p1 and p2 are any two pitches in a

pitch system ψ then

∆p = ∆ p (p1, p2) ⇒ ∆ gc (∆p) = ∆ gc (p1, p2)

Theorem 280 (Formula for ∆ gc (∆p)) If ∆p is a pitch interval in

ψ = [µc, µm, f0, pc,0]

then:

∆ gc (∆p) = ∆ pc (∆p)− µc × (∆ pm (∆p) div µm)
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Proof

R1 Let ∆p = ∆ p (p1, p2)

R2 R1 & 279 ⇒ ∆ gc (∆p) = ∆ gc (p1, p2)

R3 R2 & 255 ⇒ ∆ gc (∆p) = gc (p2)− gc (p1)− µc × ((m (p2)−m (p1)) div µm)

R4 R1 & 266 ⇒ ∆ pc (∆p) = ∆ pc (p1, p2)

R5 R4 & 260 ⇒ ∆ pc (∆p) = pc (p2)− pc (p1)

R6 R1 & 268 ⇒ ∆ pm (∆p) = ∆ pm (p1, p2)

R7 R6 & 262 ⇒ ∆ pm (∆p) = pm (p2)− pm (p1)

R8 R3 & 82 ⇒ ∆ gc (∆p) = pc (p2)− µc × om (p2)− pc (p1) + µc × om (p1)

−µc × ((m (p2)−m (p1)) div µm)

= pc (p2)− pc (p1)− µc × (om (p2)− om (p1) + (m (p2)−m (p1)) div µm)

R9 R5 & R8 ⇒ ∆ gc (∆p) = ∆ pc (∆p)− µc × (om (p2)− om (p1) + (m (p2)−m (p1)) div µm)

R10 R9, 69 & 76 ⇒ ∆ gc (∆p) = ∆ pc (∆p)

−µc ×

















(pm (p2) div µm)

− (pm (p1) div µm)

+ ((pm (p2) mod µm)− (pm (p1) mod µm)) div µm

















R11 R10 & 55 ⇒ ∆ gc (∆p) = ∆ pc (∆p)− µc × ((pm (p2)− pm (p1)) div µm)

R12 R11 & R7 ⇒ ∆ gc (∆p) = ∆ pc (∆p)− µc × (∆ pm (∆p) div µm)

Definition 281 (Definition of ∆ g (∆p)) If p1 and p2 are any two pitches in a pitch system ψ then

∆p = ∆ p (p1, p2) ⇒ ∆ g (∆p) = ∆ g (p1, p2)

Theorem 282 (Formula for ∆ g (∆p)) If ∆p is a pitch interval in ψ then:

∆ g (∆p) = [∆ gc (∆p) ,∆ m (∆p)]
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Proof

R1 Let ∆p = ∆ p (p1, p2)

R2 R1 & 281 ⇒ ∆ g (∆p) = ∆ g (p1, p2)

R3 R2 & 258 ⇒ ∆ g (∆p) = [∆ gc (p1, p2) ,∆ m (p1, p2)]

R4 R1 & 279 ⇒ ∆ gc (p1, p2) = ∆ gc (∆p)

R5 R1 & 275 ⇒ ∆ m (p1, p2) = ∆ m (∆p)

R6 R3, R4 & R5 ⇒ ∆ g (∆p) = [∆ gc (∆p) ,∆ m (∆p)]

Deriving MIPS intervals from a chromatic pitch interval

Definition 283 (Definition of ∆ f (∆pc)) If pc,1 and pc,2 are any two chromatic pitches in a pitch system

ψ then

∆pc = ∆ pc (pc,1, pc,2) ⇒ ∆ f (∆pc) = ∆ f (pc,1, pc,2)

Theorem 284 (Formula for ∆ f (∆pc)) If ∆pc is a chromatic pitch interval in the pitch system ψ then

∆ f (∆pc) = 2∆pc/µc

Proof

R1 Let ∆pc = ∆ pc (pc,1, pc,2)

R2 R1 & 283 ⇒ ∆ f (∆pc) = ∆ f (pc,1, pc,2)

R3 R2 & 235 ⇒ ∆ f (∆pc) = 2(pc,2−pc,1)/µc

R4 R1 & 236 ⇒ ∆pc = pc,2 − pc,1

R5 R3 & R4 ⇒ ∆ f (∆pc) = 2∆pc/µc

Theorem 285 (∆ f (∆ pc (∆p)) = ∆ f (∆p)) If ∆p is a pitch interval in ψ then

∆ f (∆ pc (∆p)) = ∆ f (∆p)

Proof

R1 284 ⇒ ∆ f (∆ pc (∆p)) = 2∆pc(∆p)/µc

R2 272 ⇒ ∆ f (∆p) = 2∆pc(∆p)/µc

R3 R1 & R2 ⇒ ∆ f (∆ pc (∆p)) = ∆ f (∆p)
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Definition 286 (Definition of ∆ c (∆pc)) If pc,1 and pc,2 are any two chromatic pitches in a pitch system

ψ then

∆pc = ∆ pc (pc,1, pc,2) ⇒ ∆ c (∆pc) = ∆ c (pc,1, pc,2)

Theorem 287 (Formula for ∆ c (∆pc)) If ∆pc is a chromatic pitch interval in the pitch system

ψ = [µc, µm, f0, pc,0]

then

∆ c (∆pc) = ∆pc mod µc

Proof

R1 Let ∆pc = ∆ pc (pc,1, pc,2)

R2 R1 & 286 ⇒ ∆ c (∆pc) = ∆ c (pc,1, pc,2)

R3 R2 & 233 ⇒ ∆ c (∆pc) = (pc,2 − pc,1) mod µc

R4 R1 & 236 ⇒ ∆pc = pc,2 − pc,1

R5 R3 & R4 ⇒ ∆ c (∆pc) = ∆pc mod µc

Theorem 288 (∆ c (∆ pc (∆p)) = ∆ c (∆p)) If ∆p is a pitch interval in ψ then

∆ c (∆ pc (∆p)) = ∆ c (∆p)

Proof

R1 287 ⇒ ∆ c (∆ pc (∆p)) = ∆ pc (∆p) mod µc

R2 274 ⇒ ∆ c (∆p) = ∆ pc (∆p) mod µc

R3 R1 & R2 ⇒ ∆ c (∆ pc (∆p)) = ∆ c (∆p)

Deriving MIPS intervals from a morphetic pitch interval

Definition 289 (Definition of ∆ m (∆pm)) If pm,1 and pm,2 are any two morphetic pitches in a pitch sys-

tem ψ then

∆pm = ∆ pm (pm,1, pm,2) ⇒ ∆ m (∆pm) = ∆ m (pm,1, pm,2)

Theorem 290 (Formula for ∆ m (∆pm)) If ∆pm is a morphetic pitch interval in the pitch system

ψ = [µc, µm, f0, pc,0]

then

∆ m (∆pm) = ∆pm mod µm
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Proof

R1 Let ∆pm = ∆ pm (pm,1, pm,2)

R2 R1 & 289 ⇒ ∆ m (∆pm) = ∆ m (pm,1, pm,2)

R3 R2 & 239 ⇒ ∆ m (∆pm) = (pm,2 − pm,1) mod µm

R4 R1 & 240 ⇒ ∆pm = pm,2 − pm,1

R5 R3 & R4 ⇒ ∆ m (∆pm) = ∆pm mod µm

Theorem 291 (∆ m (∆ pm (∆p)) = ∆ m (∆p)) If ∆p is a pitch interval in ψ then

∆ m (∆ pm (∆p)) = ∆ m (∆p)

Proof

R1 290 ⇒ ∆ m (∆ pm (∆p)) = ∆ pm (∆p) mod µm

R2 276 ⇒ ∆ m (∆p) = ∆ pm (∆p) mod µm

R3 R1 & R2 ⇒ ∆ m (∆ pm (∆p)) = ∆ m (∆p)

Deriving MIPS intervals from a frequency interval

Definition 292 (Definition of ∆ pc (∆f)) If f1 and f2 are any two frequencies in a pitch system ψ then

∆f = ∆ f (f1, f2) ⇒ ∆ pc (∆f) = ∆ pc (f1, f2)

Theorem 293 (Formula for ∆ pc (∆f)) If ∆f is a frequency interval in

ψ = [µc, µm, f0, pc,0]

then

∆ pc (∆f) = µc ×
ln (∆f)

ln 2
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Proof

R1 Let ∆f = ∆ f (f1, f2)

R2 R1 & 292 ⇒ ∆ pc (∆f) = ∆ pc (f1, f2)

R3 245 ⇒ ∆ pc (f1, f2) = µc ×
ln(f2/f1)

ln 2

R4 242 ⇒ ∆ f (f1, f2) = f2

f1

R5 R1 & R4 ⇒ ∆f = f2

f1

R6 R3 & R5 ⇒ ∆ pc (f1, f2) = µc ×
ln(∆f)

ln 2

R7 R2 & R6 ⇒ ∆ pc (∆f) = µc ×
ln(∆f)

ln 2

Theorem 294 (∆ pc (∆ f (∆p)) = ∆ pc (∆p)) If ∆p is a pitch interval in ψ then

∆ pc (∆ f (∆p)) = ∆ pc (∆p)

Proof

R1 293 ⇒ ∆ pc (∆ f (∆p)) = µc ×
ln(∆ f(∆p))

ln 2

R2 272 ⇒ ∆ f (∆p) = 2∆pc(∆p)/µc

R3 R1 & R2 ⇒ ∆ pc (∆ f (∆p)) = µc ×
ln(2∆ pc(∆p)/µc)

ln 2

R4 R3 & 59 ⇒ ∆ pc (∆ f (∆p)) = µc × log 2

(

2∆pc(∆p)/µc
)

= µc ×
∆pc(∆p)

µc

= ∆ pc (∆p)

Definition 295 (Definition of ∆ c (∆f)) If f1 and f2 are any two frequencies in a pitch system ψ then

∆f = ∆ f (f1, f2) ⇒ ∆ c (∆f) = ∆ c (f1, f2)

Theorem 296 (Formula for ∆ c (∆f)) If ∆f is a frequency interval in a pitch system ψ then

∆ c (∆f) =

(

µc ×
ln (∆f)

ln 2

)

mod µc
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Proof

R1 Let ∆f = ∆ f (f1, f2)

R2 R1 & 295 ⇒ ∆ c (∆f) = ∆ c (f1, f2)

R3 247 ⇒ ∆ c (f1, f2) =
(

µc ×
ln(f2/f1)

ln 2

)

mod µc

R4 R3 & R2 ⇒ ∆ c (∆f) =
(

µc ×
ln(f2/f1)

ln 2

)

mod µc

R5 242 ⇒ ∆ f (f1, f2) = f2/f1

R6 R5 & R1 ⇒ ∆f = f2/f1

R7 R6 & R4 ⇒ ∆ c (∆f) =
(

µc ×
ln(∆f)

ln 2

)

mod µc

Theorem 297 (Second formula for ∆ c (∆f)) If ∆f is a frequency interval in a pitch system ψ then

∆ c (∆f) = µc ×

(

ln (∆f)

ln 2
− int

(

ln (∆f)

ln 2

))

Proof

R1 296 ⇒ ∆ c (∆f) =
(

µc ×
ln(∆f)

ln 2

)

mod µc

R2 R1 & 33 ⇒ ∆ c (∆f) = µc ln(∆f)
ln 2 − µc × int

(

µc ln(∆f)
µc ln 2

)

= µc ×
(

ln(∆f)
ln 2 − int

(

ln∆f
ln 2

))

Theorem 298 (∆ c (∆ f (∆p)) = ∆ c (∆p)) If ∆p is a pitch interval in ψ then

∆ c (∆ f (∆p)) = ∆ c (∆p)
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Proof

R1 296 ⇒ ∆ c (∆ f (∆p)) =
(

µc ×
ln(∆ f(∆p))

ln 2

)

mod µc

R2 272 ⇒ ∆ f (∆p) = 2∆pc(∆p)/µc

R3 R1 & R2 ⇒ ∆ c (∆ f (∆p)) =

(

µc ×
ln(2∆ pc(∆p)/µc)

ln 2

)

mod µc

R4 R3 & 59 ⇒ ∆ c (∆ f (∆p)) =
(

µc × log 2

(

2∆pc(∆p)/µc
))

mod µc

= (µc × (∆ pc (∆p) /µc)) mod µc

= ∆ pc (∆p) mod µc

R5 274 ⇒ ∆ c (∆p) = ∆ pc (∆p) mod µc

R6 R4 & R5 ⇒ ∆ c (∆ f (∆p)) = ∆ c (∆p)

Deriving MIPS intervals from a chromamorph interval

Definition 299 (Definition of ∆ c (∆q)) If q1 and q2 are any two chromamorphs in a pitch system ψ then

∆q = ∆ q (q1, q2) ⇒ ∆ c (∆q) = ∆ c (q1, q2)

Theorem 300 (Formula for ∆ c (∆q)) If ∆q is a chromamorph interval in a pitch system ψ then

∆q = [∆c,∆m] ⇒ ∆ c (∆q) = ∆c

Proof

R1 Let ∆q = ∆ q (q1, q2)

R2 Let ∆q = [∆c,∆m]

R3 R1 & 299 ⇒ ∆ c (∆q) = ∆ c (q1, q2)

R4 223 ⇒ ∆ q (q1, q2) = [∆ c (q1, q2) ,∆ m (q1, q2)]

R5 R3 & R4 ⇒ ∆ q (q1, q2) = [∆ c (∆q) ,∆ m (q1, q2)]

R6 R1 & R5 ⇒ ∆q = [∆ c (∆q) ,∆ m (q1, q2)]

R7 R2 & R6 ⇒ ∆ c (∆q) = ∆c

Theorem 301 (∆ c (∆ q (∆p)) = ∆ c (∆p)) If ∆p is a pitch interval in a pitch system ψ then

∆ c (∆ q (∆p)) = ∆ c (∆p)
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Proof

R1 274 ⇒ ∆ c (∆p) = ∆ pc (∆p) mod µc

R2 278 ⇒ ∆ q (∆p) = [∆ c (∆p) ,∆ m (∆p)]

R3 Let ∆q = [∆c,∆m]

R4 R3 & 300 ⇒ ∆ c (∆q) = ∆c

R5 Let ∆q = ∆ q (∆p)

R6 R4 & R5 ⇒ ∆ c (∆ q (∆p)) = ∆c

R7 R2, R3 & R5 ⇒ ∆c = ∆ c (∆p)

R8 R6 & R7 ⇒ ∆ c (∆ q (∆p)) = ∆ c (∆p)

Definition 302 (Definition of ∆ m (∆q)) If q1 and q2 are any two chromamorphs in a pitch system ψ then

∆q = ∆ q (q1, q2) ⇒ ∆ m (∆q) = ∆ m (q1, q2)

Theorem 303 (Formula for ∆ m (∆q)) If ∆q is a chromamorph interval in a pitch system ψ then

∆q = [∆c,∆m] ⇒ ∆ m (∆q) = ∆m

Proof

R1 Let ∆q = ∆ q (q1, q2)

R2 Let ∆q = [∆c,∆m]

R3 R1 & 302 ⇒ ∆ m (∆q) = ∆ m (q1, q2)

R4 223 ⇒ ∆ q (q1, q2) = [∆ c (q1, q2) ,∆ m (q1, q2)]

R5 R3 & R4 ⇒ ∆ q (q1, q2) = [∆ c (q1, q2) ,∆ m (∆q)]

R6 R1 & R5 ⇒ ∆q = [∆ c (q1, q2) ,∆ m (∆q)]

R7 R2 & R6 ⇒ ∆ m (∆q) = ∆m

Theorem 304 (∆ m (∆ q (∆p)) = ∆ m (∆p)) If ∆p is a pitch interval in a pitch system ψ then

∆ m (∆ q (∆p)) = ∆ m (∆p)
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Proof

R1 276 ⇒ ∆ m (∆p) = ∆ pm (∆p) mod µm

R2 278 ⇒ ∆ q (∆p) = [∆ c (∆p) ,∆ m (∆p)]

R3 Let ∆q = [∆c,∆m]

R4 R3 & 303 ⇒ ∆ m (∆q) = ∆m

R5 Let ∆q = ∆ q (∆p)

R6 R4 & R5 ⇒ ∆ m (∆ q (∆p)) = ∆m

R7 R2, R3 & R5 ⇒ ∆m = ∆ m (∆p)

R8 R6 & R7 ⇒ ∆ m (∆ q (∆p)) = ∆ m (∆p)

Theorem 305 (∆q = [∆ c (∆q) ,∆ m(∆q)]) If ∆q is a chromamorph interval in ψ then

∆q = [∆ c (∆q) ,∆ m (∆q)]

Proof

R1 Let ∆q = [∆c,∆m]

R2 R1 & 300 ⇒ ∆ c (∆q) = ∆c

R3 R1 & 303 ⇒ ∆ m (∆q) = ∆m

R4 R1, R2 & R4 ⇒ ∆q = [∆ c (∆q) ,∆ m (∆q)]

Deriving MIPS intervals from a chromatic genus interval

Definition 306 (Definition of ∆ c (∆gc)) If g1 and g2 are two genera in a pitch system ψ then

∆gc = ∆ gc (g1, g2) ⇒ ∆ c (∆gc) = ∆ c (g1, g2)

Theorem 307 (Formula for ∆ c (∆gc)) If ∆gc is a chromatic genus interval in a pitch system

ψ = [µc, µm, f0, pc,0]

then

∆ c (∆gc) = ∆gc mod µc
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Proof

R1 Let ∆gc = ∆ gc (g1, g2)

R2 R1 & 306 ⇒ ∆ c (∆gc) = ∆ c (g1, g2)

R3 R2 & 227 ⇒ ∆ c (∆gc) = (gc (g2)− gc (g1)) mod µc

R4 R1 & 230 ⇒ ∆gc = gc (g2)− gc (g1)− µc × ((m (g2)−m (g1)) div µm)

R5 48 ⇒ ((m (g2)−m (g1)) div µm) is an integer

R6 R5 & 37 ⇒ (gc (g2)− gc (g1)− µc × ((m (g2)−m (g1)) div µm)) mod µc

= (gc (g2)− gc (g1)) mod µc

R7 R6, R4 & R3 ⇒ ∆ c (∆gc) = ∆gc mod µc

Theorem 308 (∆ c (∆ gc (∆p)) = ∆ c (∆p)) If ∆p is a pitch interval in a pitch system ψ then

∆ c (∆ gc (∆p)) = ∆ c (∆p)

Proof

R1 274 ⇒ ∆ c (∆p) = ∆ pc (∆p) mod µc

R2 307 ⇒ ∆ c (∆gc) = ∆gc mod µc

R3 280 ⇒ ∆ gc (∆p) = ∆ pc (∆p)− µc × (∆ pm (∆p) div µm)

R4 Let ∆ gc (∆p) = ∆gc

R5 R4 & R2 ⇒ ∆ c (∆ gc (∆p)) = ∆ gc (∆p) mod µc

R6 R3 & R5 ⇒ ∆ c (∆ gc (∆p)) = (∆ pc (∆p)− µc × (∆ pm (∆p) div µm)) mod µc

R7 48 ⇒ (∆ pm (∆p) div µm) is an integer

R8 R7, R6 & 37 ⇒ ∆ c (∆ gc (∆p)) = ∆ pc (∆p) mod µc

R9 R1 & R8 ⇒ ∆ c (∆ gc (∆p)) = ∆ c (∆p)

Deriving MIPS intervals from a genus interval

Definition 309 (Chromatic genus interval of a genus interval) If g1 and g2 are two genera in a pitch

system ψ then

∆g = ∆ g (g1, g2) ⇒ ∆ gc (∆g) = ∆ gc (g1, g2)
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Theorem 310 (Formula for chromatic genus interval of a genus interval) If ∆g is a genus interval

in a pitch system ψ then

∆g = [∆gc,∆m] ⇒ ∆ gc (∆g) = ∆gc

Proof

R1 Let ∆g = ∆ g (g1, g2)

R2 R1 & 309 ⇒ ∆ gc (∆g) = ∆ gc (g1, g2)

R3 R1 & 231 ⇒ ∆g = [∆ gc (g1, g2) ,∆ m(g1, g2)]

R4 Let ∆g = [∆gc,∆m]

R5 R3 & R4 ⇒ ∆gc = ∆ gc (g1, g2)

R6 R5 & R2 ⇒ ∆ gc (∆g) = ∆gc

Theorem 311 (∆ gc (∆ g (∆p)) = ∆ gc (∆p)) If ∆p is a pitch interval in a pitch system ψ then

∆ gc (∆ g (∆p)) = ∆ gc (∆p)

Proof

R1 Let ∆g = [∆gc,∆m]

R2 R1 & 310 ⇒ ∆ gc (∆g) = ∆gc

R3 282 ⇒ ∆ g (∆p) = [∆ gc (∆p) ,∆ m (∆p)]

R4 Let ∆g = ∆ g (∆p)

R5 R1, R3 & R4 ⇒ ∆gc = ∆ gc (∆p)

R6 R2 & R4 ⇒ ∆ gc (∆ g (∆p)) = ∆gc

R7 R5 & R6 ⇒ ∆ gc (∆ g (∆p)) = ∆ gc (∆p)

Definition 312 (Definition of ∆ c (∆g)) If g1 and g2 are two genera in a pitch system ψ then

∆g = ∆ g (g1, g2) ⇒ ∆ c (∆g) = ∆ c (g1, g2)

Theorem 313 (Formula for ∆ c (∆g)) If ∆g is a genus interval in a pitch system ψ then

∆ c (∆g) = ∆ gc (∆g) mod µc



CHAPTER 4. FORMAL SPECIFICATION OF MIPS 144

Proof

R1 Let ∆g = ∆ g (g1, g2)

R2 R1 & 312 ⇒ ∆ c (∆g) = ∆ c (g1, g2)

R3 R1 & 309 ⇒ ∆ gc (∆g) = ∆ gc (g1, g2)

R4 R2 & 227 ⇒ ∆ c (∆g) = (gc (g2)− gc (g1)) mod µc

R5 R3 & 230 ⇒ ∆ gc (∆g) = gc (g2)− gc (g1)− µc × ((m (g2)−m (g1)) div µm)

R6 48 ⇒ ((m (g2)−m (g1)) div µm) is an integer

R7 R6 & 37 ⇒ (gc (g2)− gc (g1)− µc × ((m (g2)−m (g1)) div µm)) mod µc

= (gc (g2)− gc (g1)) mod µc

R8 R7 & R5 ⇒ ∆ gc (∆g) mod µc = (gc (g2)− gc (g1)) mod µc

R9 R4 & R8 ⇒ ∆ c (∆g) = ∆ gc (∆g) mod µc

Theorem 314 (∆ c (∆ g (∆p)) = ∆ c (∆p)) If ∆p is a pitch interval in a pitch system ψ then

∆ c (∆ g (∆p)) = ∆ c (∆p)

Proof

R1 Let ∆g = ∆ g (∆p)

R2 R1 & 313 ⇒ ∆ c (∆ g (∆p)) = ∆ gc (∆ g (∆p)) mod µc

R3 R2 & 311 ⇒ ∆ c (∆ g (∆p)) = ∆ gc (∆p) mod µc

R4 Let ∆gc = ∆ gc (∆p)

R5 R4 & 307 ⇒ ∆ c (∆ gc (∆p)) = ∆ gc (∆p) mod µc

R6 R3 & R5 ⇒ ∆ c (∆ g (∆p)) = ∆ c (∆ gc (∆p))

R7 R6 & 308 ⇒ ∆ c (∆ g (∆p)) = ∆ c (∆p)

Definition 315 (Morph interval of a genus interval) If g1 and g2 are two genera in a pitch system ψ

then

∆g = ∆ g (g1, g2) ⇒ ∆ m (∆g) = ∆ m (g1, g2)
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Theorem 316 (Formula for morph interval of a genus interval) If ∆g is a genus interval in a pitch

system ψ then

∆g = [∆gc,∆m] ⇒ ∆ m (∆g) = ∆m

Proof

R1 Let ∆g = ∆ g (g1, g2)

R2 R1 & 315 ⇒ ∆ m (∆g) = ∆ m (g1, g2)

R3 R1 & 231 ⇒ ∆g = [∆ gc (g1, g2) ,∆ m(g1, g2)]

R4 Let ∆g = [∆gc,∆m]

R5 R3 & R4 ⇒ ∆m = ∆ m (g1, g2)

R6 R5 & R2 ⇒ ∆ m (∆g) = ∆m

Theorem 317 (∆ m (∆ g (∆p)) = ∆ m (∆p)) If ∆p is a pitch interval in a pitch system ψ then

∆ m (∆ g (∆p)) = ∆ m (∆p)

Proof

R1 Let ∆g = [∆gc,∆m]

R2 R1 & 316 ⇒ ∆ m (∆g) = ∆m

R3 282 ⇒ ∆ g (∆p) = [∆ gc (∆p) ,∆ m (∆p)]

R4 Let ∆g = ∆ g (∆p)

R5 R1, R3 & R4 ⇒ ∆m = ∆ m (∆p)

R6 R2 & R4 ⇒ ∆ m (∆ g (∆p)) = ∆m

R7 R5 & R6 ⇒ ∆ m (∆ g (∆p)) = ∆ m (∆p)

Theorem 318 If ∆g is a genus interval in ψ then

∆g = [∆ gc (∆g) ,∆ m (∆g)]
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Proof

R1 Let ∆g = [∆gc,∆m]

R2 R1 & 310 ⇒ ∆ gc (∆g) = ∆gc

R3 R1 & 316 ⇒ ∆ m (∆g) = ∆m

R4 R1, R2 & R3 ⇒ ∆g = [∆ gc (∆g) ,∆ m (∆g)]

Definition 319 (Definition of ∆ q (∆g)) If g1 and g2 are two genera in a pitch system ψ then

∆g = ∆ g (g1, g2) ⇒ ∆ q(∆g) = ∆ q (g1, g2)

Theorem 320 (Formula for ∆ q (∆g)) If ∆g is a genus interval in a pitch system ψ then

∆ q(∆g) = [∆ c (∆g) ,∆ m (∆g)]
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Proof

R1 Let ∆g = ∆ g (g1, g2)

R2 R1 & 319 ⇒ ∆ q (∆g) = ∆ q (g1, g2)

R3 R2 & 229 ⇒ ∆ q (∆g) = ∆ q (q (g1) , q (g2))

R4 R3 & 223 ⇒ ∆ q (∆g) = [∆ c (q (g1) , q (g2)) ,∆ m (q (g1) , q (g2))]

R5 R4, 221 & 222 ⇒ ∆ q (∆g) = [∆ c (c (q (g1)) , c (q (g2))) ,∆ m (m (q (g1)) ,m (q (g2)))]

R6 Let g1 = g (p1) and g2 = g (p2)

R7 R5 & R6 ⇒ ∆ q (∆g) = [∆ c (c (q (g (p1))) , c (q (g (p2)))) ,∆ m (m (q (g (p1))) ,m (q (g (p2))))]

R8 R7 & 121 ⇒ ∆ q (∆g) = [∆ c (c (q (p1)) , c (q (p2))) ,∆ m (m (q (p1)) ,m(q (p2)))]

R9 R8, 107 & 105 ⇒ ∆ q (∆g) = [∆ c (c (p1) , c (p2)) ,∆ m (m (p1) ,m (p2))]

R10 R1 & 312 ⇒ ∆ c (∆g) = ∆ c (g1, g2)

R11 R10 & 226 ⇒ ∆ c (∆g) = ∆ c (c (g1) , c (g2))

R12 R11 & R6 ⇒ ∆ c (∆g) = ∆ c (c (g (p1)) , c (g (p2)))

R13 R12 & 119 ⇒ ∆ c (∆g) = ∆ c (c (p1) , c (p2))

R14 R1 & 315 ⇒ ∆ m (∆g) = ∆ m (g1, g2)

R15 R14 & 228 ⇒ ∆ m (∆g) = ∆ m (m (g1) ,m (g2))

R16 R15 & R6 ⇒ ∆ m (∆g) = ∆ m (m (g (p1)) ,m (g (p2)))

R17 R16 & 116 ⇒ ∆ m (∆g) = ∆ m (m (p1) ,m (p2))

R18 R9, R13 & R17 ⇒ ∆ q (∆g) = [∆ c (∆g) ,∆ m (∆g)]

Theorem 321 (∆ q (∆ g (∆p)) = ∆ q (∆p)) If ∆p is a pitch interval in a pitch system ψ then

∆ q(∆ g (∆p)) = ∆ q (∆p)
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Proof

R1 278 ⇒ ∆ q (∆p) = [∆ c (∆p) ,∆ m (∆p)]

R2 320 ⇒ ∆ q (∆g) = [∆ c (∆g) ,∆ m (∆g)]

R3 Let ∆ g (∆p) = ∆g

R4 R2 & R3 ⇒ ∆ q (∆ g (∆p)) = [∆ c (∆ g (∆p)) ,∆ m (∆ g (∆p))]

R5 314 ⇒ ∆ c (∆ g (∆p)) = ∆ c (∆p)

R6 317 ⇒ ∆ m (∆ g (∆p)) = ∆ m (∆p)

R7 R4, R5 & R6 ⇒ ∆ q (∆ g (∆p)) = [∆ c (∆p) ,∆ m (∆p)]

R8 R7 & R1 ⇒ ∆ q (∆ g (∆p)) = ∆ q (∆p)

4.4.3 Equivalence relations between MIPS intervals

Equivalence relations between pitch intervals

Definition 322 (∆p1 ≡∆pc ∆p2) Two pitch intervals ∆p1 and ∆p2 are chromatic pitch interval equivalent

if and only if

∆ pc (∆p1) = ∆ pc (∆p2)

The fact that two pitch intervals are chromatic pitch interval equivalent is denoted as follows:

∆p1 ≡∆pc ∆p2

Definition 323 (∆p1 ≡∆pm ∆p2) Two pitch intervals ∆p1 and ∆p2 are morphetic pitch interval equivalent

if and only if

∆ pm (∆p1) = ∆ pm (∆p2)

The fact that two pitch intervals are morphetic pitch interval equivalent is denoted as follows:

∆p1 ≡∆pm ∆p2

Definition 324 (∆p1 ≡∆f ∆p2) Two pitch intervals ∆p1 and ∆p2 are frequency interval equivalent if and

only if

∆ f (∆p1) = ∆ f (∆p2)

The fact that two pitch intervals are frequency interval equivalent is denoted as follows:

∆p1 ≡∆f ∆p2

Definition 325 (∆p1 ≡∆c ∆p2) Two pitch intervals ∆p1 and ∆p2 are chroma interval equivalent if and

only if

∆ c (∆p1) = ∆ c (∆p2)

The fact that two pitch intervals are chroma interval equivalent is denoted as follows:

∆p1 ≡∆c ∆p2
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Definition 326 (∆p1 ≡∆m ∆p2) Two pitch intervals ∆p1 and ∆p2 are morph interval equivalent if and

only if

∆ m (∆p1) = ∆ m (∆p2)

The fact that two pitch intervals are morph interval equivalent is denoted as follows:

∆p1 ≡∆m ∆p2

Definition 327 (∆p1 ≡∆q ∆p2) Two pitch intervals ∆p1 and ∆p2 are chromamorph interval equivalent if

and only if

∆ q (∆p1) = ∆ q (∆p2)

The fact that two pitch intervals are chromamorph interval equivalent is denoted as follows:

∆p1 ≡∆q ∆p2

Definition 328 (∆p1 ≡∆gc ∆p2) Two pitch intervals ∆p1 and ∆p2 are chromatic genus interval equivalent

if and only if

∆ gc (∆p1) = ∆ gc (∆p2)

The fact that two pitch intervals are chromatic genus interval equivalent is denoted as follows:

∆p1 ≡∆gc ∆p2

Definition 329 (∆p1 ≡∆g ∆p2) Two pitch intervals ∆p1 and ∆p2 are genus interval equivalent if and only

if

∆ g (∆p1) = ∆ g (∆p2)

The fact that two pitch intervals are genus interval equivalent is denoted as follows:

∆p1 ≡∆g ∆p2

Equivalence relations between chromatic pitch intervals

Definition 330 (∆pc,1 ≡∆f ∆pc,2) Two chromatic pitch intervals ∆pc,1 and ∆pc,2 are frequency interval

equivalent if and only if

∆ f (∆pc,1) = ∆ f (∆pc,2)

The fact that two chromatic pitch intervals are frequency interval equivalent is denoted as follows:

∆pc,1 ≡∆f ∆pc,2

Definition 331 (∆pc,1 ≡∆c ∆pc,2) Two chromatic pitch intervals ∆pc,1 and ∆pc,2 are chroma interval

equivalent if and only if

∆ c (∆pc,1) = ∆ c (∆pc,2)

The fact that two chromatic pitch intervals are chroma interval equivalent is denoted as follows:

∆pc,1 ≡∆c ∆pc,2
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Equivalence relations between morphetic pitch intervals

Definition 332 (∆pm,1 ≡∆m ∆pm,2) Two morphetic pitch intervals ∆pm,1 and ∆pm,2 are morph interval

equivalent if and only if

∆ m (∆pm,1) = ∆ m (∆pm,2)

The fact that two morphetic pitch intervals are morph interval equivalent is denoted as follows:

∆pm,1 ≡∆m ∆pm,2

Equivalence relations between frequency intervals

Definition 333 (∆f1 ≡∆pc ∆f2) Two frequency intervals ∆f1 and ∆f2 are chromatic pitch interval equiv-

alent if and only if

∆ pc (∆f1) = ∆ pc (∆f2)

The fact that two frequency intervals are chromatic pitch interval equivalent is denoted as follows:

∆f1 ≡∆pc ∆f2

Definition 334 (∆f1 ≡∆c ∆f2) Two frequency intervals ∆f1 and ∆f2 are chroma interval equivalent if

and only if

∆ c (∆f1) = ∆ c (∆f2)

The fact that two frequency intervals are chroma interval equivalent is denoted as follows:

∆f1 ≡∆c ∆f2

Equivalence relations between chromamorph intervals

Definition 335 (∆q1 ≡∆c ∆q2) Two chromamorph intervals ∆q1 and ∆q2 are chroma interval equivalent

if and only if

∆ c (∆q1) = ∆ c (∆q2)

The fact that two chromamorph intervals are chroma interval equivalent is denoted as follows:

∆q1 ≡∆c ∆q2

Definition 336 (∆q1 ≡∆m ∆q2) Two chromamorph intervals ∆q1 and ∆q2 are morph interval equivalent

if and only if

∆ m (∆q1) = ∆ m (∆q2)

The fact that two chromamorph intervals are morph interval equivalent is denoted as follows:

∆q1 ≡∆m ∆q2

Equivalence relations between chromatic genus intervals

Definition 337 (∆gc,1 ≡∆c ∆gc,2) Two chromatic genus intervals ∆gc,1 and ∆gc,2 are chroma interval

equivalent if and only if

∆ c (∆gc,1) = ∆ c (∆gc,2)

The fact that two chromatic genus intervals are chroma interval equivalent is denoted as follows:

∆gc,1 ≡∆c ∆gc,2
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Equivalence relations between genus intervals

Definition 338 (∆g1 ≡∆c ∆g2) Two genus intervals ∆g1 and ∆g2 are chroma interval equivalent if and

only if

∆ c (∆g1) = ∆ c (∆g2)

The fact that two genus intervals are chroma interval equivalent is denoted as follows:

∆g1 ≡∆c ∆g2

Definition 339 (∆g1 ≡∆m ∆g2) Two genus intervals ∆g1 and ∆g2 are morph interval equivalent if and

only if

∆ m (∆g1) = ∆ m (∆g2)

The fact that two genus intervals are morph interval equivalent is denoted as follows:

∆g1 ≡∆m ∆g2

Theorem 340 Morph interval equivalence of genus intervals is transitive. In other words, if ∆g1, ∆g2 and

∆g3 are any three genus intervals in a specified pitch system, then

(∆g1 ≡∆m ∆g2) ∧ (∆g2 ≡∆m ∆g3) ⇒ (∆g1 ≡∆m ∆g3)

Proof

R1 Let ∆g1 ≡∆m ∆g2

R2 Let ∆g2 ≡∆m ∆g3

R3 R1 & 339 ⇒ ∆ m (∆g1) = ∆ m (∆g2)

R4 R2 & 339 ⇒ ∆ m (∆g2) = ∆ m (∆g3)

R5 R3 & R4 ⇒ ∆ m (∆g1) = ∆ m (∆g3)

R6 R5 & 339 ⇒ ∆g1 ≡∆m ∆g3

R7 R1 to R6 ⇒ (∆g1 ≡∆m ∆g2) ∧ (∆g2 ≡∆m ∆g3) ⇒ (∆g1 ≡∆m ∆g3)

Theorem 341 Morph interval equivalence of genus intervals is symmetric. In other words, if ∆g1 and ∆g2

are any two genus intervals in a specified pitch system, then

(∆g1 ≡∆m ∆g2) ⇐⇒ (∆g2 ≡∆m ∆g1)
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Proof

R1 Let ∆g1 and ∆g2 be any two genus intervals in a pitch system.

R2 Let ∆g1 ≡∆m ∆g2

R3 R2 & 339 ⇒ ∆ m (∆g1) = ∆ m (∆g2)

R4 R3 & 339 ⇒ ∆g2 ≡∆m ∆g1

R5 R1 to R4 ⇒ (∆g1 ≡∆m ∆g2) ⇒ (∆g2 ≡∆m ∆g1)

R6 R5 & R1 ⇒ (∆g2 ≡∆m ∆g1) ⇒ (∆g1 ≡∆m ∆g2)

R7 R5 & R6 ⇒ (∆g1 ≡∆m ∆g2) ⇐⇒ (∆g2 ≡∆m ∆g1)

Theorem 342 Morph interval equivalence of genus intervals is reflexive. In other words, if ∆g is any genus

interval in a specified pitch system, then

∆g ≡∆m ∆g

Proof

R1 ∆ m (∆g) = ∆ m (∆g)

R2 R1 & 339 ⇒ ∆g ≡∆m ∆g

Theorem 343 Morph interval equivalence of genus intervals is an equivalence relation.

Proof

R1 340 ⇒ Morph interval equivalence of genus intervals is transitive.

R2 341 ⇒ Morph interval equivalence of genus intervals is symmetric.

R3 342 ⇒ Morph interval equivalence of genus intervals is reflexive.

R4 R1, R2 R3 & ⇒ Morph interval equivalence of genus intervals is an equivalence relation.

Definition 344 (∆g1 ≡∆gc ∆g2) Two genus intervals ∆g1 and ∆g2 are chromatic genus interval equivalent

if and only if

∆ gc (∆g1) = ∆ gc (∆g2)

The fact that two genus intervals are chromatic genus interval equivalent is denoted as follows:

∆g1 ≡∆gc ∆g2
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Definition 345 (∆g1 ≡∆q ∆g2) Two genus intervals ∆g1 and ∆g2 are chromamorph interval equivalent if

and only if

∆ q(∆g1) = ∆ q (∆g2)

The fact that two genus intervals are chromamorph interval equivalent is denoted as follows:

∆g1 ≡∆q ∆g2

4.4.4 Inequalities between MIPS intervals

Inequalities between two pitch intervals

Definition 346 If ∆p1 and ∆p2 are any two pitch intervals in a pitch system ψ then ∆p1 is chromatic pitch

interval less than ∆p2, denoted

∆p1 <∆pc ∆p2

if and only if

∆ pc (∆p1) < ∆ pc (∆p2)

Definition 347 If ∆p1 and ∆p2 are any two pitch intervals in a pitch system ψ then ∆p1 is chromatic pitch

interval less than or equal to ∆p2, denoted

∆p1 ≤∆pc ∆p2

if and only if

∆ pc (∆p1) ≤ ∆ pc (∆p2)

Definition 348 If ∆p1 and ∆p2 are any two pitch intervals in a pitch system ψ then ∆p1 is chromatic pitch

interval greater than ∆p2, denoted

∆p1 >∆pc ∆p2

if and only if

∆ pc (∆p1) > ∆ pc (∆p2)

Definition 349 If ∆p1 and ∆p2 are any two pitch intervals in a pitch system ψ then ∆p1 is chromatic pitch

interval greater than or equal to ∆p2, denoted

∆p1 ≥∆pc ∆p2

if and only if

∆ pc (∆p1) ≥ ∆ pc (∆p2)

Definition 350 If ∆p1 and ∆p2 are any two pitch intervals in a pitch system ψ then ∆p1 is morphetic pitch

interval less than ∆p2, denoted

∆p1 <∆pm ∆p2

if and only if

∆ pm (∆p1) < ∆ pm (∆p2)

Definition 351 If ∆p1 and ∆p2 are any two pitch intervals in a pitch system ψ then ∆p1 is morphetic pitch

interval less than or equal to ∆p2, denoted

∆p1 ≤∆pm ∆p2

if and only if

∆ pm (∆p1) ≤ ∆ pm (∆p2)
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Definition 352 If ∆p1 and ∆p2 are any two pitch intervals in a pitch system ψ then ∆p1 is morphetic pitch

interval greater than ∆p2, denoted

∆p1 >∆pm ∆p2

if and only if

∆ pm (∆p1) > ∆ pm (∆p2)

Definition 353 If ∆p1 and ∆p2 are any two pitch intervals in a pitch system ψ then ∆p1 is morphetic pitch

interval greater than or equal to ∆p2, denoted

∆p1 ≥∆pm ∆p2

if and only if

∆ pm (∆p1) ≥ ∆ pm (∆p2)

Definition 354 If ∆p1 and ∆p2 are any two pitch intervals in a pitch system ψ then ∆p1 is frequency

interval less than ∆p2, denoted

∆p1 <∆f ∆p2

if and only if

∆ f (∆p1) < ∆ f (∆p2)

Definition 355 If ∆p1 and ∆p2 are any two pitch intervals in a pitch system ψ then ∆p1 is frequency

interval less than or equal to ∆p2, denoted

∆p1 ≤∆f ∆p2

if and only if

∆ f (∆p1) ≤ ∆ f (∆p2)

Definition 356 If ∆p1 and ∆p2 are any two pitch intervals in a pitch system ψ then ∆p1 is frequency

interval greater than ∆p2, denoted

∆p1 >∆f ∆p2

if and only if

∆ f (∆p1) > ∆ f (∆p2)

Definition 357 If ∆p1 and ∆p2 are any two pitch intervals in a pitch system ψ then ∆p1 is frequency

interval greater than or equal to ∆p2, denoted

∆p1 ≥∆f ∆p2

if and only if

∆ f (∆p1) ≥ ∆ f (∆p2)

Definition 358 If ∆p1 and ∆p2 are any two pitch intervals in a pitch system ψ then ∆p1 is chroma interval

less than ∆p2, denoted

∆p1 <∆c ∆p2

if and only if

∆ c (∆p1) < ∆ c (∆p2)
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Definition 359 If ∆p1 and ∆p2 are any two pitch intervals in a pitch system ψ then ∆p1 is chroma interval

less than or equal to ∆p2, denoted

∆p1 ≤∆c ∆p2

if and only if

∆ c (∆p1) ≤ ∆ c (∆p2)

Definition 360 If ∆p1 and ∆p2 are any two pitch intervals in a pitch system ψ then ∆p1 is chroma interval

greater than ∆p2, denoted

∆p1 >∆c ∆p2

if and only if

∆ c (∆p1) > ∆ c (∆p2)

Definition 361 If ∆p1 and ∆p2 are any two pitch intervals in a pitch system ψ then ∆p1 is chroma interval

greater than or equal to ∆p2, denoted

∆p1 ≥∆c ∆p2

if and only if

∆ c (∆p1) ≥ ∆ c (∆p2)

Definition 362 If ∆p1 and ∆p2 are any two pitch intervals in a pitch system ψ then ∆p1 is morph interval

less than ∆p2, denoted

∆p1 <∆m ∆p2

if and only if

∆ m (∆p1) < ∆ m (∆p2)

Definition 363 If ∆p1 and ∆p2 are any two pitch intervals in a pitch system ψ then ∆p1 is morph interval

less than or equal to ∆p2, denoted

∆p1 ≤∆m ∆p2

if and only if

∆ m (∆p1) ≤ ∆ m (∆p2)

Definition 364 If ∆p1 and ∆p2 are any two pitch intervals in a pitch system ψ then ∆p1 is morph interval

greater than ∆p2, denoted

∆p1 >∆m ∆p2

if and only if

∆ m (∆p1) > ∆ m (∆p2)

Definition 365 If ∆p1 and ∆p2 are any two pitch intervals in a pitch system ψ then ∆p1 is morph interval

greater than or equal to ∆p2, denoted

∆p1 ≥∆m ∆p2

if and only if

∆ m (∆p1) ≥ ∆ m (∆p2)
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Definition 366 If ∆p1 and ∆p2 are any two pitch intervals in a pitch system ψ then ∆p1 is chromatic genus

interval less than ∆p2, denoted

∆p1 <∆gc ∆p2

if and only if

∆ gc (∆p1) < ∆ gc (∆p2)

Definition 367 If ∆p1 and ∆p2 are any two pitch intervals in a pitch system ψ then ∆p1 is chromatic genus

interval less than or equal to ∆p2, denoted

∆p1 ≤∆gc ∆p2

if and only if

∆ gc (∆p1) ≤ ∆ gc (∆p2)

Definition 368 If ∆p1 and ∆p2 are any two pitch intervals in a pitch system ψ then ∆p1 is chromatic genus

interval greater than ∆p2, denoted

∆p1 >∆gc ∆p2

if and only if

∆ gc (∆p1) > ∆ gc (∆p2)

Definition 369 If ∆p1 and ∆p2 are any two pitch intervals in a pitch system ψ then ∆p1 is chromatic genus

interval greater than or equal to ∆p2, denoted

∆p1 ≥∆gc ∆p2

if and only if

∆ gc (∆p1) ≥ ∆ gc (∆p2)

Inequalities between two chromatic pitch intervals

Definition 370 If ∆pc,1 and ∆pc,2 are any two chromatic pitch intervals in a pitch system ψ then ∆pc,1 is

chroma interval less than ∆pc,2, denoted

∆pc,1 <∆c ∆pc,2

if and only if

∆ c (∆pc,1) < ∆ c (∆pc,2)

Definition 371 If ∆pc,1 and ∆pc,2 are any two chromatic pitch intervals in a pitch system ψ then ∆pc,1 is

chroma interval less than or equal to ∆pc,2, denoted

∆pc,1 ≤∆c ∆pc,2

if and only if

∆ c (∆pc,1) ≤ ∆ c (∆pc,2)

Definition 372 If ∆pc,1 and ∆pc,2 are any two chromatic pitch intervals in a pitch system ψ then ∆pc,1 is

chroma interval greater than ∆pc,2, denoted

∆pc,1 >∆c ∆pc,2

if and only if

∆ c (∆pc,1) > ∆ c (∆pc,2)
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Definition 373 If ∆pc,1 and ∆pc,2 are any two chromatic pitch intervals in a pitch system ψ then ∆pc,1 is

chroma interval greater than or equal to ∆pc,2, denoted

∆pc,1 ≥∆c ∆pc,2

if and only if

∆ c (∆pc,1) ≥ ∆ c (∆pc,2)

Definition 374 If ∆pc,1 and ∆pc,2 are any two chromatic pitch intervals in a pitch system ψ then ∆pc,1 is

frequency interval less than ∆pc,2, denoted

∆pc,1 <∆f ∆pc,2

if and only if

∆ f (∆pc,1) < ∆ f (∆pc,2)

Definition 375 If ∆pc,1 and ∆pc,2 are any two chromatic pitch intervals in a pitch system ψ then ∆pc,1 is

frequency interval less than or equal to ∆pc,2, denoted

∆pc,1 ≤∆f ∆pc,2

if and only if

∆ f (∆pc,1) ≤ ∆ f (∆pc,2)

Definition 376 If ∆pc,1 and ∆pc,2 are any two chromatic pitch intervals in a pitch system ψ then ∆pc,1 is

frequency interval greater than ∆pc,2, denoted

∆pc,1 >∆f ∆pc,2

if and only if

∆ f (∆pc,1) > ∆ f (∆pc,2)

Definition 377 If ∆pc,1 and ∆pc,2 are any two chromatic pitch intervals in a pitch system ψ then ∆pc,1 is

frequency interval greater than or equal to ∆pc,2, denoted

∆pc,1 ≥∆f ∆pc,2

if and only if

∆ f (∆pc,1) ≥ ∆ f (∆pc,2)

Inequalities between two morphetic pitch intervals

Definition 378 If ∆pm,1 and ∆pm,2 are any two morphetic pitch intervals in a pitch system ψ then ∆pm,1

is morph interval less than ∆pm,2, denoted

∆pm,1 <∆m ∆pm,2

if and only if

∆ m (∆pm,1) < ∆ m (∆pm,2)
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Definition 379 If ∆pm,1 and ∆pm,2 are any two morphetic pitch intervals in a pitch system ψ then ∆pm,1

is morph interval less than or equal to ∆pm,2, denoted

∆pm,1 ≤∆m ∆pm,2

if and only if

∆ m (∆pm,1) ≤ ∆ m (∆pm,2)

Definition 380 If ∆pm,1 and ∆pm,2 are any two morphetic pitch intervals in a pitch system ψ then ∆pm,1

is morph interval greater than ∆pm,2, denoted

∆pm,1 >∆m ∆pm,2

if and only if

∆ m (∆pm,1) > ∆ m (∆pm,2)

Definition 381 If ∆pm,1 and ∆pm,2 are any two morphetic pitch intervals in a pitch system ψ then ∆pm,1

is morph interval greater than or equal to ∆pm,2, denoted

∆pm,1 ≥∆m ∆pm,2

if and only if

∆ m (∆pm,1) ≥ ∆ m (∆pm,2)

Inequalities between two frequency intervals

Definition 382 If ∆f1 and ∆f2 are any two frequency intervals in a pitch system ψ then ∆f1 is chromatic

pitch interval less than ∆f2, denoted

∆f1 <∆pc ∆f2

if and only if

∆ pc (∆f1) < ∆ pc (∆f2)

Definition 383 If ∆f1 and ∆f2 are any two frequency intervals in a pitch system ψ then ∆f1 is chromatic

pitch interval less than or equal to ∆f2, denoted

∆f1 ≤∆pc ∆f2

if and only if

∆ pc (∆f1) ≤ ∆ pc (∆f2)

Definition 384 If ∆f1 and ∆f2 are any two frequency intervals in a pitch system ψ then ∆f1 is chromatic

pitch interval greater than ∆f2, denoted

∆f1 >∆pc ∆f2

if and only if

∆ pc (∆f1) > ∆ pc (∆f2)

Definition 385 If ∆f1 and ∆f2 are any two frequency intervals in a pitch system ψ then ∆f1 is chromatic

pitch interval greater than or equal to ∆f2, denoted

∆f1 ≥∆pc ∆f2

if and only if

∆ pc (∆f1) ≥ ∆ pc (∆f2)
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Definition 386 If ∆f1 and ∆f2 are any two frequency intervals in a pitch system ψ then ∆f1 is chroma

interval less than ∆f2, denoted

∆f1 <∆c ∆f2

if and only if

∆ c (∆f1) < ∆ c (∆f2)

Definition 387 If ∆f1 and ∆f2 are any two frequency intervals in a pitch system ψ then ∆f1 is chroma

interval less than or equal to ∆f2, denoted

∆f1 ≤∆c ∆f2

if and only if

∆ c (∆f1) ≤ ∆ c (∆f2)

Definition 388 If ∆f1 and ∆f2 are any two frequency intervals in a pitch system ψ then ∆f1 is chroma

interval greater than ∆f2, denoted

∆f1 >∆c ∆f2

if and only if

∆ c (∆f1) > ∆ c (∆f2)

Definition 389 If ∆f1 and ∆f2 are any two frequency intervals in a pitch system ψ then ∆f1 is chroma

interval greater than or equal to ∆f2, denoted

∆f1 ≥∆c ∆f2

if and only if

∆ c (∆f1) ≥ ∆ c (∆f2)

Inequalities between two chromatic genus intervals

Definition 390 If ∆gc,1 and ∆gc,2 are any two chromatic genus intervals in a pitch system ψ then ∆gc,1 is

chroma interval less than ∆gc,2, denoted

∆gc,1 <∆c ∆gc,2

if and only if

∆ c (∆gc,1) < ∆ c (∆gc,2)

Definition 391 If ∆gc,1 and ∆gc,2 are any two chromatic genus intervals in a pitch system ψ then ∆gc,1 is

chroma interval less than or equal to ∆gc,2, denoted

∆gc,1 ≤∆c ∆gc,2

if and only if

∆ c (∆gc,1) ≤ ∆ c (∆gc,2)

Definition 392 If ∆gc,1 and ∆gc,2 are any two chromatic genus intervals in a pitch system ψ then ∆gc,1 is

chroma interval greater than ∆gc,2, denoted

∆gc,1 >∆c ∆gc,2

if and only if

∆ c (∆gc,1) > ∆ c (∆gc,2)
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Definition 393 If ∆gc,1 and ∆gc,2 are any two chromatic genus intervals in a pitch system ψ then ∆gc,1 is

chroma interval greater than or equal to ∆gc,2, denoted

∆gc,1 ≥∆c ∆gc,2

if and only if

∆ c (∆gc,1) ≥ ∆ c (∆gc,2)

Inequalities between two genus intervals

Definition 394 If ∆g1 and ∆g2 are any two genus intervals in a pitch system ψ then ∆g1 is chromatic

genus interval less than ∆g2, denoted

∆g1 <∆gc ∆g2

if and only if

∆ gc (∆g1) < ∆ gc (∆g2)

Definition 395 If ∆g1 and ∆g2 are any two genus intervals in a pitch system ψ then ∆g1 is chromatic

genus interval less than or equal to ∆g2, denoted

∆g1 ≤∆gc ∆g2

if and only if

∆ gc (∆g1) ≤ ∆ gc (∆g2)

Definition 396 If ∆g1 and ∆g2 are any two genus intervals in a pitch system ψ then ∆g1 is chromatic

genus interval greater than ∆g2, denoted

∆g1 >∆gc ∆g2

if and only if

∆ gc (∆g1) > ∆ gc (∆g2)

Definition 397 If ∆g1 and ∆g2 are any two genus intervals in a pitch system ψ then ∆g1 is chromatic

genus interval greater than or equal to ∆g2, denoted

∆g1 ≥∆gc ∆g2

if and only if

∆ gc (∆g1) ≥ ∆ gc (∆g2)

Definition 398 If ∆g1 and ∆g2 are any two genus intervals in a pitch system ψ then ∆g1 is morph interval

less than ∆g2, denoted

∆g1 <∆m ∆g2

if and only if

∆ m (∆g1) < ∆ m (∆g2)

Definition 399 If ∆g1 and ∆g2 are any two genus intervals in a pitch system ψ then ∆g1 is morph interval

less than or equal to ∆g2, denoted

∆g1 ≤∆m ∆g2

if and only if

∆ m (∆g1) ≤ ∆ m (∆g2)
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Definition 400 If ∆g1 and ∆g2 are any two genus intervals in a pitch system ψ then ∆g1 is morph interval

greater than ∆g2, denoted

∆g1 >∆m ∆g2

if and only if

∆ m (∆g1) > ∆ m (∆g2)

Definition 401 If ∆g1 and ∆g2 are any two genus intervals in a pitch system ψ then ∆g1 is morph interval

greater than or equal to ∆g2, denoted

∆g1 ≥∆m ∆g2

if and only if

∆ m (∆g1) ≥ ∆ m (∆g2)

Definition 402 If ∆g1 and ∆g2 are any two genus intervals in a pitch system ψ then ∆g1 is chroma interval

less than ∆g2, denoted

∆g1 <∆c ∆g2

if and only if

∆ c (∆g1) < ∆ c (∆g2)

Definition 403 If ∆g1 and ∆g2 are any two genus intervals in a pitch system ψ then ∆g1 is chroma interval

less than or equal to ∆g2, denoted

∆g1 ≤∆c ∆g2

if and only if

∆ c (∆g1) ≤ ∆ c (∆g2)

Definition 404 If ∆g1 and ∆g2 are any two genus intervals in a pitch system ψ then ∆g1 is chroma interval

greater than ∆g2, denoted

∆g1 >∆c ∆g2

if and only if

∆ c (∆g1) > ∆ c (∆g2)

Definition 405 If ∆g1 and ∆g2 are any two genus intervals in a pitch system ψ then ∆g1 is chroma interval

greater than or equal to ∆g2, denoted

∆g1 ≥∆c ∆g2

if and only if

∆ c (∆g1) ≥ ∆ c (∆g2)

4.5 Transposing MIPS objects

4.5.1 Transposing a chroma

Definition 406 (Definition of τc (c,∆c)) If ψ is a pitch system and c1 and c2 are chromae in ψ and ∆c

is a chroma interval in ψ then the chroma transposition function is defined as follows:

∆ c (c1, c2) = ∆c⇒ τc (c1,∆c) = c2
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Theorem 407 (Formula for τc (c,∆c)) If c is a chroma and ∆c is a chroma interval in a pitch system

ψ = [µc, µm, f0, pc,0]

then

τc (c,∆c) = (c+ ∆c) mod µc

Proof

R1 Let ∆ c (c, c2) = ∆c

R2 R1 & 406 ⇒ τc (c,∆c) = c2

R3 213 ⇒ ∆ c (c, c2) = (c2 − c) mod µc

R4 R1, R2 & R3 ⇒ ∆c = (τc (c,∆c)− c) mod µc

R5 214 ⇒ µc > ∆c ≥ 0

R6 72 & 406 ⇒ µc > τc (c,∆c) , c ≥ 0

R7 43, R4, R5 & R6 ⇒ τc (c,∆c) = (c+ ∆c) mod µc

Theorem 408 If ψ is a pitch system and c1 and c2 are chromae in ψ and ∆c is a chroma interval in ψ then

τc (c1,∆c) = c2 ⇒ ∆ c (c1, c2) = ∆c

Proof

R1 Let τc (c1,∆c) = c2

R2 407 ⇒ τc (c1,∆c) = (c1 + ∆c) mod µc

R3 R1 & R2 ⇒ c2 = (c1 + ∆c) mod µc

R4 213 ⇒ ∆ c (c1, c2) = (c2 − c1) mod µc

R5 R3 & R4 ⇒ ∆ c (c1, c2) = ((c1 + ∆c) mod µc − c1) mod µc

R6 R5 & 38 ⇒ ∆ c (c1, c2) = (c1 + ∆c− c1) mod µc

= ∆c mod µc

R7 R6, 214 & 44 ⇒ ∆ c (c1, c2) = ∆c

R8 R1 to R7 ⇒ τc (c1,∆c) = c2 ⇒ ∆ c (c1, c2) = ∆c
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Theorem 409 If ψ is a pitch system and c1 and c2 are chromae in ψ and ∆c is a chroma interval in ψ then

∆ c (c1, c2) = ∆c ⇐⇒ τc (c1,∆c) = c2

Proof

R1 408 ⇒ τc (c1,∆c) = c2 ⇒ ∆ c (c1, c2) = ∆c

R2 406 ⇒ ∆ c (c1, c2) = ∆c⇒ τc (c1,∆c) = c2

R3 R1 & R2 ⇒ ∆ c (c1, c2) = ∆c ⇐⇒ τc (c1,∆c) = c2

Theorem 410 If ψ is a pitch system and ∆c1 and ∆c2 are chroma intervals in ψ and c is a chroma in ψ

then

(τc (c,∆c1) = τc (c,∆c2)) ⇒ (∆c1 = ∆c2)

Proof

R1 407 ⇒ τc (c,∆c1) = (c+ ∆c1) mod µc

R2 407 ⇒ τc (c,∆c2) = (c+ ∆c2) mod µc

R3 Let τc (c,∆c1) = τc (c,∆c2)

R4 R1, R2 & R3 ⇒ (c+ ∆c1) mod µc = (c+ ∆c2) mod µc

R5 214 ⇒ (∆c1 ∈ Z) ∧ (0 ≤ ∆c1 < µc)

R6 214 ⇒ (∆c2 ∈ Z) ∧ (0 ≤ ∆c2 < µc)

R7 Let ∆c1−∆c2

µc
= n

R8 R4, R7 & 40 ⇒ n is an integer

R9 R7 ⇒ ∆c1 = n× µc + ∆c2

R10 R5, R6, R8 & R9 ⇒ n = 0

R11 R9 & R10 ⇒ ∆c1 = ∆c2

R12 R1 to R11 ⇒ (τc (c,∆c1) = τc (c,∆c2)) ⇒ (∆c1 = ∆c2)

4.5.2 Transposing a morph

Definition 411 (Morph transposition function) If ψ is a pitch system and m1 and m2 are morphs in

ψ and ∆m is a morph interval in ψ then the morph transposition function is defined as follows:

∆ m (m1,m2) = ∆m⇒ τm (m1,∆m) = m2
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Theorem 412 (Formula for morph transposition function) If m is a morph and ∆m is a morph in-

terval in a pitch system

ψ = [µc, µm, f0, pc,0]

then

τm (m,∆m) = (m+ ∆m) mod µm

Proof

R1 Let ∆ m (m,m2) = ∆m

R2 R1 & 411 ⇒ τm (m,∆m) = m2

R3 217 ⇒ ∆ m (m,m2) = (m2 −m) mod µm

R4 R1, R2 & R3 ⇒ ∆m = (τm (m,∆m)−m) mod µm

R5 218 ⇒ µm > ∆m ≥ 0

R6 77 & 411 ⇒ µm > τm (m,∆m) ,m ≥ 0

R7 43, R4, R5 & R6 ⇒ τm (m,∆m) = (m+ ∆m) mod µm

Theorem 413 If ψ is a pitch system and m1 and m2 are morphs in ψ and ∆m is a morph interval in ψ

then

τm (m1,∆m) = m2 ⇒ ∆ m (m1,m2) = ∆m

Proof

R1 Let τm (m1,∆m) = m2

R2 412 ⇒ τm (m1,∆m) = (m1 + ∆m) mod µm

R3 R1 & R2 ⇒ m2 = (m1 + ∆m) mod µm

R4 217 ⇒ ∆ m (m1,m2) = (m2 −m1) mod µm

R5 R3 & R4 ⇒ ∆ m (m1,m2) = ((m1 + ∆m) mod µm −m1) mod µm

R6 R5 & 38 ⇒ ∆ m (m1,m2) = (m1 + ∆m−m1) mod µm

= ∆m mod µm

R7 R6, 218 & 44 ⇒ ∆ m (m1,m2) = ∆m

R8 R1 to R7 ⇒ τm (m1,∆m) = m2 ⇒ ∆ m (m1,m2) = ∆m
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Theorem 414 If ψ is a pitch system and m1 and m2 are morphs in ψ and ∆m is a morph interval in ψ

then

∆ m (m1,m2) = ∆m ⇐⇒ τm (m1,∆m) = m2

Proof

R1 413 ⇒ τm (m1,∆m) = m2 ⇒ ∆ m (m1,m2) = ∆m

R2 411 ⇒ ∆ m (m1,m2) = ∆m⇒ τm (m1,∆m) = m2

R3 R1 & R2 ⇒ ∆ m (m1,m2) = ∆m ⇐⇒ τm (m1,∆m) = m2

Theorem 415 If ψ is a pitch system and ∆m1 and ∆m2 are morph intervals in ψ and m is a morph in ψ

then

(τm (m,∆m1) = τm (m,∆m2)) ⇒ (∆m1 = ∆m2)

Proof

R1 412 ⇒ τm (m,∆m1) = (m+ ∆m1) mod µm

R2 412 ⇒ τm (m,∆m2) = (m+ ∆m2) mod µm

R3 Let τm (m,∆m1) = τm (m,∆m2)

R4 R1, R2 & R3 ⇒ (m+ ∆m1) mod µm = (m+ ∆m2) mod µm

R5 218 ⇒ (∆m1 ∈ Z) ∧ (0 ≤ ∆m1 < µm)

R6 218 ⇒ (∆m2 ∈ Z) ∧ (0 ≤ ∆m2 < µm)

R7 Let ∆m1−∆m2

µm
= n

R8 R4, R7 & 40 ⇒ n is an integer

R9 R7 ⇒ ∆m1 = n× µm + ∆m2

R10 R5, R6, R8 & R9 ⇒ n = 0

R11 R9 & R10 ⇒ ∆m1 = ∆m2

R12 R1 to R11 ⇒ (τm (m,∆m1) = τm (m,∆m2)) ⇒ (∆m1 = ∆m2)

4.5.3 Transposing a chromamorph

Definition 416 (Definition of τq (q,∆q)) If ψ is a pitch system and q1 and q2 are chromamorphs in ψ and

∆q is a chromamorph interval in ψ then the chromamorph transposition function is defined as follows:

∆ q(q1, q2) = ∆q ⇒ τq (q1,∆q) = q2
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Theorem 417 (Formula for τq (q,∆q)) If q is a chromamorph and ∆q is a chromamorph interval in a

pitch system ψ then

τq (q,∆q) = [τc (c (q) ,∆ c (∆q)) , τm (m (q) ,∆ m (∆q))]
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Proof

R1 Let ∆ q (q, q2) = ∆q

R2 416 ⇒ τq (q,∆q) = q2

R3 223 ⇒ ∆ q (q, q2) = [∆ c (q, q2) ,∆ m (q, q2)]

R4 221 ⇒ ∆ c (q, q2) = ∆ c (c (q) , c (q2))

R5 222 ⇒ ∆ m (q, q2) = ∆ m (m (q) ,m(q2))

R6 213 ⇒ ∆ c (c (q) , c (q2)) = (c (q2)− c (q)) mod µc

R7 217 ⇒ ∆ m (m (q) ,m (q2)) = (m (q2)−m (q)) mod µm

R8 R1 & 299 ⇒ ∆ c (∆q) = ∆ c (q, q2)

R9 R4, R6 & R8 ⇒ ∆ c (∆q) = (c (q2)− c (q)) mod µc

R10 R1 & 302 ⇒ ∆ m (∆q) = ∆ m (q, q2)

R11 R5, R7 & R10 ⇒ ∆ m (∆q) = (m (q2)−m (q)) mod µm

R12 72 ⇒ µc > c (q) , c (q2) ≥ 0

R13 214 ⇒ µc > ∆ c (∆q) ≥ 0

R14 R9, R12, R13 & 43 ⇒ c (q2) = (c (q) + ∆ c (∆q)) mod µc

R15 77 ⇒ µm > m (q) ,m (q2) ≥ 0

R16 218 ⇒ µm > ∆ m (∆q) ≥ 0

R17 R11, R15, R16 & 43 ⇒ m (q2) = (m (q) + ∆ m (∆q)) mod µm

R18 R14 & 407 ⇒ τc (c (q) ,∆ c (∆q)) = c (q2)

R19 R17 & 412 ⇒ τm (m (q) ,∆ m (∆q)) = m (q2)

R20 Let q2 = [c2,m2]

R21 R20 & 106 ⇒ c (q2) = c2

R22 R20 & 108 ⇒ m (q2) = m2

R23 R20, R21 & R22 ⇒ q2 = [c (q2) ,m (q2)]

R24 R2, R18 & R19 ⇒ τq (q,∆q) = [τc (c (q) ,∆ c (∆q)) , τm (m (q) ,∆ m (∆q))]
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Theorem 418 If ψ is a pitch system and q1 and q2 are chromamorphs in ψ and ∆q is a chromamorph

interval in ψ then

τq (q1,∆q) = q2 ⇒ ∆ q (q1, q2) = ∆q

Proof

R1 Let τq (q1,∆q) = q2

R2 417 ⇒ τq (q1,∆q) = [τc (c (q1) ,∆ c (∆q)) , τm (m (q1) ,∆ m (∆q))]

R3 223 ⇒ ∆ q (q1, q2) = [∆ c (q1, q2) ,∆ m (q1, q2)]

R4 221 ⇒ ∆ c (q1, q2) = ∆ c (c (q1) , c (q2))

R5 222 ⇒ ∆ m (q1, q2) = ∆ m (m (q1) ,m (q2))

R6 R3, R4 & R5 ⇒ ∆ q (q1, q2) = [∆ c (c (q1) , c (q2)) ,∆ m (m (q1) ,m(q2))]

R7 109 ⇒ q2 = [c (q2) ,m (q2)]

R8 R1, R2 & R7 ⇒ τc (c (q1) ,∆ c (∆q)) = c (q2)

R9 R1, R2 & R7 ⇒ τm (m (q1) ,∆ m (∆q)) = m (q2)

R10 R8 & 408 ⇒ ∆ c (c (q1) , c (q2)) = ∆ c (∆q)

R11 R9 & 413 ⇒ ∆ m (m (q1) ,m (q2)) = ∆ m (∆q)

R12 R6, R10 & R11 ⇒ ∆ q (q1, q2) = [∆ c (∆q) ,∆ m (∆q)]

R13 R12 & 305 ⇒ ∆ q (q1, q2) = ∆q

R14 R1 to R13 ⇒ τq (q1,∆q) = q2 ⇒ ∆ q (q1, q2) = ∆q

Theorem 419 If ψ is a pitch system and q1 and q2 are chromamorphs in ψ and ∆q is a chromamorph

interval in ψ then

τq (q1,∆q) = q2 ⇐⇒ ∆ q(q1, q2) = ∆q

Proof

R1 418 ⇒ τq (q1,∆q) = q2 ⇒ ∆ q (q1, q2) = ∆q

R2 416 ⇒ ∆ q (q1, q2) = ∆q ⇒ τq (q1,∆q) = q2

R3 R1 & R2 ⇒ ∆ q (q1, q2) = ∆q ⇐⇒ τq (q1,∆q) = q2
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Theorem 420 If ψ is a pitch system and ∆q1 and ∆q2 are chromamorph intervals in ψ and q is a chro-

mamorph in ψ then

(τq (q,∆q1) = τq (q,∆q2)) ⇒ (∆q1 = ∆q2)

Proof

R1 Let τq (q,∆q1) = q1

R2 Let τq (q,∆q2) = q2

R3 R1 & 417 ⇒ q1 = [τc (c (q) ,∆ c (∆q1)) , τm (m (q) ,∆ m (∆q1))]

R4 R2 & 417 ⇒ q1 = [τc (c (q) ,∆ c (∆q2)) , τm (m (q) ,∆ m (∆q2))]

R5 Let τq (q,∆q1) = τq (q,∆q2)

R6 R1, R2 & R5 ⇒ q1 = q2

R7 R3, R4 & R6 ⇒ τc (c (q) ,∆ c (∆q1)) = τc (c (q) ,∆ c (∆q2))

R8 R3, R4 & R6 ⇒ τm (m (q) ,∆ m (∆q1)) = τm (m (q) ,∆ m (∆q2))

R9 R7 & 410 ⇒ ∆ c (∆q1) = ∆ c (∆q2)

R10 R8 & 415 ⇒ ∆ m (∆q1) = ∆ m (∆q2)

R11 305 ⇒ ∆q1 = [∆ c (∆q1) ,∆ m (∆q1)]

R12 305 ⇒ ∆q2 = [∆ c (∆q2) ,∆ m (∆q2)]

R13 R9, R10, R11 & R12 ⇒ ∆q1 = ∆q2

R14 R1 to R13 ⇒ (τq (q,∆q1) = τq (q,∆q2)) ⇒ (∆q1 = ∆q2)

4.5.4 Transposing a genus

Definition 421 (Genus transposition function) If ψ is a pitch system and g1 and g2 are genera in ψ

and ∆g is a genus interval in ψ then the genus transposition function is defined as follows:

∆ g (g1, g2) = ∆g ⇒ τg (g1,∆g) = g2

Theorem 422 (Formula for genus transposition function) If

ψ = [µc, µm, f0, pc,0]

is a pitch system and g is a genus in ψ and ∆g is a genus interval in ψ then

τg (g,∆g) = [gc (g) + ∆ gc (∆g)− µc × ((m (g) + ∆ m (∆g)) div µm) , τm (m (g) ,∆ m (∆g))]
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Proof

R1 Let ∆g = ∆ g (g, g2)

R2 421 & R1 ⇒ τg (g,∆g) = g2

R3 231 ⇒ ∆ g (g, g2) = [∆ gc (g, g2) ,∆ m (g, g2)]

R4 230 ⇒ ∆ gc (g, g2) = gc (g2)− gc (g)− µc × ((m (g2)−m (g)) div µm)

R5 228 ⇒ ∆ m (g, g2) = ∆ m (m (g) ,m (g2))

R6 R1 & 309 ⇒ ∆ gc (∆g) = ∆ gc (g, g2)

R7 R4 & R6 ⇒ ∆ gc (∆g) = gc (g2)− gc (g)− µc × ((m (g2)−m (g)) div µm)

R8 315 & R1 ⇒ ∆ m (∆g) = ∆ m (g, g2)

R9 R5 & R8 ⇒ ∆ m (∆g) = ∆ m (m (g) ,m (g2))

R10 R9 & 217 ⇒ ∆ m (∆g) = (m (g2)−m (g)) mod µm

R11 R10, 43, 77 & 218 ⇒ m (g2) = (m (g) + ∆ m (∆g)) mod µm

R12 R7 & R11 ⇒ gc (g2) = ∆ gc (∆g) + gc (g)

+µc × (((m (g) + ∆ m (∆g)) mod µm −m (g)) div µm)

R13 R12 & 51 ⇒ ((m (g) + ∆ m (∆g)) mod µm −m (g)) div µm

= int
(

∆m(∆g)
µm

)

− ((m (g) + ∆ m (∆g)) div µm)

R14 218 ⇒ int
(

∆m(∆g)
µm

)

= 0

R15 R13 & R14 ⇒ ((m (g) + ∆ m (∆g)) mod µm −m (g)) div µm

= − ((m (g) + ∆ m (∆g)) div µm)

R16 R12 & R15 ⇒ gc (g2) = gc (g) + ∆ gc (∆g)− µc × ((m (g) + ∆ m (∆g)) div µm)

R17 R11 & 412 ⇒ m (g2) = τm (m (g) ,∆ m (∆g))

R18 R2, R16, R17 & 118 ⇒ τg (g,∆g) =







gc (g) + ∆ gc (∆g)

−µc × ((m (g) + ∆ m (∆g)) div µm) ,

τm (m (g) ,∆ m (∆g))






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Theorem 423 If ψ is a pitch system and g1 and g2 are genera in ψ and ∆g is a genus interval in ψ then

τg (g1,∆g) = g2 ⇒ ∆ g (g1, g2) = ∆g

Proof

R1 Let τg (g1,∆g) = g2

R2 R1 & 422 ⇒ g2 =

[

gc (g1) + ∆ gc (∆g)− µc × ((m (g1) + ∆ m (∆g)) div µm) ,

τm (m (g1) ,∆ m (∆g))

]

R3 231 ⇒ ∆ g (g1, g2) = [∆ gc (g1, g2) ,∆ m (g1, g2)]

R4 230 ⇒ ∆ gc (g1, g2) = gc (g2)− gc (g1)− µc × ((m (g2)−m (g1)) div µm)

R5 R2 & 115 ⇒ gc (g2) = gc (g1) + ∆ gc (∆g)− µc × ((m (g1) + ∆ m (∆g)) div µm)

R6 R4 & R5 ⇒ ∆ gc (g1, g2) = gc (g1) + ∆ gc (∆g)− µc × ((m (g1) + ∆ m (∆g)) div µm)

− gc (g1)− µc × ((m (g2)−m (g1)) div µm)

= ∆ gc (∆g)− µc × ((m (g) + ∆ m (∆g)) div µm + (m (g2)−m (g1)) div µm)

R7 R2 & 117 ⇒ m (g2) = τm (m (g1) ,∆ m (∆g))

R8 R7 & 412 ⇒ m (g2) = (m (g1) + ∆ m (∆g)) mod µm

R9 R8 ⇒ (m (g2)−m (g1)) div µm = ((m (g1) + ∆ m (∆g)) mod µm −m (g1)) div µm

R10 R9 & 51 ⇒ (m (g2)−m (g1)) div µm = int
(

∆m(∆g)
µm

)

− ((m (g1) + ∆ m (∆g)) div µm)

R11 218 ⇒ int
(

∆m(∆g)
µm

)

= 0

R12 R10 & R11 ⇒ (m (g2)−m (g1)) div µm = − ((m (g1) + ∆ m (∆g)) div µm)

R13 R6 & R12 ⇒ ∆ gc (g1, g2) = ∆ gc (∆g)− µc ×

(

(m (g) + ∆ m (∆g)) div µm

− ((m (g1) + ∆ m (∆g)) div µm)

)

= ∆ gc (∆g)

R14 228 ⇒ ∆ m (g1, g2) = ∆ m (m (g1) ,m (g2))

R15 R14 & 217 ⇒ ∆ m (g1, g2) = (m (g2)−m (g1)) mod µm

R16 R8 & R15 ⇒ ∆ m (g1, g2) = ((m (g1) + ∆ m (∆g)) mod µm −m (g1)) mod µm
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R17 R16 & 38 ⇒ ∆ m (g1, g2) = (m (g1) + ∆ m (∆g)−m (g1)) mod µm

= ∆ m (∆g) mod µm

R18 R17, 44 & 218 ⇒ ∆ m (g1, g2) = ∆ m (∆g)

R19 R3, R13 & R18 ⇒ ∆ g (g1, g2) = [∆ gc (∆g) ,∆ m (∆g)]

R20 R19 & 318 ⇒ ∆ g (g1, g2) = ∆g

R21 R1 to R20 ⇒ τg (g1,∆g) = g2 ⇒ ∆ g (g1, g2) = ∆g

Theorem 424 If ψ is a pitch system and g1 and g2 are genera in ψ and ∆g is a genus interval in ψ then

τg (g1,∆g) = g2 ⇐⇒ ∆ g (g1, g2) = ∆g

Proof

R1 423 ⇒ τg (g1,∆g) = g2 ⇒ ∆ g (g1, g2) = ∆g

R2 421 ⇒ ∆ g (g1, g2) = ∆g ⇒ τg (g1,∆g) = g2

R3 R1 & R2 ⇒ τg (g1,∆g) = g2 ⇐⇒ ∆ g (g1, g2) = ∆g

Theorem 425 If ψ is a pitch system and ∆g1 and ∆g2 are genus intervals in ψ and g is a genus in ψ then

(τg (g,∆g1) = τg (g,∆g2)) ⇒ (∆g1 = ∆g2)

Proof

R1 Let τg (g,∆g1) = g2

R2 Let τg (g,∆g2) = g2

R3 R1 & 423 ⇒ ∆ g (g, g2) = ∆g1

R4 R2 & 423 ⇒ ∆ g (g, g2) = ∆g2

R5 R3 & R4 ⇒ ∆g1 = ∆g2

R6 R1 to R5 ⇒ (τg (g,∆g1) = τg (g,∆g2)) ⇒ (∆g1 = ∆g2)

4.5.5 Transposing a chromatic pitch

Definition 426 (Definition of τpc (pc,∆pc)) If ψ is a pitch system and pc,1 and pc,2 are chromatic pitches

in ψ and ∆pc is a chromatic pitch interval in ψ then

∆pc = ∆ pc (pc,1, pc,2) ⇒ τpc (pc,1,∆pc) = pc,2
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Theorem 427 (Formula for τpc (pc,∆pc)) If ψ is a pitch system and pc is a chromatic pitch in ψ and ∆pc

is a chromatic pitch interval in ψ then

τpc (pc,∆pc) = pc + ∆pc

Proof

R1 Let ∆ pc (pc, pc,2) = ∆pc

R2 R1 & 426 ⇒ τpc (pc,∆pc) = pc,2

R3 R1 & 236 ⇒ ∆pc = pc,2 − pc

⇒ pc,2 = pc + ∆pc

R4 R2 & R3 ⇒ τpc (pc,∆pc) = pc + ∆pc

Theorem 428 If ψ is a pitch system and pc,1 and pc,2 are chromatic pitches in ψ and ∆pc is a chromatic

pitch interval in ψ then

τpc (pc,1,∆pc) = pc,2 ⇒ ∆pc = ∆ pc (pc,1, pc,2)

Proof

R1 Let τpc (pc,1,∆pc) = pc,2

R2 R1 & 427 ⇒ pc,2 = pc,1 + ∆pc

⇒ ∆pc = pc,2 − pc,1

R3 236 ⇒ ∆ pc (pc,1, pc,2) = pc,2 − pc,1

R4 R2 & R3 ⇒ ∆pc = ∆ pc (pc,1, pc,2)

R5 R1 to R4 ⇒ τpc (pc,1,∆pc) = pc,2 ⇒ ∆pc = ∆ pc (pc,1, pc,2)

Theorem 429 If ψ is a pitch system and pc,1 and pc,2 are chromatic pitches in ψ and ∆pc is a chromatic

pitch interval in ψ then

τpc (pc,1,∆pc) = pc,2 ⇐⇒ ∆pc = ∆ pc (pc,1, pc,2)

Proof

R1 426 ⇒ ∆pc = ∆ pc (pc,1, pc,2) ⇒ τpc (pc,1,∆pc) = pc,2

R2 428 ⇒ τpc (pc,1,∆pc) = pc,2 ⇒ ∆pc = ∆ pc (pc,1, pc,2)

R3 R1 & R2 ⇒ τpc (pc,1,∆pc) = pc,2 ⇐⇒ ∆pc = ∆ pc (pc,1, pc,2)
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Theorem 430 If ψ is a pitch system and ∆pc,1 and ∆pc,2 are chromatic pitch intervals in ψ and pc is a

chromatic pitch in ψ then

(τpc (pc,∆pc,1) = τpc (pc,∆pc,2)) ⇒ (∆pc,1 = ∆pc,2)

Proof

R1 427 ⇒ τpc (pc,∆pc,1) = pc + ∆pc,1

R2 427 ⇒ τpc (pc,∆pc,2) = pc + ∆pc,2

R3 R1 & R2 ⇒ (τpc (pc,∆pc,1) = τpc (pc,∆pc,2)) ⇒ (pc + ∆pc,2 = pc + ∆pc,1)

⇒ (∆pc,2 = ∆pc,1)

4.5.6 Transposing a morphetic pitch

Definition 431 (Definition of τpm (pm,∆pm)) If ψ is a pitch system and pm,1 and pm,2 are morphetic

pitches in ψ and ∆pm is a morphetic pitch interval in ψ then

∆pm = ∆ pm (pm,1, pm,2) ⇒ τpm (pm,1,∆pm) = pm,2

Theorem 432 (Formula for τpm (pm,∆pm)) If ψ is a pitch system and pm is a morphetic pitch in ψ and

∆pm is a morphetic pitch interval in ψ then

τpm (pm,∆pm) = pm + ∆pm

Proof

R1 Let ∆ pm (pm, pm,2) = ∆pm

R2 R1 & 431 ⇒ τpm (pm,∆pm) = pm,2

R3 R1 & 240 ⇒ ∆pm = pm,2 − pm

⇒ pm,2 = pm + ∆pm

R4 R2 & R3 ⇒ τpm (pm,∆pm) = pm + ∆pm

Theorem 433 If ψ is a pitch system and pm,1 and pm,2 are morphetic pitches in ψ and ∆pm is a morphetic

pitch interval in ψ then

τpm (pm,1,∆pm) = pm,2 ⇒ ∆pm = ∆ pm (pm,1, pm,2)
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Proof

R1 Let τpm (pm,1,∆pm) = pm,2

R2 R1 & 432 ⇒ pm,2 = pm,1 + ∆pm

⇒ ∆pm = pm,2 − pm,1

R3 240 ⇒ ∆ pm (pm,1, pm,2) = pm,2 − pm,1

R4 R2 & R3 ⇒ ∆pm = ∆ pm (pm,1, pm,2)

R5 R1 to R4 ⇒ τpm (pm,1,∆pm) = pm,2 ⇒ ∆pm = ∆ pm (pm,1, pm,2)

Theorem 434 If ψ is a pitch system and pm,1 and pm,2 are morphetic pitches in ψ and ∆pm is a morphetic

pitch interval in ψ then

τpm (pm,1,∆pm) = pm,2 ⇐⇒ ∆pm = ∆ pm (pm,1, pm,2)

Proof

R1 431 ⇒ ∆pm = ∆ pm (pm,1, pm,2) ⇒ τpm (pm,1,∆pm) = pm,2

R2 433 ⇒ τpm (pm,1,∆pm) = pm,2 ⇒ ∆pm = ∆ pm (pm,1, pm,2)

R3 R1 & R2 ⇒ τpm (pm,1,∆pm) = pm,2 ⇐⇒ ∆pm = ∆ pm (pm,1, pm,2)

Theorem 435 If ψ is a pitch system and ∆pm,1 and ∆pm,2 are morphetic pitch intervals in ψ and pm is a

morphetic pitch in ψ then

(τpm (pm,∆pm,1) = τpm (pm,∆pm,2)) ⇒ (∆pm,1 = ∆pm,2)

Proof

R1 432 ⇒ τpm (pm,∆pm,1) = pm + ∆pm,1

R2 432 ⇒ τpm (pm,∆pm,2) = pm + ∆pm,2

R3 R1 & R2 ⇒ (τpm (pm,∆pm,1) = τpm (pm,∆pm,2)) ⇒ (pm + ∆pm,2 = pm + ∆pm,1)

⇒ (∆pm,2 = ∆pm,1)

4.5.7 Transposing a frequency

Definition 436 (Definition of τf (f,∆f)) If ψ is a pitch system and f1 and f2 are frequencies in ψ and

∆f is a frequency interval in ψ then

∆f = ∆ f (f1, f2) ⇒ τf (f1,∆f) = f2
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Theorem 437 (Formula for τf (f,∆f)) If ψ is a pitch system and f is a frequency in ψ and ∆f is a

frequency interval in ψ then

τf (f,∆f) = f ×∆f

Proof

R1 Let ∆ f (f, f2) = ∆f

R2 R1 & 436 ⇒ τf (f,∆f) = f2

R3 R1 & 242 ⇒ ∆f = f2

f

⇒ f2 = f ×∆f

R4 R2 & R3 ⇒ τf (f,∆f) = f ×∆f

Theorem 438 If ψ is a pitch system and f1 and f2 are frequencies in ψ and ∆f is a frequency interval in

ψ then

τf (f1,∆f) = f2 ⇒ ∆f = ∆ f (f1, f2)

Proof

R1 Let τf (f1,∆f) = f2

R2 R1 & 437 ⇒ f2 = f1 ×∆f

⇒ ∆f = f2

f1

R3 242 ⇒ ∆ f (f1, f2) = f2

f1

R4 R2 & R3 ⇒ ∆f = ∆ f (f1, f2)

R5 R1 to R4 ⇒ τf (f1,∆f) = f2 ⇒ ∆f = ∆ f (f1, f2)

Theorem 439 If ψ is a pitch system and f1 and f2 are frequencies in ψ and ∆f is a frequency interval in

ψ then

τf (f1,∆f) = f2 ⇐⇒ ∆f = ∆ f (f1, f2)

Proof

R1 436 ⇒ ∆f = ∆ f (f1, f2) ⇒ τf (f1,∆f) = f2

R2 438 ⇒ τf (f1,∆f) = f2 ⇒ ∆f = ∆ f (f1, f2)

R3 R1 & R2 ⇒ τf (f1,∆f) = f2 ⇐⇒ ∆f = ∆ f (f1, f2)
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Theorem 440 If ψ is a pitch system and ∆f1 and ∆f2 are frequency intervals in ψ and f is a frequency in

ψ then

(τf (f,∆f1) = τf (f,∆f2)) ⇒ (∆f1 = ∆f2)

Proof

R1 437 ⇒ τf (f,∆f1) = f ×∆f1

R2 437 ⇒ τf (f,∆f2) = f ×∆f2

R3 R1 & R2 ⇒ (τf (f,∆f1) = τf (f,∆f2)) ⇒ (f ×∆f2 = f ×∆f1)

⇒ (∆f2 = ∆f1)

4.5.8 Transposing a pitch

Definition 441 (Definition of τp (p,∆p)) If ψ is a pitch system and p1 and p2 are pitches in ψ and ∆p is

a pitch interval in ψ then

∆p = ∆ p (p1, p2) ⇒ τp (p1,∆p) = p2

Theorem 442 (Formula for τp (p,∆p)) If ψ is a pitch system and p is a pitch in ψ and ∆p is a pitch

interval in ψ then

τp (p,∆p) = [τpc (pc (p) ,∆ pc (∆p)) , τpm (pm (p) ,∆ pm (∆p))]
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Proof

R1 Let ∆ p (p, p2) = ∆p

R2 R1 & 441 ⇒ τp (p,∆p) = p2

R3 R1 & 265 ⇒ ∆p = [∆ pc (p, p2) ,∆ pm (p, p2)]

R4 R3 & 267 ⇒ ∆ pc (∆p) = ∆ pc (p, p2)

R5 R3 & 269 ⇒ ∆ pm (∆p) = ∆ pm (p, p2)

R6 R4 & 260 ⇒ ∆ pc (∆p) = pc (p2)− pc (p)

⇒ pc (p2) = pc (p) + ∆ pc (∆p)

R7 R6 & 427 ⇒ pc (p2) = τpc (pc (p) ,∆ pc (∆p))

R8 R5 & 262 ⇒ ∆ pm (∆p) = pm (p2)− pm (p)

⇒ pm (p2) = pm (p) + ∆ pm (∆p)

R9 R8 & 432 ⇒ pm (p2) = τpm (pm (p) ,∆ pm (∆p))

R10 R7, R9 & 65 ⇒ p2 = [τpc (pc (p) ,∆ pc (∆p)) , τpm (pm (p) ,∆ pm (∆p))]

R11 R2 & R10 ⇒ τp (p,∆p) = [τpc (pc (p) ,∆ pc (∆p)) , τpm (pm (p) ,∆ pm (∆p))]

Theorem 443 If ψ is a pitch system and p1 and p2 are pitches in ψ and ∆p is a pitch interval in ψ then

τp (p1,∆p) = p2 ⇒ ∆p = ∆ p (p1, p2)
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Proof

R1 Let τp (p1,∆p) = p2

R2 R1 & 442 ⇒ p2 = [τpc (pc (p1) ,∆ pc (∆p)) , τpm (pm (p1) ,∆ pm (∆p))]

R3 265 ⇒ ∆ p (p1, p2) = [∆ pc (p1, p2) ,∆ pm (p1, p2)]

R4 270 ⇒ ∆p = [∆ pc (∆pc) ,∆ pm (∆p)]

R5 427 ⇒ τpc (pc (p1) ,∆ p (∆p)) = pc (p1) + ∆ pc (∆p)

R6 432 ⇒ τpm (pm (p1) ,∆ p (∆p)) = pm (p1) + ∆ pm (∆p)

R7 R5 & 65 ⇒ p2 = [pc (p2) , pm (p2)]

R8 R2, R5 & R7 ⇒ pc (p2) = pc (p1) + ∆ pc (∆p)

⇒ ∆ pc (∆p) = pc (p2)− pc (p1)

R9 R8 & 236 ⇒ ∆ pc (pc (p1) , pc (p2)) = ∆ pc (∆p)

R10 R2, R6 & R7 ⇒ pm (p2) = pm (p1) + ∆ pm (∆p)

⇒ ∆ pm (∆p) = pm (p2)− pm (p1)

R11 R10 & 240 ⇒ ∆ pm (pm (p1) , pm (p2)) = ∆ pm (∆p)

R12 R4, R9 & R11 ⇒ ∆p = [∆ pc (pc (p1) , pc (p2)) ,∆ pm (pm (p1) , pm (p2))]

R13 R12, 259 & 261 ⇒ ∆p = [∆ pc (p1, p2) ,∆ pm (p1, p2)]

R14 R3 & R13 ⇒ ∆p = ∆ p (p1, p2)

R15 R1 to R14 ⇒ τp (p1,∆p) = p2 ⇒ ∆p = ∆ p (p1, p2)

Theorem 444 If ψ is a pitch system and p1 and p2 are pitches in ψ and ∆p is a pitch interval in ψ then

τp (p1,∆p) = p2 ⇐⇒ ∆p = ∆ p (p1, p2)
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Proof

R1 441 ⇒ ∆p = ∆ p (p1, p2) ⇒ τp (p1,∆p) = p2

R2 443 ⇒ τp (p1,∆p) = p2 ⇒ ∆p = ∆ p (p1, p2)

R3 R1 & R2 ⇒ τp (p1,∆p) = p2 ⇐⇒ ∆p = ∆ p (p1, p2)

Theorem 445 If ψ is a pitch system and ∆p1 and ∆p2 are pitch intervals in ψ and p is a pitch in ψ then

(τp (p,∆p1) = τp (p,∆p2)) ⇒ (∆p1 = ∆p2)

Proof

R1 Let τp (p,∆p1) = τp (p,∆p2)

R2 R1 & 443 ⇒ ∆p1 = ∆ p (p, τp (p,∆p2))

R3 R2 & 442 ⇒ ∆p1 = ∆ p (p, [τpc (pc (p) ,∆ pc (∆p2)) , τpm (pm (p) ,∆ pm (∆p2))])

R4 R3, 427 & 432 ⇒ ∆p1 = ∆ p (p, [pc (p) + ∆ pc (∆p2) , pm (p) + ∆ pm (∆p2)])

R5 R4 & 265 ⇒ ∆p1 =

[

∆ pc (p, [pc (p) + ∆ pc (∆p2) , pm (p) + ∆ pm (∆p2)]) ,

∆ pm (p, [pc (p) + ∆ pc (∆p2) , pm (p) + ∆ pm (∆p2)])

]

R6 R5, 260, 262, 63 & 64 ⇒ ∆p1 =

[

pc (p) + ∆ pc (∆p2)− pc (p) ,

pm (p) + ∆ pm (∆p2)− pm (p)

]

⇒ ∆p1 = [∆ pc (∆p2) ,∆ pm (∆p2)]

R7 270 ⇒ ∆p2 = [∆ pc (∆p2) ,∆ pm (∆p2)]

R8 R6 & R7 ⇒ ∆p1 = ∆p2

R9 R1 to R8 ⇒ (τp (p,∆p1) = τp (p,∆p2)) ⇒ (∆p1 = ∆p2)

Theorem 446 If ψ is a pitch system and p is a pitch in ψ and ∆p is a pitch interval in ψ then

τp (p,∆p) = [pc (p) + ∆ pc (∆p) , pm (p) + ∆ pm (∆p)]

Proof

R1 442 ⇒ τp (p,∆p) = [τpc (pc (p) ,∆ pc (∆p)) , τpm (pm (p) ,∆ pm (∆p))]

R2 R1, 427 & 432 ⇒ τp (p,∆p) = [pc (p) + ∆ pc (∆p) , pm (p) + ∆ pm (∆p)]
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4.6 Summation, inversion and exponentiation of MIPS intervals

4.6.1 Summation, inversion and exponentiation of chroma intervals

Summation of chroma intervals

Definition 447 (Definition of σc (∆c1,∆c2, . . . ,∆cn)) If

ψ = [µc, µm, f0, pc,0]

is a pitch system and

∆c1,∆c2, . . . ,∆cn

is a collection of chroma intervals in ψ then

σc (∆c1,∆c2, . . . ,∆cn) =

(

n
∑

k=1

∆ck

)

mod µc

Theorem 448 If ψ is a pitch system and

∆c1,∆c2, . . . ,∆cn

is a collection of chroma intervals in ψ and c is a chroma in ψ then

τc (c, σc (∆c1,∆c2, . . . ,∆cn)) = τc (. . . τc (τc (c,∆c1) ,∆c2) . . . ,∆cn)

Proof

R1 407 ⇒ τc (. . . τc (τc (c,∆c1) ,∆c2) . . . ,∆cn)

= τc (. . . τc ((c+ ∆c1) mod µc,∆c2) . . . ,∆cn)

= (. . . ((c+ ∆c1) mod µc + ∆c2) mod µc . . .+ ∆cn) mod µc

R2 R1 & 38 ⇒ τc (. . . τc (τc (c,∆c1) ,∆c2) . . . ,∆cn)

= (c+ ∆c1 + ∆c2 + . . .+ ∆cn) mod µc

= (c+
∑n

k=1 ∆ck) mod µc

R3 R2 & 38 ⇒ τc (. . . τc (τc (c,∆c1) ,∆c2) . . . ,∆cn)

= (c+ (
∑n

k=1 ∆ck) mod µc) mod µc

R4 R3 & 447 ⇒ τc (. . . τc (τc (c,∆c1) ,∆c2) . . . ,∆cn)

= (c+ σc (∆c1,∆c2, . . . ,∆cn)) mod µc

R5 R4 & 407 ⇒ τc (. . . τc (τc (c,∆c1) ,∆c2) . . . ,∆cn)

= τc (c, σc (∆c1,∆c2, . . . ,∆cn))
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Inversion of chroma intervals

Definition 449 (Definition of ιc (∆c)) If ψ is a pitch system and ∆c is a chroma interval in ψ and c is a

chroma in ψ then ιc (∆c) is the chroma interval that satisfies the following equation

τc (τc (c,∆c) , ιc (∆c)) = c

Definition 450 (Inversional equivalence of chroma intervals) If ψ is a pitch system and ∆c1 and ∆c2

are chroma intervals in ψ then ∆c1 and ∆c2 are inversionally equivalent if and only if

(ιc (∆c1) = ∆c2) ∨ (∆c1 = ∆c2)

The fact that two chroma intervals are inversionally equivalent is denoted as follows:

∆c1 ≡ι ∆c2

Theorem 451 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆c is a chroma interval in ψ and c is a chroma in ψ then

ιc (∆c) = (−∆c) mod µc

Proof

R1 449 ⇒ τc (τc (c,∆c) , ιc (∆c)) = c

R2 407 ⇒ τc (τc (c,∆c) , (−∆c) mod µc)

= τc ((c+ ∆c) mod µc, (−∆c) mod µc)

= ((c+ ∆c) mod µc + (−∆c) mod µc) mod µc

R3 R2 &34 ⇒ τc (τc (c,∆c) , (−∆c) mod µc)

= (c+ ∆c−∆c) mod µc

= c mod µc

R4 72 ⇒ (0 ≤ c < µc) ∧ (c ∈ Z)

R5 R3, R4 & 44 ⇒ τc (τc (c,∆c) , (−∆c) mod µc) = c

R6 R5 & R1 ⇒ τc (τc (c,∆c) , (−∆c) mod µc) = τc (τc (c,∆c) , ιc (∆c))

R7 R6 & 410 ⇒ ιc (∆c) = (−∆c) mod µc

Theorem 452 If ψ is a pitch system and ∆c, ∆c1 and ∆c2 are chroma intervals in ψ then

(∆c1 = ιc (∆c)) ∧ (∆c2 = ιc (∆c)) ⇒ (∆c1 = ∆c2)
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Proof

R1 Let ∆c1 = ιc (∆c)

R2 Let ∆c2 = ιc (∆c)

R3 R1 & 449 ⇒ τc (τc (c,∆c) ,∆c1) = c

R4 R2 & 449 ⇒ τc (τc (c,∆c) ,∆c2) = c

R5 R3 & R4 ⇒ τc (τc (c,∆c) ,∆c1) = τc (τc (c,∆c) ,∆c2)

R6 R5 & 410 ⇒ ∆c1 = ∆c2

R7 R1 to R6 ⇒ (∆c1 = ιc (∆c)) ∧ (∆c2 = ιc (∆c)) ⇒ (∆c1 = ∆c2)

Exponentiation of chroma intervals

Definition 453 (Definition of εc,n (∆c)) Given that:

1. ψ is a pitch system;

2. c is a chroma in ψ;

3. ∆c is a chroma interval in ψ;

4. n is an integer;

5. k is an integer and 1 ≤ k ≤ abs (n);

6. ∆c1,k = ∆c for all k; and

7. ∆c2,k = ιc (∆c) for all k;

then εc,n (∆c) is any chroma interval that satisfies the following equation:

τc (c, εc,n (∆c)) =











τc (c, σc (∆c1,1,∆c1,2, . . .∆c1,n))

c

τc (c, σc (∆c2,1,∆c2,2, . . .∆c2,−n))

if

if

if

n > 0

n = 0

n < 0

Theorem 454 (Formula for εc,n (∆c)) If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆c is a chroma interval in ψ and n is an integer then

εc,n (∆c) = (n×∆c) mod µc
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Proof

R1 Let n ∈ Z

R2 Let (1 ≤ k ≤ abs (n)) ∧ (k ∈ Z)

R3 Let ∆c1,k = ∆c for all k

R4 Let ∆c2,k = ιc (∆c) for all k

R5 R1 to R4 & 453 ⇒ τc (c, εc,n (∆c)) =











τc (c, σc (∆c1,1,∆c1,2, . . .∆c1,n))

c

τc (c, σc (∆c2,1,∆c2,2, . . .∆c2,−n))

if

if

if

n > 0

n = 0

n < 0

R6 447 ⇒ σc (∆c1,1,∆c1,2, . . .∆c1,n) = (
∑n

k=1 ∆c1,k) mod µc

R7 R3 & R6 ⇒ σc (∆c1,1,∆c1,2, . . .∆c1,n) = (
∑n

k=1 ∆c) mod µc = (n×∆c) mod µc

R8 R5 & R7 ⇒ τc (c, εc,n (∆c)) = τc (c, (n×∆c) mod µc) when n > 0

R9 407 ⇒ τc (c, (0×∆c) mod µc) = (c+ 0) mod µc = c mod µc

R10 72 ⇒ (0 ≤ c < µc) ∧ (c ∈ Z)

R11 R9, R10 & 44 ⇒ τc (c, (n×∆c) mod µc) = c when n = 0

R12 R5 & R11 ⇒ τc (c, εc,n (∆c)) = τc (c, (n×∆c) mod µc) when n = 0

R13 447 ⇒ σc (∆c2,1,∆c2,2, . . .∆c2,−n) =
(

∑−n
k=1 ∆c2,k

)

mod µc

R14 R4 & R13 ⇒ σc (∆c2,1,∆c2,2, . . .∆c2,−n) =
(

∑−n
k=1 ιc (∆c)

)

mod µc

= (−n× ιc (∆c)) mod µc

R15 R14 & 451 ⇒ σc (∆c2,1,∆c2,2, . . .∆c2,−n) = (−n× ((−∆c) mod µc)) mod µc

R16 R15 & 45 ⇒ σc (∆c2,1,∆c2,2, . . .∆c2,−n) = (−n× (−∆c)) mod µc

= (n×∆c) mod µc

R17 R5 & R16 ⇒ τc (c, εc,n (∆c)) = τc (c, (n×∆c) mod µc) when n < 0

R18 R8, R12 & R17 ⇒ τc (c, εc,n (∆c)) = τc (c, (n×∆c) mod µc) for all n ∈ Z

R19 R18 & 410 ⇒ εc,n (∆c) = (n×∆c) mod µc for all n ∈ Z
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Theorem 455 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆c is any chroma interval in ψ then

ιc (∆c) = εc,−1 (∆c)

Proof

R1 454 ⇒ εc,−1 (∆c) = (−1×∆c) mod µc

R2 451 ⇒ ιc (∆c) = (−∆c) mod µc

R3 R1 & R2 ⇒ ιc (∆c) = εc,−1 (∆c)

Theorem 456 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n1, n2, . . . nk is a collection of integers and ∆c is a chroma interval in ψ then

εc,nk
(. . . εc,n2 (εc,n1 (∆c)) . . .) = εc,

∏

k
j=1 nj

(∆c)
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Proof

R1
∏1

j=1 nj = n1

R2 R1 ⇒ εc,n1 (∆c) = εc,
∏

1
j=1 nj

(∆c)

R3 R2 ⇒ εc,nk
(. . . εc,n2 (εc,n1 (∆c)) . . .) = εc,

∏

k
j=1 nj

(∆c) for k = 1.

R4 453 ⇒





εc,nk
(. . . εc,n2 (εc,n1 (∆c)) . . .) = εc,

∏k
j=1 nj

(∆c)

⇒ εc,nk+1
(εc,nk

(. . . εc,n2 (εc,n1 (∆c)) . . .)) = εc,nk+1

(

εc,
∏

k
j=1 nj

(∆c)
)





R5 454 ⇒

εc,nk+1

(

εc,
∏k

j=1 nj
(∆c)

)

= εc,nk+1

((

∏k
j=1 nj ×∆c

)

mod µc

)

=
(

nk+1 ×
((

∏k
j=1 nj ×∆c

)

mod µc

))

mod µc

R6 R5 & 45 ⇒

εc,nk+1

(

εc,
∏k

j=1 nj
(∆c)

)

=
(

nk+1 ×
∏k

j=1 nj ×∆c
)

mod µc

=
(

∏k+1
j=1 nj ×∆c

)

mod µc

R7 454 ⇒ εc,
∏k+1

j=1 nj
(∆c) =

(

∏k+1
j=1 nj ×∆c

)

mod µc

R8 R6 & R7 ⇒ εc,
∏k+1

j=1 nj
(∆c) = εc,nk+1

(

εc,
∏k

j=1 nj
(∆c)

)

R9 R4 & R8 ⇒

(

εc,nk
(. . . εc,n2 (εc,n1 (∆c)) . . .) = εc,

∏

k
j=1 nj

(∆c)

⇒ εc,nk+1
(εc,nk

(. . . εc,n2 (εc,n1 (∆c)) . . .)) = εc,
∏k+1

j=1 nj
(∆c)

)

R10 R3 & R9 ⇒ εc,nk
(. . . εc,n2 (εc,n1 (∆c)) . . .) = εc,

∏

k
j=1 nj

(∆c) for all k ∈ Z, k > 0.

Theorem 457 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n is an integer and ∆c is a chroma interval in ψ then

ιc (εc,n (∆c)) = εc,−n (∆c)

Proof

R1 455 ⇒ ιc (∆c) = εc,−1 (∆c)

R2 R1 ⇒ ιc (εc,n (∆c)) = εc,−1 (εc,n (∆c))

R3 R2 & 456 ⇒ ιc (εc,n (∆c)) = εc,(−1×n) (∆c) = εc,−n (∆c)

Theorem 458 If

ψ = [µc, µm, f0, pc,0]
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is a pitch system, n1, n2, . . . nk is a collection of integers and ∆c is a chroma interval in ψ then

σc (εc,n1 (∆c) , εc,n2 (∆c) , . . . , εc,nk
(∆c)) = εc,

∑

k
j=1 nj

(∆c)

Proof

R1 Let y = σc (εc,n1 (∆c) , εc,n2 (∆c) , . . . , εc,nk
(∆c))

R2 R1 & 447 ⇒ y =
(

∑k
j=1 εc,nj (∆c)

)

mod µc

R3 R2 & 454 ⇒ y =
(

∑k
j=1 ((nj ×∆c) mod µc)

)

mod µc

R4 R3 & 39 ⇒ y =
((

∑k
j=1 nj

)

×∆c
)

mod µc

R5 454 ⇒ εc,
∑k

j=1 nj
(∆c) =

((

∑k
j=1 nj

)

×∆c
)

mod µc

R6 R1, R4 & R5 ⇒ σc (εc,n1 (∆c) , εc,n2 (∆c) , . . . , εc,nk
(∆c)) = εc,

∑k
j=1 nj

(∆c)

Exponentiation of the chroma tranposition function

Definition 459 (Definition of τc,n (c,∆c)) If ψ is a pitch system and c is a chroma in ψ and ∆c is a

chroma interval in ψ then

τc,n (c,∆c) = τc (c, εc,n (∆c))

Theorem 460 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n1, n2, . . . , nk is a collection of integers, c is a chroma in ψ and ∆c is a chroma interval

in ψ then

τc,nk
(. . . τc,n2 (τc,n1 (c,∆c) ,∆c) . . . ,∆c) = τc,

∑

k
j=1 nj

(c,∆c)
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Proof

R1 Let z = τc,nk
(. . . τc,n2 (τc,n1 (c,∆c) ,∆c) . . . ,∆c)

R2 Let y = τc,
∑k

j=1 nj
(c,∆c)

R3 R1 & 459 ⇒ z = τc (. . . τc (τc (c, εc,n1 (∆c)) , εc,n2 (∆c)) . . . , εc,nk
(∆c))

R4 R3 & 454 ⇒ z = τc (. . . τc (τc (c, (n1 ×∆c) mod µc) , (n2 ×∆c) mod µc) . . . , (nk ×∆c) mod µc)

R5 R4 & 407 ⇒ z =

(

. . . ((c+ (n1 ×∆c) mod µc) mod µc + (n2 ×∆c) mod µc) mod µc . . .

+ (nk ×∆c) mod µc

)

mod µc

R6 R5 & 38 ⇒ z = (c+ n1 ×∆c+ n2 ×∆c+ . . .+ nk ×∆c) mod µc

= (c+ (n1 + n2 + . . .+ nk)×∆c) mod µc

=
(

c+
(

∑k
j=1 nj

)

×∆c
)

mod µc

R7 R2 & 459 ⇒ y = τc
(

c, εc,
∑k

j=1 nj
(∆c)

)

R8 R7 & 407 ⇒ y =
(

c+ εc,
∑k

j=1 nj
(∆c)

)

mod µc

R9 R8 & 454 ⇒ y =
(

c+
((

∑k
j=1 nj

)

×∆c
)

mod µc

)

mod µc

R10 R9 & 38 ⇒ y =
(

c+
(

∑k
j=1 nj

)

×∆c
)

mod µc

R11 R6 & R10 ⇒ y = z

R12 R1, R2 & R11 ⇒ τc,nk
(. . . τc,n2 (τc,n1 (c,∆c) ,∆c) . . . ,∆c) = τc,

∑

k
j=1 nj

(c,∆c)

4.6.2 Summation, inversion and exponentiation of morph intervals

Summation of morph intervals

Definition 461 (Definition of σm (∆m1,∆m2, . . . ,∆mn)) If

ψ = [µc, µm, f0, pc,0]

is a pitch system and

∆m1,∆m2, . . . ,∆mn

is a collection of morph intervals in ψ then

σm (∆m1,∆m2, . . . ,∆mn) =

(

n
∑

k=1

∆mk

)

mod µm
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Theorem 462 If ψ is a pitch system and

∆m1,∆m2, . . . ,∆mn

is a collection of morph intervals in ψ and m is a morph in ψ then

τm (m,σm (∆m1,∆m2, . . . ,∆mn)) = τm (. . . τm (τm (m,∆m1) ,∆m2) . . . ,∆mn)

Proof

R1 412 ⇒ τm (. . . τm (τm (m,∆m1) ,∆m2) . . . ,∆mn)

= τm (. . . τm ((m+ ∆m1) mod µm,∆m2) . . . ,∆mn)

= (. . . ((m+ ∆m1) mod µm + ∆m2) mod µm . . .+ ∆mn) mod µm

R2 R1 & 38 ⇒ τm (. . . τm (τm (m,∆m1) ,∆m2) . . . ,∆mn)

= (m+ ∆m1 + ∆m2 + . . .+ ∆mn) mod µm

= (m+
∑n

k=1 ∆mk) mod µm

R3 R2 & 38 ⇒ τm (. . . τm (τm (m,∆m1) ,∆m2) . . . ,∆mn)

= (m+ (
∑n

k=1 ∆mk) mod µm) mod µm

R4 R3 & 461 ⇒ τm (. . . τm (τm (m,∆m1) ,∆m2) . . . ,∆mn)

= (m+ σm (∆m1,∆m2, . . . ,∆mn)) mod µm

R5 R4 & 412 ⇒ τm (. . . τm (τm (m,∆m1) ,∆m2) . . . ,∆mn)

= τm (m,σm (∆m1,∆m2, . . . ,∆mn))

Inversion of morph intervals

Definition 463 (Definition of ιm (∆m)) If ψ is a pitch system and ∆m is a morph interval in ψ and m

is a morph in ψ then ιm (∆m) is the morph interval that satisfies the following equation

τm (τm (m,∆m) , ιm (∆m)) = m

Definition 464 (Inversional equivalence of morph intervals) If ψ is a pitch system and ∆m1 and

∆m2 are morph intervals in ψ then ∆m1 and ∆m2 are inversionally equivalent if and only if

(ιm (∆m1) = ∆m2) ∨ (∆m1 = ∆m2)

The fact that two morph intervals are inversionally equivalent is denoted as follows:

∆m1 ≡ι ∆m2
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Theorem 465 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆m is a morph interval in ψ and m is a morph in ψ then

ιm (∆m) = (−∆m) mod µm

Proof

R1 463 ⇒ τm (τm (m,∆m) , ιm (∆m)) = m

R2 412 ⇒ τm (τm (m,∆m) , (−∆m) mod µm)

= τm ((m+ ∆m) mod µm, (−∆m) mod µm)

= ((m+ ∆m) mod µm + (−∆m) mod µm) mod µm

R3 R2 &34 ⇒ τm (τm (m,∆m) , (−∆m) mod µm)

= (m+ ∆m−∆m) mod µm

= m mod µm

R4 77 ⇒ (0 ≤ m < µm) ∧ (m ∈ Z)

R5 R3, R4 & 44 ⇒ τm (τm (m,∆m) , (−∆m) mod µm) = m

R6 R5 & R1 ⇒ τm (τm (m,∆m) , (−∆m) mod µm) = τm (τm (m,∆m) , ιm (∆m))

R7 R6 & 415 ⇒ ιm (∆m) = (−∆m) mod µm

Theorem 466 If ψ is a pitch system and ∆m, ∆m1 and ∆m2 are morph intervals in ψ then

(∆m1 = ιm (∆m)) ∧ (∆m2 = ιm (∆m)) ⇒ (∆m1 = ∆m2)
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Proof

R1 Let ∆m1 = ιm (∆m)

R2 Let ∆m2 = ιm (∆m)

R3 R1 & 463 ⇒ τm (τm (m,∆m) ,∆m1) = m

R4 R2 & 463 ⇒ τm (τm (m,∆m) ,∆m2) = m

R5 R3 & R4 ⇒ τm (τm (m,∆m) ,∆m1) = τm (τm (m,∆m) ,∆m2)

R6 R5 & 415 ⇒ ∆m1 = ∆m2

R7 R1 to R6 ⇒ (∆m1 = ιm (∆m)) ∧ (∆m2 = ιm (∆m)) ⇒ (∆m1 = ∆m2)

Exponentiation of morph intervals

Definition 467 (Definition of εm,n (∆m)) Given that:

1. ψ is a pitch system;

2. m is a morph in ψ;

3. ∆m is a morph interval in ψ;

4. n is an integer;

5. k is an integer and 1 ≤ k ≤ abs (n);

6. ∆m1,k = ∆m for all k; and

7. ∆m2,k = ιm (∆m) for all k;

then εm,n (∆m) is any morph interval that satisfies the following equation:

τm (m, εm,n (∆m)) =











τm (m,σm (∆m1,1,∆m1,2, . . .∆m1,n))

m

τm (m,σm (∆m2,1,∆m2,2, . . .∆m2,−n))

if

if

if

n > 0

n = 0

n < 0

Theorem 468 (Formula for εm,n (∆m)) If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆m is a morph interval in ψ and n is an integer then

εm,n (∆m) = (n×∆m) mod µm
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Proof

R1 Let n ∈ Z

R2 Let (1 ≤ k ≤ abs (n)) ∧ (k ∈ Z)

R3 Let ∆m1,k = ∆m for all k

R4 Let ∆m2,k = ιm (∆m) for all k

R5 R1 to R4 & 467 ⇒ τm (m, εm,n (∆m)) =











τm (m,σm (∆m1,1,∆m1,2, . . .∆m1,n))

m

τm (m,σm (∆m2,1,∆m2,2, . . .∆m2,−n))

if

if

if

n > 0

n = 0

n < 0

R6 461 ⇒ σm (∆m1,1,∆m1,2, . . .∆m1,n) = (
∑n

k=1 ∆m1,k) mod µm

R7 R3 & R6 ⇒ σm (∆m1,1,∆m1,2, . . .∆m1,n) = (
∑n

k=1 ∆m) mod µm = (n×∆m) mod µm

R8 R5 & R7 ⇒ τm (m, εm,n (∆m)) = τm (m, (n×∆m) mod µm) when n > 0

R9 412 ⇒ τm (m, (0×∆m) mod µm) = (m+ 0) mod µm = m mod µm

R10 77 ⇒ (0 ≤ m < µm) ∧ (m ∈ Z)

R11 R9, R10 & 44 ⇒ τm (m, (n×∆m) mod µm) = m when n = 0

R12 R5 & R11 ⇒ τm (m, εm,n (∆m)) = τm (m, (n×∆m) mod µm) when n = 0

R13 461 ⇒ σm (∆m2,1,∆m2,2, . . .∆m2,−n) =
(

∑−n
k=1 ∆m2,k

)

mod µm

R14 R4 & R13 ⇒ σm (∆m2,1,∆m2,2, . . .∆m2,−n) =
(

∑−n
k=1 ιm (∆m)

)

mod µm

= (−n× ιm (∆m)) mod µm

R15 R14 & 465 ⇒ σm (∆m2,1,∆m2,2, . . .∆m2,−n) = (−n× ((−∆m) mod µm)) mod µm

R16 R15 & 45 ⇒ σm (∆m2,1,∆m2,2, . . .∆m2,−n) = (−n× (−∆m)) mod µm

= (n×∆m) mod µm

R17 R5 & R16 ⇒ τm (m, εm,n (∆m)) = τm (m, (n×∆m) mod µm) when n < 0

R18 R8, R12 & R17 ⇒ τm (m, εm,n (∆m)) = τm (m, (n×∆m) mod µm) for all n ∈ Z

R19 R18 & 415 ⇒ εm,n (∆m) = (n×∆m) mod µm for all n ∈ Z
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Theorem 469 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆m is any morph interval in ψ then

ιm (∆m) = εm,−1 (∆m)

Proof

R1 468 ⇒ εm,−1 (∆m) = (−1×∆m) mod µm

R2 465 ⇒ ιm (∆m) = (−∆m) mod µm

R3 R1 & R2 ⇒ ιm (∆m) = εm,−1 (∆m)

Theorem 470 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n1, n2, . . . nk is a collection of integers and ∆m is a morph interval in ψ then

εm,nk
(. . . εm,n2 (εm,n1 (∆m)) . . .) = εm,

∏

k
j=1 nj

(∆m)



CHAPTER 4. FORMAL SPECIFICATION OF MIPS 194

Proof

R1
∏1

j=1 nj = n1

R2 R1 ⇒ εm,n1 (∆m) = εm,
∏

1
j=1 nj

(∆m)

R3 R2 ⇒ εm,nk
(. . . εm,n2 (εm,n1 (∆m)) . . .) = εm,

∏

k
j=1 nj

(∆m) for k = 1.

R4 467 ⇒





εm,nk
(. . . εm,n2 (εm,n1 (∆m)) . . .) = εm,

∏k
j=1 nj

(∆m)

⇒ εm,nk+1
(εm,nk

(. . . εm,n2 (εm,n1 (∆m)) . . .)) = εm,nk+1

(

εm,
∏

k
j=1 nj

(∆m)
)





R5 468 ⇒

εm,nk+1

(

εm,
∏k

j=1 nj
(∆m)

)

= εm,nk+1

((

∏k
j=1 nj ×∆m

)

mod µm

)

=
(

nk+1 ×
((

∏k
j=1 nj ×∆m

)

mod µm

))

mod µm

R6 R5 & 45 ⇒

εm,nk+1

(

εm,
∏k

j=1 nj
(∆m)

)

=
(

nk+1 ×
∏k

j=1 nj ×∆m
)

mod µm

=
(

∏k+1
j=1 nj ×∆m

)

mod µm

R7 468 ⇒ εm,
∏k+1

j=1 nj
(∆m) =

(

∏k+1
j=1 nj ×∆m

)

mod µm

R8 R6 & R7 ⇒ εm,
∏k+1

j=1 nj
(∆m) = εm,nk+1

(

εm,
∏k

j=1 nj
(∆m)

)

R9 R4 & R8 ⇒

(

εm,nk
(. . . εm,n2 (εm,n1 (∆m)) . . .) = εm,

∏

k
j=1 nj

(∆m)

⇒ εm,nk+1
(εm,nk

(. . . εm,n2 (εm,n1 (∆m)) . . .)) = εm,
∏k+1

j=1 nj
(∆m)

)

R10 R3 & R9 ⇒ εm,nk
(. . . εm,n2 (εm,n1 (∆m)) . . .) = εm,

∏

k
j=1 nj

(∆m) for all k ∈ Z, k > 0.

Theorem 471 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n is an integer and ∆m is a morph interval in ψ then

ιm (εm,n (∆m)) = εm,−n (∆m)

Proof

R1 469 ⇒ ιm (∆m) = εm,−1 (∆m)

R2 R1 ⇒ ιm (εm,n (∆m)) = εm,−1 (εm,n (∆m))

R3 R2 & 470 ⇒ ιm (εm,n (∆m)) = εm,(−1×n) (∆m) = εm,−n (∆m)

Theorem 472 If

ψ = [µc, µm, f0, pc,0]
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is a pitch system, n1, n2, . . . nk is a collection of integers and ∆m is a morph interval in ψ then

σm (εm,n1 (∆m) , εm,n2 (∆m) , . . . , εm,nk
(∆m)) = εm,

∑

k
j=1 nj

(∆m)

Proof

R1 Let y = σm (εm,n1 (∆m) , εm,n2 (∆m) , . . . , εm,nk
(∆m))

R2 R1 & 461 ⇒ y =
(

∑k
j=1 εm,nj (∆m)

)

mod µm

R3 R2 & 468 ⇒ y =
(

∑k
j=1 ((nj ×∆m) mod µm)

)

mod µm

R4 R3 & 39 ⇒ y =
((

∑k
j=1 nj

)

×∆m
)

mod µm

R5 468 ⇒ εm,
∑k

j=1 nj
(∆m) =

((

∑k
j=1 nj

)

×∆m
)

mod µm

R6 R1, R4 & R5 ⇒ σm (εm,n1 (∆m) , εm,n2 (∆m) , . . . , εm,nk
(∆m)) = εm,

∑k
j=1 nj

(∆m)

Exponentiation of the morph tranposition function

Definition 473 (Definition of τm,n (m,∆m)) If ψ is a pitch system and m is a morph in ψ and ∆m is a

morph interval in ψ then

τm,n (m,∆m) = τm (m, εm,n (∆m))

Theorem 474 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n1, n2, . . . , nk is a collection of integers, m is a morph in ψ and ∆m is a morph interval

in ψ then

τm,nk
(. . . τm,n2 (τm,n1 (m,∆m) ,∆m) . . . ,∆m) = τm,

∑

k
j=1 nj

(m,∆m)
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Proof

R1 Let z = τm,nk
(. . . τm,n2 (τm,n1 (m,∆m) ,∆m) . . . ,∆m)

R2 Let y = τm,
∑k

j=1 nj
(m,∆m)

R3 R1 & 473 ⇒ z = τm (. . . τm (τm (m, εm,n1 (∆m)) , εm,n2 (∆m)) . . . , εm,nk
(∆m))

R4 R3 & 468 ⇒ z = τm

(

. . . τm (τm (m, (n1 ×∆m) mod µm) , (n2 ×∆m) mod µm) . . . ,

(nk ×∆m) mod µm

)

R5 R4 & 412 ⇒ z =







. . .

(

(m+ (n1 ×∆m) mod µm) mod µm

+ (n2 ×∆m) mod µm

)

mod µm . . .

+ (nk ×∆m) mod µm






mod µm

R6 R5 & 38 ⇒ z = (m+ n1 ×∆m+ n2 ×∆m+ . . .+ nk ×∆m) mod µm

= (m+ (n1 + n2 + . . .+ nk)×∆m) mod µm

=
(

m+
(

∑k
j=1 nj

)

×∆m
)

mod µm

R7 R2 & 473 ⇒ y = τm
(

m, εm,
∑

k
j=1 nj

(∆m)
)

R8 R7 & 412 ⇒ y =
(

m+ εm,
∑k

j=1 nj
(∆m)

)

mod µm

R9 R8 & 468 ⇒ y =
(

m+
((

∑k
j=1 nj

)

×∆m
)

mod µm

)

mod µm

R10 R9 & 38 ⇒ y =
(

m+
(

∑k
j=1 nj

)

×∆m
)

mod µm

R11 R6 & R10 ⇒ y = z

R12 R1, R2 & R11 ⇒ τm,nk
(. . . τm,n2 (τm,n1 (m,∆m) ,∆m) . . . ,∆m) = τm,

∑

k
j=1 nj

(m,∆m)

4.6.3 Summation, inversion and exponentiation of chromamorph intervals

Summation of chromamorph intervals

Definition 475 (Definition of σq (∆q1,∆q2, . . . ,∆qn)) If

ψ = [µc, µm, f0, pc,0]

is a pitch system and

∆q1,∆q2, . . . ,∆qn



CHAPTER 4. FORMAL SPECIFICATION OF MIPS 197

is a collection of chromamorph intervals in ψ then

σq (∆q1,∆q2, . . . ,∆qn) =

[

σc (∆ c (∆q1) ,∆ c (∆q2) , . . .∆ c (∆qn)) ,

σm (∆ m (∆q1) ,∆ m(∆q2) , . . .∆ m (∆qn))

]

Theorem 476 If ψ is a pitch system and

∆q1,∆q2, . . . ,∆qn

is a collection of chromamorph intervals in ψ and q is a chromamorph in ψ then

τq (q, σq (∆q1,∆q2, . . . ,∆qn)) = τq (. . . τq (τq (q,∆q1) ,∆q2) . . . ,∆qn)

Proof

R1 Let z = τq (q, σq (∆q1,∆q2, . . . ,∆qn))

R2 Let y = τq (. . . τq (τq (τq (q,∆q1) ,∆q2) ,∆q3) . . . ,∆qn)

R3 R1 & 475 ⇒ z = τq

(

q,

[

σc (∆ c (∆q1) ,∆ c (∆q2) , . . .∆ c (∆qn)) ,

σm (∆ m (∆q1) ,∆ m (∆q2) , . . .∆ m (∆qn))

])

R4 R2 & 417 ⇒ y = τq

(

. . . τq

(

τq

([

τc (c (q) ,∆ c (∆q1)) ,

τm (m (q) ,∆ m (∆q1))

]

,∆q2

)

,∆q3

)

. . . ,∆qn

)

= τq





















. . . τq









































τc







c

([

τc (c (q) ,∆ c (∆q1)) ,

τm (m (q) ,∆ m (∆q1))

])

,

∆ c (∆q2)






,

τm







m

([

τc (c (q) ,∆ c (∆q1)) ,

τm (m (q) ,∆ m (∆q1))

])

,

∆ m (∆q2)



























,∆q3





















. . . ,∆qn





















R5 R4, 106 & 108 ⇒ y = τq

(

. . . τq

([

τc (τc (c (q) ,∆ c (∆q1)) ,∆ c (∆q2)) ,

τm (τm (m (q) ,∆ m (∆q1)) ,∆ m (∆q2))

]

,∆q3

)

. . . ,∆qn

)

R6 R5 & 417 ⇒ y = τq















































. . .









































τc

















c

























τc

(

τc (c (q) ,∆ c (∆q1)) ,

∆ c (∆q2)

)

,

τm

(

τm (m (q) ,∆ m (∆q1)) ,

∆ m (∆q2)

)

























,

∆ c (∆q3)

















,

τm

















m

























τc

(

τc (c (q) ,∆ c (∆q1)) ,

∆ c (∆q2)

)

,

τm

(

τm (m (q) ,∆ m (∆q1)) ,

∆ m (∆q2)

)

























,

∆ m (∆q3)

























































. . . ,

∆qn















































R7 R6, 106 & 108 ⇒ y = τq

















. . .













τc

(

τc (τc (c (q) ,∆ c (∆q1)) ,∆ c (∆q2)) ,

∆ c (∆q3)

)

,

τm

(

τm (τm (m (q) ,∆ m (∆q1)) ,∆ m (∆q2)) ,

∆ m (∆q3)

)













. . . ,

∆qn
















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R8 R4 to R7, 106, 108 & 417 ⇒ y =































τc











. . . τc







τc

(

τc (c (q) ,∆ c (∆q1)) ,

∆ c (∆q2)

)

,

∆ c (∆q3)






. . . ,

∆ c (∆qn)











,

τm











. . . τm







τm

(

τm (m (q) ,∆ m (∆q1)) ,

∆ m (∆q2)

)

,

∆ m (∆q3)






. . . ,

∆ m (∆qn)









































R9 R8, 448 & 462 ⇒ y =

[

τc (c (q) , σc (∆ c (∆q1) ,∆ c (∆q2) , . . . ,∆ c (∆qn))) ,

τm (m (q) , σm (∆ m (∆q1) ,∆ m (∆q2) , . . . ,∆ m (∆qn)))

]

R10 R3 & 417 ⇒ z =













τc

(

c (q) ,∆ c

([

σc (∆ c (∆q1) ,∆ c (∆q2) , . . .∆ c (∆qn)) ,

σm (∆ m (∆q1) ,∆ m (∆q2) , . . .∆ m (∆qn))

]))

,

τm

(

m (q) ,∆ m

([

σc (∆ c (∆q1) ,∆ c (∆q2) , . . .∆ c (∆qn)) ,

σm (∆ m (∆q1) ,∆ m (∆q2) , . . .∆ m (∆qn))

]))













R11 R10, 300 & 303 ⇒ z =

[

τc (c (q) , σc (∆ c (∆q1) ,∆ c (∆q2) , . . .∆ c (∆qn))) ,

τm (m (q) , σm (∆ m (∆q1) ,∆ m (∆q2) , . . .∆ m (∆qn)))

]

R12 R1, R2, R9 & R11 ⇒ τq (q, σq (∆q1,∆q2, . . . ,∆qn)) = τq (. . . τq (τq (q,∆q1) ,∆q2) . . . ,∆qn)

Inversion of chromamorph intervals

Definition 477 (Definition of ιq (∆q)) If ψ is a pitch system and ∆q is a chromamorph interval in ψ and

q is a chromamorph in ψ then ιq (∆q) is the chromamorph interval that satisfies the following equation

τq (τq (q,∆q) , ιq (∆q)) = q

Definition 478 (Inversional equivalence of chromamorph intervals) If ψ is a pitch system and ∆q1

and ∆q2 are chromamorph intervals in ψ then ∆q1 and ∆q2 are inversionally equivalent if and only if

(ιq (∆q1) = ∆q2) ∨ (∆q1 = ∆q2)

The fact that two chromamorph intervals are inversionally equivalent is denoted as follows:

∆q1 ≡ι ∆q2

Theorem 479 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆q is a chromamorph interval in ψ then

ιq (∆q) = [ιc (∆ c (∆q)) , ιm (∆ m (∆q))]
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Proof

R1 477 ⇒ τq (τq (q,∆q) , ιq (∆q)) = q

R2 417 & R1 ⇒ q = τq ([τc (c (q) ,∆ c (∆q)) , τm (m (q) ,∆ m (∆q))] , ιq (∆q))

=

[

τc (c ([τc (c (q) ,∆ c (∆q)) , τm (m (q) ,∆ m (∆q))]) ,∆ c (ιq (∆q))) ,

τm (m ([τc (c (q) ,∆ c (∆q)) , τm (m (q) ,∆ m (∆q))]) ,∆ m (ιq (∆q)))

]

R3 R2, 106 & 108 ⇒ q =

[

τc (τc (c (q) ,∆ c (∆q)) ,∆ c (ιq (∆q))) ,

τm (τm (m (q) ,∆ m (∆q)) ,∆ m (ιq (∆q)))

]

R4 R3 & 106 ⇒ c (q) = τc (τc (c (q) ,∆ c (∆q)) ,∆ c (ιq (∆q)))

R5 R3 & 108 ⇒ m (q) = τm (τm (m (q) ,∆ m (∆q)) ,∆ m (ιq (∆q)))

R6 R4 & 449 ⇒ ∆ c (ιq (∆q)) = ιc (∆ c (∆q))

R7 R5 & 463 ⇒ ∆ m (ιq (∆q)) = ιm (∆ m (∆q))

R8 305 ⇒ ιq (∆q) = [∆ c (ιq (∆q)) ,∆ m (ιq (∆q))]

R9 R6, R7 & R8 ⇒ ιq (∆q) = [ιc (∆ c (∆q)) , ιm (∆ m (∆q))]

Theorem 480 If ψ is a pitch system and ∆q, ∆q1 and ∆q2 are chromamorph intervals in ψ then

(∆q1 = ιq (∆q)) ∧ (∆q2 = ιq (∆q)) ⇒ (∆q1 = ∆q2)

Proof

R1 Let ∆q1 = ιq (∆q)

R2 Let ∆q2 = ιq (∆q)

R3 R1 & 477 ⇒ τq (τq (q,∆q) ,∆q1) = q

R4 R2 & 477 ⇒ τq (τq (q,∆q) ,∆q2) = q

R5 R3 & R4 ⇒ τq (τq (q,∆q) ,∆q1) = τq (τq (q,∆q) ,∆q2)

R6 R5 & 420 ⇒ ∆q1 = ∆q2

R7 R1 to R6 ⇒ (∆q1 = ιq (∆q)) ∧ (∆q2 = ιq (∆q)) ⇒ (∆q1 = ∆q2)

Exponentiation of chromamorph intervals

Definition 481 (Definition of εq,n (∆q)) Given that:
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1. ψ is a pitch system;

2. q is a chromamorph in ψ;

3. ∆q is a chromamorph interval in ψ;

4. n is an integer;

5. k is an integer and 1 ≤ k ≤ abs (n);

6. ∆q1,k = ∆q for all k; and

7. ∆q2,k = ιq (∆q) for all k;

then εq,n (∆q) returns a chromamorph interval that satisfies the following equation:

τq (q, εq,n (∆q)) =











τq (q, σq (∆q1,1,∆q1,2, . . .∆q1,n))

q

τq (q, σq (∆q2,1,∆q2,2, . . .∆q2,−n))

if

if

if

n > 0

n = 0

n < 0

Theorem 482 (Formula for εq,n (∆q)) If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆q is a chromamorph interval in ψ and n is an integer then

εq,n (∆q) = [εc,n (∆ c (∆q)) , εm,n (∆ m (∆q))]
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Proof

R1 Let n ∈ Z

R2 R1 & 454 ⇒ εc,n (∆ c (∆q)) = (n×∆ c (∆q)) mod µc

R3 R1 & 468 ⇒ εm,n (∆ m (∆q)) = (n×∆ m (∆q)) mod µm

R4 Let (1 ≤ k ≤ abs (n)) ∧ (k ∈ Z)

R5 Let ∆q1,k = ∆q for all k

R6 Let ∆q2,k = ιq (∆q) for all k

R7 R1, R4, R5, R6 & 481 ⇒ τq (q, εq,n (∆q)) =











τq (q, σq (∆q1,1,∆q1,2, . . .∆q1,n))

q

τq (q, σq (∆q2,1,∆q2,2, . . .∆q2,−n))

if

if

if

n > 0

n = 0

n < 0

R8 475 ⇒ σq (∆q1,1,∆q1,2, . . .∆q1,n)

=

[

σc (∆ c (∆q1,1) ,∆ c (∆q1,2) , . . .∆ c (∆q1,n)) ,

σm (∆ m (∆q1,1) ,∆ m (∆q1,2) , . . .∆ m (∆q1,n))

]

where n > 0

R9 447, 461 & R8 ⇒ σq (∆q1,1,∆q1,2, . . .∆q1,n)

= [(
∑n

k=1 ∆ c (∆q1,k)) mod µc, (
∑n

k=1 ∆ m (∆q1,k)) mod µm] where n > 0

R10 R9 & R5 ⇒ σq (∆q1,1,∆q1,2, . . .∆q1,n)

= [(n×∆ c (∆q)) mod µc, (n×∆ m (∆q)) mod µm] where n > 0

R11 R10, 454 & 468 ⇒ σq (∆q1,1,∆q1,2, . . .∆q1,n)

= [εc,n (∆ c (∆q)) , εm,n (∆ m (∆q))] where n > 0

R12 R7 & R11 ⇒ τq (q, εq,n (∆q)) = τq (q, εc,n (∆ c (∆q)) , εm,n (∆ m (∆q))) where n > 0

R13 454 & 468 ⇒ τq (q, εc,0 (∆ c (∆q)) , εm,0 (∆ m (∆q)))

= τq (q, [(0×∆ c (∆q)) mod µc, (0×∆ m (∆q)) mod µm])

= τq (q, [0, 0])
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R14 R13, 300, 303 & 417 ⇒ τq (q, [εc,0 (∆ c (∆q)) , εm,0 (∆ m (∆q))])

= [τc (c (q) , 0) , τm (m (q) , 0)]

R15 R14, 407 & 412 ⇒ τq (q, [εc,0 (∆ c (∆q)) , εm,0 (∆ m (∆q))]) = [c (q) mod µc,m (q) mod µm]

R16 R15, 73 & 78 ⇒ τq (q, [εc,0 (∆ c (∆q)) , εm,0 (∆ m (∆q))]) = [c (q) ,m (q)]

R17 R16 & 109 ⇒ τq (q, [εc,0 (∆ c (∆q)) , εm,0 (∆ m (∆q))]) = q

R18 R7 & R17 ⇒ τq (q, εq,n (∆q)) = τq (q, [εc,n (∆ c (∆q)) , εm,n (∆ m (∆q))]) where n = 0

R19 475 ⇒ σq (∆q2,1,∆q2,2, . . .∆q2,−n)

=

[

σc (∆ c (∆q2,1) ,∆ c (∆q2,2) , . . .∆ c (∆q2,−n)) ,

σm (∆ m (∆q2,1) ,∆ m (∆q2,2) , . . .∆ m (∆q2,−n))

]

where n < 0

R20 R19, 447 & 461 ⇒ σq (∆q2,1,∆q2,2, . . .∆q2,−n)

=





(

∑−n
k=1 ∆ c (∆q2,k)

)

mod µc,
(

∑−n
k=1 ∆ m (∆q2,k)

)

mod µm



 where n < 0

R21 R6 & R20 ⇒ σq (∆q2,1,∆q2,2, . . .∆q2,−n)

=

[

(−n×∆ c (ιq (∆q))) mod µc,

(−n×∆ m (ιq (∆q))) mod µm

]

where n < 0

R22 R21, 479, 300 & 303 ⇒ σq (∆q2,1,∆q2,2, . . .∆q2,−n)

=

[

(−n× ιc (∆ c (∆q))) mod µc,

(−n× ιm (∆ m (∆q))) mod µm

]

where n < 0

R23 R22, 455 & 469 ⇒ σq (∆q2,1,∆q2,2, . . .∆q2,−n)

=

[

(−n× εc,−1 (∆ c (∆q))) mod µc,

(−n× εm,−1 (∆ m (∆q))) mod µm

]

where n < 0

R24 R23, 454 & 468 ⇒ σq (∆q2,1,∆q2,2, . . .∆q2,−n)

=

[

(−n× (−∆ c (∆q) mod µc)) mod µc,

(−n× (−∆ m (∆q) mod µm)) mod µm

]

where n < 0

R25 R24 & 45 ⇒ σq (∆q2,1,∆q2,2, . . .∆q2,−n)

= [(−n× (−∆ c (∆q))) mod µc, (−n× (−∆ m (∆q))) mod µm]

= [(n×∆ c (∆q)) mod µc, (n×∆ m (∆q)) mod µm] where n < 0
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R26 R25, 454 & 468 ⇒ σq (∆q2,1,∆q2,2, . . .∆q2,−n)

= [εc,n (∆ c (∆q)) , εm,n (∆ m (∆q))] where n < 0

R27 R26 & R7 ⇒ τq (q, εq,n (∆q)) = τq (q, [εc,n (∆ c (∆q)) , εm,n (∆ m (∆q))]) where n < 0

R28 R12, R18 & R27 ⇒ τq (q, εq,n (∆q)) = τq (q, [εc,n (∆ c (∆q)) , εm,n (∆ m (∆q))]) for all n ∈ Z

R29 R28 & 420 ⇒ εq,n (∆q) = [εc,n (∆ c (∆q)) , εm,n (∆ m (∆q))]

Theorem 483 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆q is any chromamorph interval in ψ then

ιq (∆q) = εq,−1 (∆q)

Proof

R1 479 ⇒ ιq (∆q) = [ιc (∆ c (∆q)) , ιm (∆ m (∆q))]

R2 482 ⇒ εq,−1 (∆q) = [εc,−1 (∆ c (∆q)) , εm,−1 (∆ m (∆q))]

R3 R1, 451 & 465 ⇒ ιq (∆q) = [(−∆ c (∆q)) mod µc, (−∆ m(∆q)) mod µm]

R4 R2, 454 & 468 ⇒ εq,−1 (∆q) = [(−∆ c (∆q)) mod µc, (−∆ m(∆q)) mod µm]

R5 R3 & R4 ⇒ ιq (∆q) = εq,−1 (∆q)

Theorem 484 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n1, n2, . . . nk is a collection of integers and ∆q is a chromamorph interval in ψ then

εq,nk
(. . . εq,n2 (εq,n1 (∆q)) . . .) = εq,

∏

k
j=1 nj

(∆q)

Proof

R1
∏1

j=1 nj = n1

R2 R1 ⇒ εq,n1 (∆q) = εq,
∏1

j=1 nj
(∆q)

R3 R2 ⇒ εq,nk
(. . . εq,n2 (εq,n1 (∆q)) . . .) = εq,

∏

k
j=1 nj

(∆q) when k = 1
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R4 481 ⇒





εq,nk
(. . . εq,n2 (εq,n1 (∆q)) . . .) = εq,

∏

k
j=1 nj

(∆q)

⇒ εq,nk+1
(εq,nk

(. . . εq,n2 (εq,n1 (∆q)) . . .)) = εq,nk+1

(

εq,
∏k

j=1 nj
(∆q)

)





R5 R4 & 482 ⇒









εq,nk
(. . . εq,n2 (εq,n1 (∆q)) . . .) = εq,

∏

k
j=1 nj

(∆q)

⇒ εq,nk+1
(εq,nk

(. . . εq,n2 (εq,n1 (∆q)) . . .)) = εq,nk+1

([

εc,
∏k

j=1 nj
(∆ c (∆q)) ,

εm,
∏

k
j=1 nj

(∆ m (∆q))

])









R6 R5 & 454 ⇒















εq,nk
(. . . εq,n2 (εq,n1 (∆q)) . . .) = εq,

∏k
j=1 nj

(∆q)

⇒ εq,nk+1
(εq,nk

(. . . εq,n2 (εq,n1 (∆q)) . . .))

= εq,nk+1









(

∏k
j=1 nj ×∆ c (∆q)

)

mod µc,
(

∏k
j=1 nj ×∆ m (∆q)

)

mod µm























R7 R6, 482, 300 & 303 ⇒















εq,nk
(. . . εq,n2 (εq,n1 (∆q)) . . .) = εq,

∏

k
j=1 nj

(∆q)

⇒ εq,nk+1
(εq,nk

(. . . εq,n2 (εq,n1 (∆q)) . . .))

=





εc,nk+1

((

∏k
j=1 nj ×∆ c (∆q)

)

mod µc

)

,

εm,nk+1

((

∏k
j=1 nj ×∆ m (∆q)

)

mod µm

)



















R8 R7, 454 & 468 ⇒















εq,nk
(. . . εq,n2 (εq,n1 (∆q)) . . .) = εq,

∏

k
j=1 nj

(∆q)

⇒ εq,nk+1
(εq,nk

(. . . εq,n2 (εq,n1 (∆q)) . . .)) =




(

nk+1 ×
((

∏k
j=1 nj ×∆ c (∆q)

)

mod µc

))

mod µc,
(

nk+1 ×
((

∏k
j=1 nj ×∆ m (∆q)

)

mod µm

))

mod µm



















R9 R8 & 45 ⇒



























εq,nk
(. . . εq,n2 (εq,n1 (∆q)) . . .) = εq,

∏k
j=1 nj

(∆q)

⇒ εq,nk+1
(εq,nk

(. . . εq,n2 (εq,n1 (∆q)) . . .))

=





(

nk+1 ×
∏k

j=1 nj ×∆ c (∆q)
)

mod µc,
(

nk+1 ×
∏k

j=1 nj ×∆ m (∆q)
)

mod µm





=





(

∏k+1
j=1 nj ×∆ c (∆q)

)

mod µc,
(

∏k+1
j=1 nj ×∆ m (∆q)

)

mod µm































R10 R9, 454 & 468 ⇒









εq,nk
(. . . εq,n2 (εq,n1 (∆q)) . . .) = εq,

∏

k
j=1 nj

(∆q)

⇒ εq,nk+1
(εq,nk

(. . . εq,n2 (εq,n1 (∆q)) . . .))

=
[

εc,
∏k+1

j=1 nj
(∆ c (∆q)) , εm,

∏k+1
j=1 nj

(∆ m (∆q))
]









R11 R10 & 482 ⇒

(

εq,nk
(. . . εq,n2 (εq,n1 (∆q)) . . .) = εq,

∏k
j=1 nj

(∆q)

⇒ εq,nk+1
(εq,nk

(. . . εq,n2 (εq,n1 (∆q)) . . .)) = εq,
∏k+1

j=1 nj
(∆q)

)

R12 R3 & R11 ⇒ εq,nk
(. . . εq,n2 (εq,n1 (∆q)) . . .) = εq,

∏

k
j=1 nj

(∆q) for all k ∈ Z, k > 0.

Theorem 485 If

ψ = [µc, µm, f0, pc,0]
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is a pitch system, n is an integer and ∆q is a chromamorph interval in ψ then

ιq (εq,n (∆q)) = εq,−n (∆q)

Proof

R1 483 ⇒ ιq (∆q) = εq,−1 (∆q)

R2 R1 ⇒ ιq (εq,n (∆q)) = εq,−1 (εq,n (∆q))

R3 R2 & 484 ⇒ ιq (εq,n (∆q)) = εq,(−1×n) (∆q) = εq,−n (∆q)

Theorem 486 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n is an integer and ∆q is a chromamorph interval in ψ then:

∆ c (εq,n (∆q)) = εc,n (∆ c (∆q))

Proof

R1 482 ⇒ εq,n (∆q) = [εc,n (∆ c (∆q)) , εm,n (∆ m (∆q))]

R2 R1 & 300 ⇒ ∆ c (εq,n (∆q)) = εc,n (∆ c (∆q))

Theorem 487 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n is an integer and ∆q is a chromamorph interval in ψ then:

∆ m (εq,n (∆q)) = εm,n (∆ m (∆q))

Proof

R1 482 ⇒ εq,n (∆q) = [εc,n (∆ c (∆q)) , εm,n (∆ m (∆q))]

R2 R1 & 303 ⇒ ∆ m (εq,n (∆q)) = εm,n (∆ m (∆q))

Theorem 488 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n1, n2, . . . nk is a collection of integers and ∆q is a chromamorph interval in ψ then

σq (εq,n1 (∆q) , εq,n2 (∆q) , . . . , εq,nk
(∆q)) = εq,

∑k
j=1 nj

(∆q)
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Proof

R1 Let y = σq (εq,n1 (∆q) , εq,n2 (∆q) , . . . , εq,nk
(∆q))

R2 R1 & 475 ⇒ y =

[

σc (∆ c (εq,n1 (∆q)) ,∆ c (εq,n2 (∆q)) , . . . ,∆ c (εq,nk
(∆q))) ,

σm (∆ m (εq,n1 (∆q)) ,∆ m (εq,n2 (∆q)) , . . . ,∆ m (εq,nk
(∆q)))

]

R3 R2, 486 & 487 ⇒ y =

[

σc (εc,n1 (∆ c (∆q)) , εc,n2 (∆ c (∆q)) , . . . , εc,nk
(∆ c (∆q))) ,

σm (εm,n1 (∆ m (∆q)) , εm,n2 (∆ m (∆q)) , . . . , εm,nk
(∆ m (∆q)))

]

R4 R3, 458 & 472 ⇒ y =
[

εc,
∑k

j=1 nj
(∆ c (∆q)) , εm,

∑k
j=1 nj

(∆ m (∆q))
]

R5 R1, R4 & 482 ⇒ σq (εq,n1 (∆q) , εq,n2 (∆q) , . . . , εq,nk
(∆q)) = εq,

∑

k
j=1 nj

(∆q)

Exponentiation of the chromamorph tranposition function

Definition 489 (Definition of τq,n (q,∆q)) If ψ is a pitch system and q is a chromamorph in ψ and ∆q

is a chromamorph interval in ψ then

τq,n (q,∆q) = τq (q, εq,n (∆q))

Theorem 490 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n1, n2, . . . , nk is a collection of integers, q is a chromamorph in ψ and ∆q is a chromamorph

interval in ψ then

τq,nk
(. . . τq,n2 (τq,n1 (q,∆q) ,∆q) . . . ,∆q) = τq,

∑k
j=1 nj

(q,∆q)
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Proof

R1 Let yk = τq,nk
(. . . τq,n2 (τq,n1 (q,∆q) ,∆q) . . . ,∆q)

R2 Let xk = τq,
∑k

j=1 nj
(q,∆q)

R3 R1 ⇒ y1 = τq,n1 (q,∆q)

R4 R2 ⇒ x1 = τq,
∑

1
j=1 nj

(q,∆q)

R5
∑1

j=1 nj = n1

R6 R3, R4 & R5 ⇒ y1 = x1

R7 R1 & R2 ⇒
(

yk = xk ⇒ yk+1 = τq,nk+1
(xk,∆q)

)

R8 R2 ⇒ τq,nk+1
(xk,∆q) = τq,nk+1

(

τq,
∑k

j=1 nj
(q,∆q) ,∆q

)

R9 R8 & 489 ⇒
τq,nk+1

(xk ,∆q) = τq,nk+1

(

τq
(

q, εq,
∑k

j=1 nj
(∆q)

)

,∆q
)

= τq
(

τq
(

q, εq,
∑

k
j=1 nj

(∆q)
)

, εq,nk+1
(∆q)

)

R10 476 & R9 ⇒ τq,nk+1
(xk,∆q) = τq

(

q, σq

(

εq,
∑

k
j=1 nj

(∆q) , εq,nk+1
(∆q)

))

R11 488 & R10 ⇒ τq,nk+1
(xk,∆q) = τq

(

q, εq,(
∑

k
j=1 nj)+nk+1

(∆q)
)

= τq
(

q, εq,
∑k+1

j=1 nj
(∆q)

)

R12 R2, R11 & 489 ⇒ τq,nk+1
(xk,∆q) = τq,

∑k+1
j=1 nj

(q,∆q) = xk+1

R13 R7 & R12 ⇒ (yk = xk ⇒ yk+1 = xk+1)

R14 R13 & R6 ⇒ yk = xk for all integer k greater than zero.

R15 R14, R1 & R2 ⇒ τq,nk
(. . . τq,n2 (τq,n1 (q,∆q) ,∆q) . . . ,∆q) = τq,

∑k
j=1 nj

(q,∆q)

4.6.4 Summation, inversion and exponentiation of genus intervals

Summation of genus intervals

Definition 491 (Summation of genus intervals) If

ψ = [µc, µm, f0, pc,0]

is a pitch system and

∆g1,∆g2, . . .∆gn
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is a collection of genus intervals in ψ then

σg (∆g1,∆g2, . . .∆gn) =

[(

n
∑

k=1

∆ gc (∆gk)

)

− µc ×

((

n
∑

k=1

∆ m (∆gk)

)

div µm

)

,

(

n
∑

k=1

∆ m (∆gk)

)

mod µm

]

Theorem 492 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, g is a genus in ψ and

∆g1,∆g2, . . .∆gn

is a collection of genus intervals in ψ then

τg (g, σg (∆g1,∆g2, . . .∆gn)) =







gc (g) + (
∑n

k=1 ∆ gc (∆gk))− µc × (((
∑n

k=1 ∆ m (∆gk)) + m (g)) div µm) ,

(m (g) + (
∑n

k=1 ∆ m (∆gk))) mod µm






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Proof

R1 491 & 422 ⇒ τg (g, σg (∆g1,∆g2, . . .∆gn))

= τg






g,







(
∑n

k=1 ∆ gc (∆gk))− µc × ((
∑n

k=1 ∆ m (∆gk)) div µm) ,

(
∑n

k=1 ∆ m (∆gk)) mod µm













=

























gc (g) + (
∑n

k=1 ∆ gc (∆gk))

−µc × ((
∑n

k=1 ∆ m (∆gk)) div µm)

−µc × ((m (g) + (
∑n

k=1 ∆ m (∆gk)) mod µm) div µm) ,

τm (m (g) , (
∑n

k=1 ∆ m (∆gk)) mod µm)

























=

























gc (g) + (
∑n

k=1 ∆ gc (∆gk))

−µc ×







((
∑n

k=1 ∆ m (∆gk)) div µm)

+ ((m (g) + (
∑n

k=1 ∆ m (∆gk)) mod µm) div µm)






,

τm (m (g) , (
∑n

k=1 ∆ m (∆gk)) mod µm)

























R2 52 ⇒ ((
∑n

k=1 ∆ m (∆gk)) div µm) + ((m (g) + (
∑n

k=1 ∆ m (∆gk)) mod µm) div µm)

= ((
∑n

k=1 ∆ m (∆gk)) + m (g)) div µm

R3 R1 & R2 ⇒ τg (g, σg (∆g1,∆g2, . . .∆gn))

=

















gc (g) + (
∑n

k=1 ∆ gc (∆gk))

−µc × (((
∑n

k=1 ∆ m (∆gk)) + m (g)) div µm) ,

τm (m (g) , (
∑n

k=1 ∆ m (∆gk)) mod µm)

















R4 R3 & 412 ⇒ τg (g, σg (∆g1,∆g2, . . .∆gn))

=

















gc (g) + (
∑n

k=1 ∆ gc (∆gk))

−µc × (((
∑n

k=1 ∆ m (∆gk)) + m (g)) div µm) ,

(((m (g) + (
∑n

k=1 ∆ m (∆gk))) mod µm) mod µm)

















R5 R4 & 35 ⇒ τg (g, σg (∆g1,∆g2, . . .∆gn)) =

















gc (g) + (
∑n

k=1 ∆ gc (∆gk))

−µc × (((
∑n

k=1 ∆ m (∆gk)) + m (g)) div µm) ,

(m (g) + (
∑n

k=1 ∆ m (∆gk))) mod µm
















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Theorem 493 If ψ is a pitch system and

∆g1,∆g2, . . .∆gn

is a collection of genus intervals in ψ and g is a genus in ψ then

τg (g, σg (∆g1,∆g2, . . .∆gn)) = τg (. . . τg (τg (g,∆g1) ,∆g2) . . . ,∆gn)
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Proof

R1 Let xk = τg (g, σg (∆g1,∆g2, . . .∆gk))

R2 Let yk = τg (. . . τg (τg (g,∆g1) ,∆g2) . . . ,∆gk)

R3 R1 & 492 ⇒ x1 = τg (g, σg (∆g1))

=



















gc (g) +
∑1

j=1 ∆ gc (∆gj)

−µc ×
((

∑1
j=1 ∆ m (∆gj) + m (g)

)

div µm

)

,

(

m (g) +
∑1

j=1 ∆ m (∆gj)
)

mod µm



















=

















gc (g) + ∆ gc (∆g1)

−µc × ((∆ m (∆g1) + m (g)) div µm) ,

(m (g) + ∆ m (∆g1)) mod µm

















R4 R2, 412 & 422 ⇒ y1 = τg (g,∆g1)

=

















gc (g) + ∆ gc (∆g1)

−µc × ((m (g) + ∆ m (∆g1)) div µm) ,

τm (m (g) ,∆ m (∆g1))

















=

















gc (g) + ∆ gc (∆g1)

−µc × ((m (g) + ∆ m (∆g1)) div µm) ,

(m (g) + ∆ m (∆g1)) mod µm

















R5 R3 & R4 ⇒ x1 = y1

R6 R1 & R2 ⇒ (xk = yk ⇒ yk+1 = τg (xk,∆gk+1))

R7 R1 & 422 ⇒ τg (xk,∆gk+1) =

















gc (xk) + ∆ gc (∆gk+1)

−µc × ((m (xk) + ∆ m (∆gk+1)) div µm) ,

τm (m (xk) ,∆ m (∆gk+1))

















R8 R7 & 412 ⇒ τg (xk,∆gk+1) =

















gc (xk) + ∆ gc (∆gk+1)

−µc × ((m (xk) + ∆ m (∆gk+1)) div µm) ,

(m (xk) + ∆ m (∆gk+1)) mod µm
















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R9 R1 & 492 ⇒ xk =



















gc (g) +
∑k

j=1 ∆ gc (∆gj)

−µc ×
((

∑k
j=1 ∆ m (∆gj) + m (g)

)

div µm

)

,

(

m (g) +
∑k

j=1 ∆ m (∆gj)
)

mod µm



















R10 R8, R9, 115 & 117 ⇒ τg (xk,∆gk+1)

=







































gc (g) +
∑k

j=1 ∆ gc (∆gj)

−µc ×
((

∑k
j=1 ∆ m (∆gj) + m (g)

)

div µm

)

+∆ gc (∆gk+1)

−µc ×
(((

m (g) +
∑k

j=1 ∆ m (∆gj)
)

mod µm + ∆ m (∆gk+1)
)

div µm

)

,

((

m (g) +
∑k

j=1 ∆ m (∆gj)
)

mod µm + ∆ m (∆gk+1)
)

mod µm







































=





























gc (g) +
∑k+1

j=1 ∆ gc (∆gj)

−µc ×









(

∑k
j=1 ∆ m (∆gj) + m (g)

)

div µm

+
(

∆ m (∆gk+1) +
(

m (g) +
∑k

j=1 ∆ m (∆gj)
)

mod µm

)

div µm









,

((

m (g) +
∑k

j=1 ∆ m (∆gj)
)

mod µm + ∆ m (∆gk+1)
)

mod µm





























R11 R9 ⇒ xk+1 =



















gc (g) +
∑k+1

j=1 ∆ gc (∆gj)

−µc ×
((

∑k+1
j=1 ∆ m (∆gj) + m (g)

)

div µm

)

,

(

m (g) +
∑k+1

j=1 ∆ m (∆gj)
)

mod µm



















R12 Let wk =
(

∑k
j=1 ∆ m (∆gj) + m (g)

)

div µm

+
(

∆ m (∆gk+1) +
(

m (g) +
∑k

j=1 ∆ m (∆gj)
)

mod µm

)

div µm

R13 R12 & 52 ⇒ wk =
(

∆ m (∆gk+1) +
∑k

j=1 ∆ m (∆gj) + m (g)
)

div µm

=
(

∑k+1
j=1 ∆ m (∆gj) + m (g)

)

div µm

R14 Let zk =
((

m (g) +
∑k

j=1 ∆ m (∆gj)
)

mod µm + ∆ m (∆gk+1)
)

mod µm
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R15 R14 & 38 ⇒ zk =
(

∆ m (∆gk+1) + m (g) +
∑k

j=1 ∆ m (∆gj)
)

mod µm

=
(

m (g) +
∑k+1

j=1 ∆ m (∆gj)
)

mod µm

R16 R10, R12 & R14 ⇒ τg (xk,∆gk+1) =
[

gc (g) +
∑k+1

j=1 ∆ gc (∆gj)− µc × wk, zk

]

R17 R11, R13 & R15 ⇒ xk+1 =
[

gc (g) +
∑k+1

j=1 ∆ gc (∆gj)− µc × wk , zk

]

R18 R16 & R17 ⇒ τg (xk,∆gk+1) = xk+1

R19 R6 & R18 ⇒ (xk = yk ⇒ xk+1 = yk+1)

R20 R19 & R5 ⇒ xk = yk for all integers k greater than zero.

R21 R20, R1 & R2 ⇒ τg (g, σg (∆g1,∆g2, . . .∆gn)) = τg (. . . τg (τg (g,∆g1) ,∆g2) . . . ,∆gn)

Inverse of a genus interval

Definition 494 (Inverse of a genus interval) If ψ is a pitch system and ∆g is a genus interval in ψ and

g is a genus in ψ then the inverse of ∆g, denoted ιg (∆g), is the genus interval that satisfies the following

equation

τg (τg (g,∆g) , ιg (∆g)) = g

Definition 495 (Inversional equivalence of genus intervals) If ψ is a pitch system and ∆g1 and ∆g2

are genus intervals in ψ then ∆g1 and ∆g2 are inversionally equivalent if and only if

(ιg (∆g1) = ∆g2) ∨ (∆g1 = ∆g2)

The fact that two genus intervals are inversionally equivalent is denoted as follows:

∆g1 ≡ι ∆g2

Theorem 496 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆g is a genus interval in ψ then

ιg (∆g) = [µc −∆ gc (∆g) , (−∆ m (∆g)) mod µm]
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Proof

R1 Let x = τg (τg (g,∆g) , [µc −∆ gc (∆g) , (−∆ m (∆g)) mod µm])

R2

R1, 422,

115, 117,

310 & 316

⇒ x = τg























gc (g) + ∆ gc (∆g)− µc × ((m (g) + ∆ m (∆g)) div µm) ,

τm (m (g) ,∆ m (∆g))






,

[µc −∆ gc (∆g) , (−∆ m (∆g)) mod µm]

















=

















gc (g) + ∆ gc (∆g)− µc × ((m (g) + ∆ m (∆g)) div µm) + µc −∆ gc (∆g)

−µc × ((τm (m (g) ,∆ m (∆g)) + (−∆ m (∆g)) mod µm) div µm) ,

τm (τm (m (g) ,∆ m (∆g)) , (−∆ m (∆g)) mod µm)

















R3 R2 & 412 ⇒ x =

















gc (g) + ∆ gc (∆g)− µc × ((m (g) + ∆ m (∆g)) div µm) + µc −∆ gc (∆g)

−µc × (((m (g) + ∆ m (∆g)) mod µm + (−∆ m (∆g)) mod µm) div µm) ,

((m (g) + ∆ m (∆g)) mod µm + (−∆ m (∆g)) mod µm) mod µm

















=



































gc (g) + µc

−µc ×







(m (g) + ∆ m (∆g)) div µm

+ ((m (g) + ∆ m (∆g)) mod µm + (−∆ m (∆g)) mod µm) div µm






,







(m (g) + ∆ m (∆g)) mod µm

+ (−∆ m (∆g)) mod µm






mod µm



































R4 R3, 52 & 34 ⇒ x =







gc (g) + µc − µc × ((m (g) + ∆ m (∆g) + (−∆ m (∆g)) mod µm) div µm) ,

(m (g) + ∆ m (∆g)−∆ m (∆g)) mod µm







R5 R4 & 46 ⇒ x = [gc (g) + µc − µc × ((m (g) + µm) div µm) ,m (g) mod µm]

R6 77 & 61 ⇒ (m (g) + µm) div µm = 1

R7 77 & 44 ⇒ m (g) mod µm = m (g)

R8 R5, R6 & R7 ⇒ x = [gc (g) + µc − µc × 1,m(g)]

= [gc (g) ,m(g)]

R9 R8 & 118 ⇒ x = g

R10 R1, R9 & 494 ⇒ ιg (∆g) = [µc −∆ gc (∆g) , (−∆ m(∆g)) mod µm]
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Theorem 497 If ψ is a pitch system and ∆g, ∆g1 and ∆g2 are genus intervals in ψ then

(∆g1 = ιg (∆g)) ∧ (∆g2 = ιg (∆g)) ⇒ (∆g1 = ∆g2)

Proof

R1 Let ∆g1 = ιg (∆g)

R2 Let ∆g2 = ιg (∆g)

R3 R1 & 494 ⇒ τg (τg (g,∆g) ,∆g1) = g

R4 R2 & 494 ⇒ τg (τg (g,∆g) ,∆g2) = g

R5 R3, R4 & 425 ⇒ ∆g1 = ∆g2

R6 R1 to R5 ⇒ (∆g1 = ιg (∆g)) ∧ (∆g2 = ιg (∆g)) ⇒ (∆g1 = ∆g2)

Theorem 498 If ψ is a pitch system and ∆g1 and ∆g2 are two intervals in ψ then

(∆g1 = ιg (∆g2)) ⇐⇒ (∆g2 = ιg (∆g1))

Proof

Theorem 499 The inversional equivalence relation on genus intervals is transitive. That is, if ∆g1, ∆g2

and ∆g3 are any three genus intervals in a pitch system ψ, then

(∆g1 ≡ι ∆g2) ∧ (∆g2 ≡ι ∆g3) ⇒ (∆g1 ≡ι ∆g3)

Exponentiation of a genus interval

Definition 500 (Exponentiation of a genus interval) Given that:

1. ψ is a pitch system;

2. g is a genus in ψ;

3. ∆g is a genus interval in ψ;

4. n is an integer;

5. k is an integer and 1 ≤ k ≤ abs (n);

6. ∆g1,k = ∆g for all k; and

7. ∆g2,k = ιg (∆g) for all k;

then εg,n (∆g) returns a genus interval that satisfies the following equation:

τg (g, εg,n (∆g)) =











τg (g, σg (∆g1,1,∆g1,2, . . .∆g1,n))

g

τg (g, σg (∆g2,1,∆g2,2, . . .∆g2,−n))

if

if

if

n > 0

n = 0

n < 0
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Theorem 501 (Formula for εg,n (∆g)) If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆g is a genus interval in ψ and n is an integer then

εg,n (∆g) =







n×∆ gc (∆g)− µc × ((n×∆ m (∆g)) div µm) ,

(n×∆ m (∆g)) mod µm






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Proof

R1 Let n be any integer

R2 Let k be any integer such that 1 ≤ k ≤ abs (n)

R3 Let ∆g1,k = ∆g for all k

R4 Let ∆g2,k = ιg (∆g) for all k

R5 R1 to R4 & 500 ⇒ τg (g, εg,n (∆g)) =











τg (g, σg (∆g1,1,∆g1,2, . . .∆g1,n))

g

τg (g, σg (∆g2,1,∆g2,2, . . .∆g2,−n))

if

if

if

n > 0

n = 0

n < 0

R6 Let n1 be any integer greater than zero

R7 491 & R6 ⇒ σg (∆g1,1,∆g1,2, . . .∆g1,n1)

=







(
∑n1

k=1 ∆ gc (∆g1,k))− µc × ((
∑n1

k=1 ∆ m (∆g1,k)) div µm) ,

(
∑n1

k=1 ∆ m (∆g1,k)) mod µm







R8 R3 & R7 ⇒ σg (∆g1,1,∆g1,2, . . .∆g1,n1)

=







n1 ×∆ gc (∆g)− µc × ((n1 ×∆ m (∆g)) div µm) ,

(n1 ×∆ m (∆g)) mod µm







R9 R1, R6 & R8 ⇒ τg (g, σg (∆g1,1,∆g1,2, . . .∆g1,n))

= τg






g,







n×∆ gc (∆g)− µc × ((n×∆ m (∆g)) div µm) ,

(n×∆ m (∆g)) mod µm












when n > 0

R10 Let n2 = 0

R11 Let x = τg






g,







n2 ×∆ gc (∆g)− µc × ((n2 ×∆ m (∆g)) div µm) ,

(n2 ×∆ m (∆g)) mod µm













R12 R10, R11, 422, 310 & 316 ⇒ x = τg (g, [0− µc × 0, 0]) = τg (g, [0, 0])

= [gc (g) + 0− µc × ((m (g) + 0) div µm) , τm (m (g) , 0)]

R13 R11, R12 & 412 ⇒ x = [gc (g)− µc × (m (g) div µm) , (m (g) + 0) mod µm]

R14 R13 & 78 ⇒ x = [gc (g)− µc × (m (g) div µm) ,m (g)]

R15 R14 & 79 ⇒ x = [gc (g)− µc × 0,m (g)] = [gc (g) ,m (g)]
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R16 R15 & 118 ⇒ x = g

R17 R1, R10, R11 & R16 ⇒ τg






g,







n×∆ gc (∆g)− µc × ((n×∆ m (∆g)) div µm) ,

(n×∆ m (∆g)) mod µm












= g when n = 0

R18 Let n3 be any integer less than zero

R19 Let y = σg (∆g2,1,∆g2,2, . . .∆g2,−n3)

R20 R19 & 491 ⇒ y =









(

∑−n3

k=1 ∆ gc (∆g2,k)
)

− µc ×
((

∑−n3

k=1 ∆ m (∆g2,k)
)

div µm

)

,

(

∑−n3

k=1 ∆ m (∆g2,k)
)

mod µm









R21 R4 & R20 ⇒ y =







−n3 ×∆ gc (ιg (∆g))− µc × ((−n3 ×∆ m (ιg (∆g))) div µm) ,

(−n3 ×∆ m (ιg (∆g))) mod µm







R22 R21, 310, 316 & 496 ⇒ y =







−n3 × (µc −∆ gc (∆g))− µc × ((−n3 × ((−∆ m(∆g)) mod µm)) div µm) ,

(−n3 × ((−∆ m(∆g)) mod µm)) mod µm







=







n3 ×∆ gc (∆g)− µc × (n3 + (−n3 × ((−∆ m (∆g)) mod µm)) div µm) ,

(−n3 × ((−∆ m(∆g)) mod µm)) mod µm







R23 218 & 45 ⇒ (−n3 × ((−∆ m (∆g)) mod µm)) mod µm

= (−n3 × (−∆ m(∆g))) mod µm

= (n3 ×∆ m (∆g)) mod µm

R24 R22 & R23 ⇒ y =







n3 ×∆ gc (∆g)− µc × (n3 + (−n3 × ((−∆ m (∆g)) mod µm)) div µm) ,

(n3 ×∆ m (∆g)) mod µm







R25 56 ⇒ n3 + (−n3 × ((−∆ m(∆g)) mod µm)) div µm = (n3 ×∆ m (∆g)) div µm

R26 R24 & R25 ⇒ y =







n3 ×∆ gc (∆g)− µc × ((n3 ×∆ m (∆g)) div µm) ,

(n3 ×∆ m (∆g)) mod µm







R27 R1, R18, R19 & R26 ⇒ τg (g, σg (∆g2,1,∆g2,2, . . .∆g2,−n))

= τg






g,







n×∆ gc (∆g)− µc × ((n×∆ m (∆g)) div µm) ,

(n×∆ m (∆g)) mod µm












when n < 0
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R28 R5, R9, R17 & R27 ⇒ τg (g, εg,n (∆g))

= τg






g,







n×∆ gc (∆g)− µc × ((n×∆ m (∆g)) div µm) ,

(n×∆ m (∆g)) mod µm












for all integer n

R29 R28 & 425 ⇒ εg,n (∆g) =







n×∆ gc (∆g)− µc × ((n×∆ m (∆g)) div µm) ,

(n×∆ m (∆g)) mod µm







Theorem 502 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆g is any genus interval in ψ then

ιg (∆g) = εg,−1 (∆g)

Proof

R1 496 ⇒ ιg (∆g) = [µc −∆ gc (∆g) , (−∆ m (∆g)) mod µm]

R2 501 ⇒ εg,−1 (∆g) =







−1×∆ gc (∆g)− µc × ((−1×∆ m (∆g)) div µm) ,

(−1×∆ m (∆g)) mod µm







=







−∆ gc (∆g)− µc × ((−∆ m(∆g)) div µm) ,

(−∆ m(∆g)) mod µm







R3 218 ⇒ (−∆ m (∆g)) div µm = −1

R4 R2 & R3 ⇒ εg,−1 (∆g) =







−∆ gc (∆g)− µc × (−1) ,

(−∆ m(∆g)) mod µm







= [µc −∆ gc (∆g) , (−∆ m (∆g)) mod µm]

R5 R4 & R1 ⇒ ιg (∆g) = εg,−1 (∆g)

Theorem 503 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n1, n2, . . . nk is a collection of integers and ∆g is a genus interval in ψ then

εg,nk
(. . . εg,n2 (εg,n1 (∆g)) . . .) = εg,

∏k
j=1 nj

(∆g)
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Proof

R1 Let xk = εg,nk
(. . . εg,n2 (εg,n1 (∆g)) . . .)

R2 Let yk = εg,
∏k

j=1 nj
(∆g)

R3
∏1

j=1 nj = n1

R4 R3 ⇒ εg,n1 (∆g) = εg,
∏1

j=1 nj
(∆g)

R5 R1, R2 & R4 ⇒ yk = xk when k = 1

R6 R1 & R2 ⇒
(

yk = xk ⇒ xk+1 = εg,nk+1
(yk)

)

R7 501 ⇒ εg,nk+1
(yk) =







nk+1 ×∆ gc (yk)− µc × ((nk+1 ×∆ m (yk)) div µm) ,

(nk+1 ×∆ m (yk)) mod µm







R8 R2 & 501 ⇒ yk+1 =









(

∏k+1
j=1 nj

)

×∆ gc (∆g)− µc ×
(((

∏k+1
j=1 nj

)

×∆ m (∆g)
)

div µm

)

,

((

∏k+1
j=1 nj

)

×∆ m (∆g)
)

mod µm









R9 R2 & 501 ⇒ yk =









(

∏k
j=1 nj

)

×∆ gc (∆g)− µc ×
(((

∏k
j=1 nj

)

×∆ m (∆g)
)

div µm

)

,

((

∏k
j=1 nj

)

×∆ m (∆g)
)

mod µm









R10 R7, R9, 310 & 316 ⇒ εg,nk+1
(yk)

=



















nk+1 ×
((

∏k
j=1 nj

)

×∆ gc (∆g)− µc ×
(((

∏k
j=1 nj

)

×∆ m (∆g)
)

div µm

))

−µc ×
((

nk+1 ×
(((

∏k
j=1 nj

)

×∆ m (∆g)
)

mod µm

))

div µm

)

,

(

nk+1 ×
(((

∏k
j=1 nj

)

×∆ m (∆g)
)

mod µm

))

mod µm



















=































nk+1 ×
(

∏k
j=1 nj

)

×∆ gc (∆g)

−nk+1 × µc ×
(((

∏k
j=1 nj

)

×∆ m (∆g)
)

div µm

)

−µc ×
((

nk+1 ×
(((

∏k
j=1 nj

)

×∆ m (∆g)
)

mod µm

))

div µm

)

,

(

nk+1 ×
(((

∏k
j=1 nj

)

×∆ m (∆g)
)

mod µm

))

mod µm






























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(R10 cont.) =































(

∏k+1
j=1 nj

)

×∆ gc (∆g)

−µc ×









nk+1 ×
(((

∏k
j=1 nj

)

×∆ m (∆g)
)

div µm

)

+
(

nk+1 ×
(((

∏k
j=1 nj

)

×∆ m (∆g)
)

mod µm

))

div µm









,

(

nk+1 ×
(((

∏k
j=1 nj

)

×∆ m (∆g)
)

mod µm

))

mod µm































R11 58 ⇒









nk+1 ×
(((

∏k
j=1 nj

)

×∆ m (∆g)
)

div µm

)

+
(

nk+1 ×
(((

∏k
j=1 nj

)

×∆ m (∆g)
)

mod µm

))

div µm









=
(

nk+1 ×
(

∏k
j=1 nj

)

×∆ m (∆g)
)

div µm

=
((

∏k+1
j=1 nj

)

×∆ m (∆g)
)

div µm

R12 R11 & R10 ⇒ εg,nk+1
(yk)

=



















(

∏k+1
j=1 nj

)

×∆ gc (∆g)

−µc ×
(((

∏k+1
j=1 nj

)

×∆ m (∆g)
)

div µm

)

,

(

nk+1 ×
(((

∏k
j=1 nj

)

×∆ m (∆g)
)

mod µm

))

mod µm



















R13 45 ⇒
(

nk+1 ×
(((

∏k
j=1 nj

)

×∆ m (∆g)
)

mod µm

))

mod µm

=
(

nk+1 ×
(

∏k
j=1 nj

)

×∆ m (∆g)
)

mod µm

=
((

∏k+1
j=1 nj

)

×∆ m (∆g)
)

mod µm

R14 R13 & R12 ⇒ εg,nk+1
(yk)

=



















(

∏k+1
j=1 nj

)

×∆ gc (∆g)

−µc ×
(((

∏k+1
j=1 nj

)

×∆ m (∆g)
)

div µm

)

,

((

∏k+1
j=1 nj

)

×∆ m (∆g)
)

mod µm



















R15 R14 & R8 ⇒ εg,nk+1
(yk) = yk+1

R16 R15 & R6 ⇒ (yk = xk ⇒ xk+1 = yk+1)

R17 R16 & R5 ⇒ xk = yk for all integer k
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R18 R17, R1 & R2 ⇒ εg,nk
(. . . εg,n2 (εg,n1 (∆g)) . . .) = εg,

∏

k
j=1 nj

(∆g)

Theorem 504 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n is an integer and ∆g is a genus interval in ψ then

ιg (εg,n (∆g)) = εg,−n (∆g)

Proof

R1 502 ⇒ ιg (εg,n (∆g)) = εg,−1 (εg,n (∆g))

R2 503 ⇒ εg,−1 (εg,n (∆g)) = εg,(−1×n) (∆g) = εg,−n (∆g)

R3 R1 & R2 ⇒ ιg (εg,n (∆g)) = εg,−n (∆g)

Theorem 505 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n is an integer and ∆g is a genus interval in ψ then:

∆ c (εg,n (∆g)) = εc,n (∆ c (∆g))

Proof

R1 501 ⇒ εg,n (∆g) =







n×∆ gc (∆g)− µc × ((n×∆ m (∆g)) div µm) ,

(n×∆ m (∆g)) mod µm







R2 R1, 313 & 310 ⇒ ∆ c (εg,n (∆g)) = (n×∆ gc (∆g)− µc × ((n×∆ m (∆g)) div µm)) mod µc

R3 313 ⇒ εc,n (∆ c (∆g)) = εc,n (∆ gc (∆g) mod µc)

R4 R3 & 454 ⇒ εc,n (∆ c (∆g)) = (n× (∆ gc (∆g) mod µc)) mod µc

R5 R4 & 45 ⇒ εc,n (∆ c (∆g)) = (n×∆ gc (∆g)) mod µc

R6 R2 & 37 ⇒ ∆ c (εg,n (∆g)) = (n×∆ gc (∆g)) mod µc

R7 R5 & R6 ⇒ ∆ c (εg,n (∆g)) = εc,n (∆ c (∆g))

Theorem 506 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n is an integer and ∆g is a genus interval in ψ then:

∆ m (εg,n (∆g)) = εm,n (∆ m (∆g))
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Proof

R1 501 ⇒ εg,n (∆g) =







n×∆ gc (∆g)− µc × ((n×∆ m (∆g)) div µm) ,

(n×∆ m (∆g)) mod µm







R2 R1 & 316 ⇒ ∆ m (εg,n (∆g)) = (n×∆ m (∆g)) mod µm

R3 468 ⇒ εm,n (∆ m (∆g)) = (n×∆ m (∆g)) mod µm

R4 R2 & R3 ⇒ ∆ m (εg,n (∆g)) = εm,n (∆ m (∆g))

Theorem 507 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n is an integer and ∆g is a genus interval in ψ then:

∆ q (εg,n (∆g)) = εq,n (∆ q (∆g))

Proof

R1 501 ⇒ εg,n (∆g) =







n×∆ gc (∆g)− µc × ((n×∆ m (∆g)) div µm) ,

(n×∆ m (∆g)) mod µm







R2 R1 & 320 ⇒ ∆ q (εg,n (∆g)) = [∆ c (εg,n (∆g)) ,∆ m (εg,n (∆g))]

R3 R2 & 505 ⇒ ∆ q (εg,n (∆g)) = [εc,n (∆ c (∆g)) ,∆ m (εg,n (∆g))]

R4 R3 & 506 ⇒ ∆ q (εg,n (∆g)) = [εc,n (∆ c (∆g)) , εm,n (∆ m (∆g))]

R5 320 ⇒ ∆ q (∆g) = [∆ c (∆g) ,∆ m (∆g)]

R6 R5 & 300 ⇒ ∆ c (∆ q (∆g)) = ∆ c (∆g)

R7 R5 & 303 ⇒ ∆ m (∆ q (∆g)) = ∆ m (∆g)

R8 R4, R6 & R7 ⇒ ∆ q (εg,n (∆g)) = [εc,n (∆ c (∆ q (∆g))) , εm,n (∆ m (∆ q (∆g)))]

R9 R8 & 482 ⇒ ∆ q (εg,n (∆g)) = εq,n (∆ q (∆g))

Theorem 508 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n1, n2, . . . nk is a collection of integers and ∆g is a genus interval in ψ then

σg (εg,n1 (∆g) , εg,n2 (∆g) , . . . , εg,nk
(∆g)) = εg,

∑

k
j=1 nj

(∆g)
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Proof

R1 Let xk = σg (εg,n1 (∆g) , εg,n2 (∆g) , . . . , εg,nk
(∆g))

R2 Let yk = εg,
∑k

j=1 nj
(∆g)

R3 R1 & 491 ⇒ xk =









∑k
j=1 ∆ gc

(

εg,nj (∆g)
)

− µc ×
((

∑k
j=1 ∆ m

(

εg,nj (∆g)
)

)

div µm

)

,

(

∑k
j=1 ∆ m

(

εg,nj (∆g)
)

)

mod µm









R4 R2 & 501 ⇒ yk =









∑k
j=1 nj ×∆ gc (∆g)− µc ×

(((

∑k
j=1 nj

)

×∆ m (∆g)
)

div µm

)

,

((

∑k
j=1 nj

)

×∆ m (∆g)
)

mod µm









R5 501 ⇒ εg,nj (∆g) =







nj ×∆ gc (∆g)− µc × ((nj ×∆ m (∆g)) div µm) ,

(nj ×∆ m (∆g)) mod µm







R6 R5 & 310 ⇒ ∆ gc

(

εg,nj (∆g)
)

= nj ×∆ gc (∆g)− µc × ((nj ×∆ m (∆g)) div µm)

R7 R5 & 316 ⇒ ∆ m
(

εg,nj (∆g)
)

= (nj ×∆ m (∆g)) mod µm

R8 R6 ⇒
∑k

j=1 ∆ gc

(

εg,nj (∆g)
)

=
∑k

j=1 (nj ×∆ gc (∆g))− µc ×
∑k

j=1 ((nj ×∆ m (∆g)) div µm)

=
(

∑k
j=1 nj

)

×∆ gc (∆g)− µc ×
∑k

j=1 ((nj ×∆ m (∆g)) div µm)

R9 R7 ⇒
∑k

j=1 ∆ m
(

εg,nj (∆g)
)

=
∑k

j=1 ((nj ×∆ m (∆g)) mod µm)

R10 R3, R8 & R9 ⇒ xk =



















(

∑k
j=1 nj

)

×∆ gc (∆g)− µc ×
∑k

j=1 ((nj ×∆ m (∆g)) div µm)

−µc ×
((

∑k
j=1 ((nj ×∆ m (∆g)) mod µm)

)

div µm

)

,

(

∑k
j=1 ((nj ×∆ m (∆g)) mod µm)

)

mod µm



















=





























(

∑k
j=1 nj

)

×∆ gc (∆g)

−µc ×









∑k
j=1 ((nj ×∆ m (∆g)) div µm)

+
(

∑k
j=1 ((nj ×∆ m (∆g)) mod µm)

)

div µm









,

(

∑k
j=1 ((nj ×∆ m (∆g)) mod µm)

)

mod µm




























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R11 54 ⇒
∑k

j=1 ((nj ×∆ m (∆g)) div µm) +
(

∑k
j=1 ((nj ×∆ m (∆g)) mod µm)

)

div µm

=
(

∆ m (∆g)×
∑k

j=1 nj

)

div µm

R12 R10 & R11 ⇒ xk =



















(

∑k
j=1 nj

)

×∆ gc (∆g)

−µc ×
((

∆ m (∆g)×
∑k

j=1 nj

)

div µm

)

,

(

∑k
j=1 ((nj ×∆ m (∆g)) mod µm)

)

mod µm



















R13 39 ⇒
(

∑k
j=1 ((nj ×∆ m (∆g)) mod µm)

)

mod µm =
((

∑k
j=1 nj

)

×∆ m (∆g)
)

mod µm

R14 R12 & R13 ⇒ xk =



















(

∑k
j=1 nj

)

×∆ gc (∆g)

−µc ×
((

∆ m (∆g)×
∑k

j=1 nj

)

div µm

)

,

((

∑k
j=1 nj

)

×∆ m (∆g)
)

mod µm



















R15 R4 & R14 ⇒ xk = yk

R16 R1, R2 & R15 ⇒ σg (εg,n1 (∆g) , εg,n2 (∆g) , . . . , εg,nk
(∆g)) = εg,

∑

k
j=1 nj

(∆g)

Exponentiation of the genus tranposition function

Definition 509 (Definition of τg,n (g,∆g)) If ψ is a pitch system and g is a genus in ψ and ∆g is a genus

interval in ψ then

τg,n (g,∆g) = τg (g, εg,n (∆g))

Theorem 510 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n1, n2, . . . , nk is a collection of integers, g is a genus in ψ and ∆g is a genus interval in ψ

then

τg,nk
(. . . τg,n2 (τg,n1 (g,∆g) ,∆g) . . . ,∆g) = τg,

∑k
j=1 nj

(g,∆g)
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Proof

R1 Let xk = τg,nk
(. . . τg,n2 (τg,n1 (g,∆g) ,∆g) . . . ,∆g)

R2 R1 & 509 ⇒ xk = τg (. . . τg (τg (g, εg,n1 (∆g)) , εg,n2 (∆g)) . . . , εg,nk
(∆g))

R3 R2 & 493 ⇒ xk = τg (g, σg (εg,n1 (∆g) , εg,n2 (∆g) , . . . , εg,nk
(∆g)))

R4 R3 & 508 ⇒ xk = τg
(

g, εg,
∑k

j=1 nj
(∆g)

)

R5 R1, R4 & 509 ⇒ τg,nk
(. . . τg,n2 (τg,n1 (g,∆g) ,∆g) . . . ,∆g) = τg,

∑

k
j=1 nj

(g,∆g)

4.6.5 Summation, inversion and exponentiation of chromatic pitch intervals

Summation of chromatic pitch intervals

Definition 511 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and

∆pc,1,∆pc,2, . . .∆pc,n

is a collection of chromatic pitch intervals in ψ then

σpc (∆pc,1,∆pc,2, . . .∆pc,n) =
n
∑

k=1

∆pc,k

Theorem 512 If ψ is a pitch system and

∆pc,1,∆pc,2, . . .∆pc,n

is a collection of chromatic pitch intervals in ψ and pc is a chromatic pitch in ψ then

τpc (pc, σpc (∆pc,1,∆pc,2, . . .∆pc,n)) = τpc (. . . τpc (τpc (pc,∆pc,1) ,∆pc,2) . . . ,∆pc,n)
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Proof

R1 Let xn = τpc (. . . τpc (τpc (pc,∆pc,1) ,∆pc,2) . . . ,∆pc,n)

R2 Let yn = τpc (pc, σpc (∆pc,1,∆pc,2, . . .∆pc,n))

R3 R1 & 427 ⇒ x1 = τpc (pc,∆pc,1) = pc + ∆pc,1

R4 R2 & 427 ⇒ y1 = pc + σpc (∆pc,1)

R5 R4 & 511 ⇒ y1 = pc + ∆pc,1

R6 R3 & R5 ⇒ x1 = y1

R7 R1 ⇒ (xk = yk ⇒ xk+1 = τpc (yk,∆pc,k+1))

R8 R2 & 427 ⇒ yn = pc + σpc (∆pc,1,∆pc,2, . . .∆pc,n)

R9 R8 & 511 ⇒ yn = pc +
∑n

k=1 ∆pc,k

R10 427 ⇒ τpc (yk,∆pc,k+1) = yk + ∆pc,k+1

R11 R9 & R10 ⇒ τpc (yk,∆pc,k+1) = pc +
∑k

j=1 ∆pc,j + ∆pc,k+1

= pc +
∑k+1

j=1 ∆pc,j

R12 R11 & R9 ⇒ τpc (yk,∆pc,k+1) = yk+1

R13 R12 & R7 ⇒ (xk = yk ⇒ xk+1 = yk+1)

R14 R6 & R13 ⇒ xk = yk for all positive integers k

R15 R1, R2 & R14 ⇒ τpc (pc, σpc (∆pc,1,∆pc,2, . . .∆pc,n)) = τpc (. . . τpc (τpc (pc,∆pc,1) ,∆pc,2) . . . ,∆pc,n)

Inversion of chromatic pitch intervals

Definition 513 (Definition of ιpc (∆pc)) If ψ is a pitch system and ∆pc is a chromatic pitch interval in

ψ and pc is a chromatic pitch in ψ then ιpc (∆pc) is the chromatic pitch interval that satisfies the following

equation

τpc (τpc (pc,∆pc) , ιpc (∆pc)) = pc

Definition 514 (Inversional equivalence of chromatic pitch intervals) If ψ is a pitch system and ∆pc,1

and ∆pc,2 are chromatic pitch intervals in ψ then ∆pc,1 and ∆pc,2 are inversionally equivalent if and only if

(ιpc (∆pc,1) = ∆pc,2) ∨ (∆pc,1 = ∆pc,2)
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The fact that two chromatic pitch intervals are inversionally equivalent is denoted as follows:

∆pc,1 ≡ι ∆pc,2

Theorem 515 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆pc is a chromatic pitch interval in ψ then

ιpc (∆pc) = −∆pc

Proof

R1 513 ⇒ τpc (τpc (pc,∆pc) , ιpc (∆pc)) = pc

R2 R1 & 427 ⇒ τpc (pc + ∆pc, ιpc (∆pc)) = pc

⇒ pc + ∆pc + ιpc (∆pc) = pc

⇒ ∆pc + ιpc (∆pc) = 0

⇒ ιpc (∆pc) = −∆pc

Theorem 516 If ψ is a pitch system and ∆pc, ∆pc,1 and ∆pc,2 are chromatic pitch intervals in ψ then

(∆pc,1 = ιpc (∆pc)) ∧ (∆pc,2 = ιpc (∆pc)) ⇒ (∆pc,1 = ∆pc,2)

Proof

R1 Let (∆pc,1 = ιpc (∆pc)) ∧ (∆pc,2 = ιpc (∆pc))

R2 R1 & 515 ⇒ ∆pc,1 = −∆pc

R3 R1 & 515 ⇒ ∆pc,2 = −∆pc

R4 R2 & R3 ⇒ ∆pc,1 = ∆pc,2

R5 R1 to R4 ⇒ (∆pc,1 = ιpc (∆pc)) ∧ (∆pc,2 = ιpc (∆pc)) ⇒ (∆pc,1 = ∆pc,2)

Exponentiation of chromatic pitch intervals

Definition 517 (Definition of εpc,n (∆pc)) Given that:

1. ψ is a pitch system;

2. pc is a chromatic pitch in ψ;

3. ∆pc is a chromatic pitch interval in ψ;

4. n is an integer;
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5. k is an integer and 1 ≤ k ≤ abs (n);

6. ∆pc,1,k = ∆pc for all k; and

7. ∆pc,2,k = ιpc (∆pc) for all k;

then εpc,n (∆pc) returns a chromatic pitch interval that satisfies the following equation:

τpc (pc, εpc,n (∆pc)) =











τpc (pc, σpc (∆pc,1,1,∆pc,1,2, . . .∆pc,1,n))

pc

τpc (pc, σpc (∆pc,2,1,∆pc,2,2, . . .∆pc,2,−n))

if

if

if

n > 0

n = 0

n < 0

Theorem 518 (Formula for εpc,n (∆pc)) If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆pc is a chromatic pitch interval in ψ and n is an integer then

εpc,n (∆pc) = n×∆pc
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Proof

R1 Let n be any integer

R2 Let k be an integer such that 1 ≤ k ≤ abs (n)

R3 Let ∆pc,1,k = ∆pc for all k

R4 Let ∆pc,2,k = ιpc (∆pc) for all k

R5 Let n1 be any integer greater than zero

R6 R3, R5 & 511 ⇒ τpc (pc, σpc (∆pc,1,1,∆pc,1,2, . . .∆pc,1,n1))

= τpc

(

pc,
∑n1

j=1 ∆pc,1,j

)

= τpc (pc, n1 ×∆pc)

R7 427 ⇒ τpc (pc, 0×∆pc) = pc + 0×∆pc = pc

R8 Let n2 be any integer less than zero

R9 R4, R8 & 511 ⇒ τpc (pc, σpc (∆pc,2,1,∆pc,2,2, . . .∆pc,2,−n2))

= τpc

(

pc,
∑−n2

j=1 ∆pc,2,j

)

= τpc (pc,−n2 × ιpc (∆pc))

R10 R9 & 515 ⇒ τpc (pc, σpc (∆pc,2,1,∆pc,2,2, . . .∆pc,2,−n2))

= τpc (pc,−n2 × (−∆pc))

= τpc (pc, n2 ×∆pc)

R11 R1, R5 & R6 ⇒ τpc (pc, σpc (∆pc,1,1,∆pc,1,2, . . .∆pc,1,n)) = τpc (pc, n×∆pc) when n > 0

R12 R1 & R7 ⇒ pc = τpc (pc, n×∆pc) when n = 0

R13 R1, R8 & R10 ⇒ τpc (pc, σpc (∆pc,2,1,∆pc,2,2, . . .∆pc,2,−n)) = τpc (pc, n×∆pc) when n < 0

R14 R1 to R4, R11 to R13 & 517 ⇒ τpc (pc, εpc,n (∆pc)) = τpc (pc, n×∆pc) for all integer n

R15 R14 & 430 ⇒ εpc,n (∆pc) = n×∆pc
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Theorem 519 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆pc is any chromatic pitch interval in ψ then

ιpc (∆pc) = εpc,−1 (∆pc)

Proof

R1 515 ⇒ ιpc (∆pc) = −∆pc

R2 518 ⇒ εpc,−1 (∆pc) = −∆pc

R3 R1 & R2 ⇒ ιpc (∆pc) = εpc,−1 (∆pc)

Theorem 520 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n1, n2, . . . nk is a collection of integers and ∆pc is a chromatic pitch interval in ψ then

εpc,nk
(. . . εpc,n2 (εpc,n1 (∆pc)) . . .) = εpc,

∏

k
j=1 nj

(∆pc)
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Proof

R1 Let xk = εpc,nk
(. . . εpc,n2 (εpc,n1 (∆pc)) . . .)

R2 Let yk = εpc,
∏k

j=1 nj
(∆pc)

R3 R1 & R2 ⇒ y1 = εpc,
∏

1
j=1 nj

(∆pc) = εpc,n1 (∆pc) = x1

R4 R1 & R2 ⇒
(

xk = yk ⇒ xk+1 = εpc,nk+1
(yk)

)

R5 R2 & 518 ⇒ εpc,nk+1
(yk) = nk+1 × yk

= nk+1 × εpc,
∏k

j=1 nj
(∆pc)

= nk+1 ×
(

∏k
j=1 nj

)

×∆pc

=
(

∏k+1
j=1 nj

)

×∆pc

= εpc,
∏k+1

j=1 nj
(∆pc)

= yk+1

R6 R4 & R5 ⇒ (xk = yk ⇒ xk+1 = yk+1)

R7 R3 & R6 ⇒ xk = yk for all integer k greater than zero

R8 R1, R2 & R7 ⇒ εpc,nk
(. . . εpc,n2 (εpc,n1 (∆pc)) . . .) = εpc,

∏

k
j=1 nj

(∆pc)

Theorem 521 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n is an integer and ∆pc is a chromatic pitch interval in ψ then

ιpc (εpc,n (∆pc)) = εpc,−n (∆pc)

Proof

R1 515 ⇒ ιpc (εpc,n (∆pc)) = − εpc,n (∆pc)

R2 R1 & 518 ⇒ ιpc (εpc,n (∆pc)) = −n×∆pc = εpc,−n (∆pc)

Theorem 522 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n is an integer and ∆pc is a chromatic pitch interval in ψ then:

∆ c (εpc,n (∆pc)) = εc,n (∆ c (∆pc))
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Proof

R1 Let x = ∆ c (εpc,n (∆pc))

R2 Let y = εc,n (∆ c (∆pc))

R3 518 & R1 ⇒ x = ∆ c (n×∆pc)

R4 287 & R3 ⇒ x = (n×∆pc) mod µc

R5 R2 & 287 ⇒ y = εc,n (∆pc mod µc)

R6 R5 & 454 ⇒ y = (n× (∆pc mod µc)) mod µc

R7 R6 & 45 ⇒ y = (n×∆pc) mod µc

R8 R4 & R7 ⇒ x = y

R9 R1, R2 & R8 ⇒ ∆ c (εpc,n (∆pc)) = εc,n (∆ c (∆pc))

Theorem 523 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n is an integer and ∆pc is a chromatic pitch interval in ψ then:

∆ f (εpc,n (∆pc)) = εf,n (∆ f (∆pc))

Proof

R1 518 ⇒ ∆ f (εpc,n (∆pc)) = ∆ f (n×∆pc)

R2 R1 & 284 ⇒ ∆ f (εpc,n (∆pc)) = 2n×∆pc/µc

=
(

2∆pc/µc
)n

= (∆ f (∆pc))
n

R3 R2 & 549 ⇒ ∆ f (εpc,n (∆pc)) = εf,n (∆ f (∆pc))

Theorem 524 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n1, n2, . . . nk is a collection of integers and ∆pc is a chromatic pitch interval in ψ then

σpc (εpc,n1 (∆pc) , εpc,n2 (∆pc) , . . . , εpc,nk
(∆pc)) = εpc,

∑k
j=1 nj

(∆pc)
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Proof

R1 Let x = σpc (εpc,n1 (∆pc) , εpc,n2 (∆pc) , . . . , εpc,nk
(∆pc))

R2 R1 & 511 ⇒ x =
∑k

j=1 εpc,nj (∆pc)

R3 R2 & 518 ⇒ x =
∑k

j=1 (nj ×∆pc) = ∆pc ×
∑k

j=1 nj = εpc,
∑

k
j=1 nj

(∆pc)

R4 R1 & R3 ⇒ σpc (εpc,n1 (∆pc) , εpc,n2 (∆pc) , . . . , εpc,nk
(∆pc)) = εpc,

∑k
j=1 nj

(∆pc)

Exponentiation of the chromatic pitch tranposition function

Definition 525 (Definition of τpc,n (pc,∆pc)) If ψ is a pitch system and pc is a chromatic pitch in ψ and

∆pc is a chromatic pitch interval in ψ then

τpc,n (pc,∆pc) = τpc (pc, εpc,n (∆pc))

Theorem 526 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n1, n2, . . . , nk is a collection of integers, pc is a chromatic pitch in ψ and ∆pc is a chromatic

pitch interval in ψ then

τpc,nk
(. . . τpc,n2 (τpc,n1 (pc,∆pc) ,∆pc) . . . ,∆pc) = τpc,

∑

k
j=1 nj

(pc,∆pc)
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Proof

R1 Let xk = τpc,nk
(. . . τpc,n2 (τpc,n1 (pc,∆pc) ,∆pc) . . . ,∆pc)

R2 Let yk = τpc,
∑k

j=1 nj
(pc,∆pc)

R3 R1 ⇒ x1 = τpc,n1 (pc,∆pc)

R4 R2 ⇒ y1 = τpc,
∑

1
j=1 nj

(pc,∆pc) = τpc,n1 (pc,∆pc)

R5 R3 & R4 ⇒ x1 = y1

R6 R1 ⇒
(

xk = yk ⇒ xk+1 = τpc,nk+1
(yk,∆pc)

)

R7 R2 ⇒ τpc,nk+1
(yk,∆pc) = τpc,nk+1

(

τpc,
∑

k
j=1 nj

(pc,∆pc) ,∆pc

)

R8 R7 & 525 ⇒ τpc,nk+1
(yk,∆pc) = τpc

(

τpc

(

pc, εpc,
∑

k
j=1 nj

(∆pc)
)

, εpc,nk+1
(∆pc)

)

R9 R8 & 518 ⇒ τpc,nk+1
(yk,∆pc) = τpc

(

τpc

(

pc,
(

∑k
j=1 nj

)

×∆pc

)

, nk+1 ×∆pc

)

R10 R9 & 427 ⇒ τpc,nk+1
(yk,∆pc) = pc +

(

∑k
j=1 nj

)

×∆pc + nk+1 ×∆pc

= pc + ∆pc ×
(

nk+1 +
∑k

j=1 nj

)

= pc + ∆pc ×
∑k+1

j=1 nj

= τpc

(

pc,∆pc ×
∑k+1

j=1 nj

)

R11 R10 & 518 ⇒ τpc,nk+1
(yk,∆pc) = τpc

(

pc, εpc,
∑k+1

j=1 nj
(∆pc)

)

R12 R11 & 525 ⇒ τpc,nk+1
(yk,∆pc) = τ

pc,
∑k+1

j=1 nj
(pc,∆pc)

R13 R2 & R12 ⇒ τpc,nk+1
(yk,∆pc) = yk+1

R14 R6 & R13 ⇒ (xk = yk ⇒ xk+1 = yk+1)

R15 R5 & R14 ⇒ xk = yk for all integer k greater than zero

R16 R1, R2 & R15 ⇒ τpc,nk
(. . . τpc,n2 (τpc,n1 (pc,∆pc) ,∆pc) . . . ,∆pc) = τpc,

∑k
j=1 nj

(pc,∆pc)
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4.6.6 Summation, inversion and exponentiation of morphetic pitch intervals

Summation of morphetic pitch intervals

Definition 527 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and

∆pm,1,∆pm,2, . . .∆pm,n

is a collection of morphetic pitch intervals in ψ then

σpm (∆pm,1,∆pm,2, . . .∆pm,n) =

n
∑

k=1

∆pm,k

Theorem 528 If ψ is a pitch system and

∆pm,1,∆pm,2, . . .∆pm,n

is a collection of morphetic pitch intervals in ψ and pm is a morphetic pitch in ψ then

τpm (pm, σpm (∆pm,1,∆pm,2, . . .∆pm,n)) = τpm (. . . τpm (τpm (pm,∆pm,1) ,∆pm,2) . . . ,∆pm,n)
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Proof

R1 Let xn = τpm (. . . τpm (τpm (pm,∆pm,1) ,∆pm,2) . . . ,∆pm,n)

R2 Let yn = τpm (pm, σpm (∆pm,1,∆pm,2, . . .∆pm,n))

R3 R1 & 432 ⇒ x1 = τpm (pm,∆pm,1) = pm + ∆pm,1

R4 R2 & 432 ⇒ y1 = pm + σpm (∆pm,1)

R5 R4 & 527 ⇒ y1 = pm + ∆pm,1

R6 R3 & R5 ⇒ x1 = y1

R7 R1 ⇒ (xk = yk ⇒ xk+1 = τpm (yk,∆pm,k+1))

R8 R2 & 432 ⇒ yn = pm + σpm (∆pm,1,∆pm,2, . . .∆pm,n)

R9 R8 & 527 ⇒ yn = pm +
∑n

k=1 ∆pm,k

R10 432 ⇒ τpm (yk,∆pm,k+1) = yk + ∆pm,k+1

R11 R9 & R10 ⇒ τpm (yk,∆pm,k+1) = pm +
∑k

j=1 ∆pm,j + ∆pm,k+1

= pm +
∑k+1

j=1 ∆pm,j

R12 R11 & R9 ⇒ τpm (yk,∆pm,k+1) = yk+1

R13 R12 & R7 ⇒ (xk = yk ⇒ xk+1 = yk+1)

R14 R6 & R13 ⇒ xk = yk for all positive integers k

R15 R1, R2 & R14 ⇒ τpm (pm, σpm (∆pm,1,∆pm,2, . . .∆pm,n)) = τpm (. . . τpm (τpm (pm,∆pm,1) ,∆pm,2) . . . ,∆pm,n)

Inversion of morphetic pitch intervals

Definition 529 (Definition of ιpm (∆pm)) If ψ is a pitch system and ∆pm is a morphetic pitch interval in

ψ and pm is a morphetic pitch in ψ then ιpm (∆pm) is the morphetic pitch interval that satisfies the following

equation

τpm (τpm (pm,∆pm) , ιpm (∆pm)) = pm

Definition 530 (Inversional equivalence of morphetic pitch intervals) If ψ is a pitch system and

∆pm,1 and ∆pm,2 are morphetic pitch intervals in ψ then ∆pm,1 and ∆pm,2 are inversionally equivalent

if and only if

(ιpm (∆pm,1) = ∆pm,2) ∨ (∆pm,1 = ∆pm,2)
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The fact that two morphetic pitch intervals are inversionally equivalent is denoted as follows:

∆pm,1 ≡ι ∆pm,2

Theorem 531 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆pm is a morphetic pitch interval in ψ then

ιpm (∆pm) = −∆pm

Proof

R1 529 ⇒ τpm (τpm (pm,∆pm) , ιpm (∆pm)) = pm

R2 R1 & 432 ⇒ τpm (pm + ∆pm, ιpm (∆pm)) = pm

⇒ pm + ∆pm + ιpm (∆pm) = pm

⇒ ∆pm + ιpm (∆pm) = 0

⇒ ιpm (∆pm) = −∆pm

Theorem 532 If ψ is a pitch system and ∆pm, ∆pm,1 and ∆pm,2 are morphetic pitch intervals in ψ then

(∆pm,1 = ιpm (∆pm)) ∧ (∆pm,2 = ιpm (∆pm)) ⇒ (∆pm,1 = ∆pm,2)

Proof

R1 Let (∆pm,1 = ιpm (∆pm)) ∧ (∆pm,2 = ιpm (∆pm))

R2 R1 & 531 ⇒ ∆pm,1 = −∆pm

R3 R1 & 531 ⇒ ∆pm,2 = −∆pm

R4 R2 & R3 ⇒ ∆pm,1 = ∆pm,2

R5 R1 to R4 ⇒ (∆pm,1 = ιpm (∆pm)) ∧ (∆pm,2 = ιpm (∆pm)) ⇒ (∆pm,1 = ∆pm,2)

Exponentiation of morphetic pitch intervals

Definition 533 (Definition of εpm,n (∆pm)) Given that:

1. ψ is a pitch system;

2. pm is a morphetic pitch in ψ;

3. ∆pm is a morphetic pitch interval in ψ;

4. n is an integer;
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5. k is an integer and 1 ≤ k ≤ abs (n);

6. ∆pm,1,k = ∆pm for all k; and

7. ∆pm,2,k = ιpm (∆pm) for all k;

then εpm,n (∆pm) returns a morphetic pitch interval that satisfies the following equation:

τpm (pm, εpm,n (∆pm)) =











τpm (pm, σpm (∆pm,1,1,∆pm,1,2, . . .∆pm,1,n))

pm

τpm (pm, σpm (∆pm,2,1,∆pm,2,2, . . .∆pm,2,−n))

if

if

if

n > 0

n = 0

n < 0

Theorem 534 (Formula for εpm,n (∆pm)) If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆pm is a morphetic pitch interval in ψ and n is an integer then

εpm,n (∆pm) = n×∆pm
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Proof

R1 Let n be any integer

R2 Let k be an integer such that 1 ≤ k ≤ abs (n)

R3 Let ∆pm,1,k = ∆pm for all k

R4 Let ∆pm,2,k = ιpm (∆pm) for all k

R5 Let n1 be any integer greater than zero

R6 R3, R5 & 527 ⇒ τpm (pm, σpm (∆pm,1,1,∆pm,1,2, . . .∆pm,1,n1))

= τpm

(

pm,
∑n1

j=1 ∆pm,1,j

)

= τpm (pm, n1 ×∆pm)

R7 432 ⇒ τpm (pm, 0×∆pm) = pm + 0×∆pm = pm

R8 Let n2 be any integer less than zero

R9 R4, R8 & 527 ⇒ τpm (pm, σpm (∆pm,2,1,∆pm,2,2, . . .∆pm,2,−n2))

= τpm

(

pm,
∑−n2

j=1 ∆pm,2,j

)

= τpm (pm,−n2 × ιpm (∆pm))

R10 R9 & 531 ⇒ τpm (pm, σpm (∆pm,2,1,∆pm,2,2, . . .∆pm,2,−n2))

= τpm (pm,−n2 × (−∆pm))

= τpm (pm, n2 ×∆pm)

R11 R1, R5 & R6 ⇒ τpm (pm, σpm (∆pm,1,1,∆pm,1,2, . . .∆pm,1,n)) = τpm (pm, n×∆pm) when n > 0

R12 R1 & R7 ⇒ pm = τpm (pm, n×∆pm) when n = 0

R13 R1, R8 & R10 ⇒ τpm (pm, σpm (∆pm,2,1,∆pm,2,2, . . .∆pm,2,−n)) = τpm (pm, n×∆pm) when n < 0

R14 R1 to R4, R11 to R13 & 533 ⇒ τpm (pm, εpm,n (∆pm)) = τpm (pm, n×∆pm) for all integer n

R15 R14 & 435 ⇒ εpm,n (∆pm) = n×∆pm
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Theorem 535 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆pm is any morphetic pitch interval in ψ then

ιpm (∆pm) = εpm,−1 (∆pm)

Proof

R1 531 ⇒ ιpm (∆pm) = −∆pm

R2 534 ⇒ εpm,−1 (∆pm) = −∆pm

R3 R1 & R2 ⇒ ιpm (∆pm) = εpm,−1 (∆pm)

Theorem 536 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n1, n2, . . . nk is a collection of integers and ∆pm is a morphetic pitch interval in ψ then

εpm,nk
(. . . εpm,n2 (εpm,n1 (∆pm)) . . .) = εpm,

∏

k
j=1 nj

(∆pm)
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Proof

R1 Let xk = εpm,nk
(. . . εpm,n2 (εpm,n1 (∆pm)) . . .)

R2 Let yk = εpm,
∏k

j=1 nj
(∆pm)

R3 R1 & R2 ⇒ y1 = εpm,
∏

1
j=1 nj

(∆pm) = εpm,n1 (∆pm) = x1

R4 R1 & R2 ⇒
(

xk = yk ⇒ xk+1 = εpm,nk+1
(yk)

)

R5 R2 & 534 ⇒ εpm,nk+1
(yk) = nk+1 × yk

= nk+1 × εpm,
∏k

j=1 nj
(∆pm)

= nk+1 ×
(

∏k
j=1 nj

)

×∆pm

=
(

∏k+1
j=1 nj

)

×∆pm

= εpm,
∏k+1

j=1 nj
(∆pm)

= yk+1

R6 R4 & R5 ⇒ (xk = yk ⇒ xk+1 = yk+1)

R7 R3 & R6 ⇒ xk = yk for all integer k greater than zero

R8 R1, R2 & R7 ⇒ εpm,nk
(. . . εpm,n2 (εpm,n1 (∆pm)) . . .) = εpm,

∏

k
j=1 nj

(∆pm)

Theorem 537 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n is an integer and ∆pm is a morphetic pitch interval in ψ then

ιpm (εpm,n (∆pm)) = εpm,−n (∆pm)

Proof

R1 531 ⇒ ιpm (εpm,n (∆pm)) = − εpm,n (∆pm)

R2 R1 & 534 ⇒ ιpm (εpm,n (∆pm)) = −n×∆pm = εpm,−n (∆pm)

Theorem 538 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n is an integer and ∆pm is a morphetic pitch interval in ψ then:

∆ m (εpm,n (∆pm)) = εm,n (∆ m (∆pm))
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Proof

R1 Let x = ∆ m (εpm,n (∆pm))

R2 Let y = εm,n (∆ m (∆pm))

R3 534 & R1 ⇒ x = ∆ m (n×∆pm)

R4 290 & R3 ⇒ x = (n×∆pm) mod µm

R5 R2 & 290 ⇒ y = εm,n (∆pm mod µm)

R6 R5 & 468 ⇒ y = (n× (∆pm mod µm)) mod µm

R7 R6 & 45 ⇒ y = (n×∆pm) mod µm

R8 R4 & R7 ⇒ x = y

R9 R1, R2 & R8 ⇒ ∆ m (εpm,n (∆pm)) = εm,n (∆ m (∆pm))

Theorem 539 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n1, n2, . . . nk is a collection of integers and ∆pm is a morphetic pitch interval in ψ then

σpm (εpm,n1 (∆pm) , εpm,n2 (∆pm) , . . . , εpm,nk
(∆pm)) = εpm,

∑

k
j=1 nj

(∆pm)

Proof

R1 Let x = σpm (εpm,n1 (∆pm) , εpm,n2 (∆pm) , . . . , εpm,nk
(∆pm))

R2 R1 & 527 ⇒ x =
∑k

j=1 εpm,nj (∆pm)

R3 R2 & 534 ⇒ x =
∑k

j=1 (nj ×∆pm) = ∆pm ×
∑k

j=1 nj = εpm,
∑

k
j=1 nj

(∆pm)

R4 R1 & R3 ⇒ σpm (εpm,n1 (∆pm) , εpm,n2 (∆pm) , . . . , εpm,nk
(∆pm)) = εpm,

∑k
j=1 nj

(∆pm)

Exponentiation of the morphetic pitch tranposition function

Definition 540 (Definition of τpm,n (pm,∆pm)) If ψ is a pitch system and pm is a morphetic pitch in ψ

and ∆pm is a morphetic pitch interval in ψ then

τpm,n (pm,∆pm) = τpm (pm, εpm,n (∆pm))

Theorem 541 If

ψ = [µc, µm, f0, pc,0]
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is a pitch system, n1, n2, . . . , nk is a collection of integers, pm is a morphetic pitch in ψ and ∆pm is a

morphetic pitch interval in ψ then

τpm,nk
(. . . τpm,n2 (τpm,n1 (pm,∆pm) ,∆pm) . . . ,∆pm) = τpm,

∑

k
j=1 nj

(pm,∆pm)

Proof

R1 Let xk = τpm,nk
(. . . τpm,n2 (τpm,n1 (pm,∆pm) ,∆pm) . . . ,∆pm)

R2 Let yk = τpm,
∑k

j=1 nj
(pm,∆pm)

R3 R1 ⇒ x1 = τpm,n1 (pm,∆pm)

R4 R2 ⇒ y1 = τpm,
∑1

j=1 nj
(pm,∆pm) = τpm,n1 (pm,∆pm)

R5 R3 & R4 ⇒ x1 = y1

R6 R1 ⇒
(

xk = yk ⇒ xk+1 = τpm,nk+1
(yk,∆pm)

)

R7 R2 ⇒ τpm,nk+1
(yk,∆pm) = τpm,nk+1

(

τpm,
∑

k
j=1 nj

(pm,∆pm) ,∆pm

)

R8 R7 & 540 ⇒ τpm,nk+1
(yk,∆pm) = τpm

(

τpm

(

pm, εpm,
∑

k
j=1 nj

(∆pm)
)

, εpm,nk+1
(∆pm)

)

R9 R8 & 534 ⇒ τpm,nk+1
(yk,∆pm) = τpm

(

τpm

(

pm,
(

∑k
j=1 nj

)

×∆pm

)

, nk+1 ×∆pm

)

R10 R9 & 432 ⇒ τpm,nk+1
(yk,∆pm) = pm +

(

∑k
j=1 nj

)

×∆pm + nk+1 ×∆pm

= pm + ∆pm ×
(

nk+1 +
∑k

j=1 nj

)

= pm + ∆pm ×
∑k+1

j=1 nj

= τpm

(

pm,∆pm ×
∑k+1

j=1 nj

)

R11 R10 & 534 ⇒ τpm,nk+1
(yk,∆pm) = τpm

(

pm, εpm,
∑k+1

j=1 nj
(∆pm)

)

R12 R11 & 540 ⇒ τpm,nk+1
(yk,∆pm) = τpm,

∑k+1
j=1 nj

(pm,∆pm)

R13 R2 & R12 ⇒ τpm,nk+1
(yk,∆pm) = yk+1

R14 R6 & R13 ⇒ (xk = yk ⇒ xk+1 = yk+1)

R15 R5 & R14 ⇒ xk = yk for all integer k greater than zero

R16 R1, R2 & R15 ⇒ τpm,nk
(. . . τpm,n2 (τpm,n1 (pm,∆pm) ,∆pm) . . . ,∆pm) = τpm,

∑k
j=1 nj

(pm,∆pm)
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4.6.7 Summation, inversion and exponentiation of frequency intervals

Summation of frequency intervals

Definition 542 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and

∆f1,∆f2, . . .∆fn

is a collection of frequency intervals in ψ then

σf (∆f1,∆f2, . . .∆fn) =

n
∏

k=1

∆fk

Theorem 543 If ψ is a pitch system and

∆f1,∆f2, . . .∆fn

is a collection of frequency intervals in ψ and f is a frequency in ψ then

τf (f, σf (∆f1,∆f2, . . .∆fn)) = τf (. . . τf (τf (f,∆f1) ,∆f2) . . . ,∆fn)
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Proof

R1 Let xn = τf (f, σf (∆f1,∆f2, . . .∆fn))

R2 Let yn = τf (. . . τf (τf (f,∆f1) ,∆f2) . . . ,∆fn)

R3 R1 ⇒ x1 = τf (f, σf (∆f1))

R4 R3 & 542 ⇒ x1 = τf (f,∆f1)

R5 R2 ⇒ y1 = τf (f,∆f1)

R6 R4 & R5 ⇒ x1 = y1

R7 R2 ⇒ (xk = yk ⇒ yk+1 = τf (xk ,∆fk+1))

R8 437 ⇒ τf (xk ,∆fk+1) = xk ×∆fk+1

R9 R1 & R8 ⇒ τf (xk ,∆fk+1) = τf (f, σf (∆f1,∆f2, . . .∆fk))×∆fk+1

R10 R9 & 437 ⇒ τf (xk ,∆fk+1) = f × σf (∆f1,∆f2, . . .∆fk)×∆fk+1

R11 R10 & 542 ⇒ τf (xk ,∆fk+1) = f ×
∏k

j=1 ∆fj ×∆fk+1

= f ×
∏k+1

j=1 ∆fj

= f × σf (∆f1,∆f2, . . .∆fk+1)

R12 R11 & 437 ⇒ τf (xk ,∆fk+1) = τf (f, σf (∆f1,∆f2, . . .∆fk+1))

R13 R1 & R12 ⇒ τf (xk ,∆fk+1) = xk+1

R14 R7 & R13 ⇒ (xk = yk ⇒ xk+1 = yk+1)

R15 R6 & R14 ⇒ xk = yk for all integer k greater than zero

R16 R1, R2 & R15 ⇒ τf (f, σf (∆f1,∆f2, . . .∆fn)) = τf (. . . τf (τf (f,∆f1) ,∆f2) . . . ,∆fn)

Inversion of frequency intervals

Definition 544 (Definition of ιf (∆f)) If ψ is a pitch system and ∆f is a frequency interval in ψ and f

is a frequency in ψ then ιf (∆f) is the frequency interval that satisfies the following equation

τf (τf (f,∆f) , ιf (∆f)) = f

Definition 545 (Inversional equivalence of frequency intervals) If ψ is a pitch system and ∆f1 and
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∆f2 are frequency intervals in ψ then ∆f1 and ∆f2 are inversionally equivalent if and only if

(ιf (∆f1) = ∆f2) ∨ (∆f1 = ∆f2)

The fact that two frequency intervals are inversionally equivalent is denoted as follows:

∆f1 ≡ι ∆f2

Theorem 546 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆f is a frequency interval in ψ then

ιf (∆f) =
1

∆f

Proof

R1 544 ⇒ τf (τf (f,∆f) , ιf (∆f)) = f

R2 437 ⇒ τf (τf (f,∆f) , ιf (∆f))

= τf (f ×∆f, ιf (∆f))

= f ×∆f × ιf (∆f)

R3 R1 & R2 ⇒ f ×∆f × ιf (∆f) = f

⇒ ∆f × ιf (∆f) = 1

⇒ ιf (∆f) = 1
∆f

Theorem 547 If ψ is a pitch system and ∆f , ∆f1 and ∆f2 are frequency intervals in ψ then

(∆f1 = ιf (∆f)) ∧ (∆f2 = ιf (∆f)) ⇒ (∆f1 = ∆f2)

Proof

R1 Let ∆f1 = ιf (∆f)

R2 Let ∆f2 = ιf (∆f)

R3 R1 & 546 ⇒ ∆f1 = 1
∆f

R4 R2 & 546 ⇒ ∆f2 = 1
∆f

R5 R3 & R4 ⇒ ∆f1 = ∆f2

R6 R1 to R5 ⇒ (∆f1 = ιf (∆f)) ∧ (∆f2 = ιf (∆f)) ⇒ (∆f1 = ∆f2)
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Exponentiation of frequency intervals

Definition 548 (Definition of εf,n (∆f)) Given that:

1. ψ is a pitch system;

2. f is a frequency in ψ;

3. ∆f is a frequency interval in ψ;

4. n is an integer;

5. k is an integer and 1 ≤ k ≤ abs (n);

6. ∆f1,k = ∆f for all k; and

7. ∆f2,k = ιf (∆f) for all k;

then εf,n (∆f) returns a frequency interval that satisfies the following equation:

τf (f, εf,n (∆f)) =











τf (f, σf (∆f1,1,∆f1,2, . . .∆f1,n))

f

τf (f, σf (∆f2,1,∆f2,2, . . .∆f2,−n))

if

if

if

n > 0

n = 0

n < 0

Theorem 549 (Formula for εf,n (∆f)) If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆f is a frequency interval in ψ and n is an integer then

εf,n (∆f) = (∆f)
n
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Proof

R1 Let n be an integer

R2 Let k be an integer such that 1 ≤ k ≤ abs (n)

R3 Let ∆f1,k = ∆f for all k

R4 Let ∆f2,k = ιf (∆f) for all k

R5 Let n1 be an integer greater than zero

R6 R2, R3, R5 & 548 ⇒ τf (f, εf,n1 (∆f)) = τf (f, σf (∆f1,1,∆f1,2, . . .∆f1,n1))

R7 R6 & 542 ⇒ τf (f, εf,n1 (∆f)) = τf

(

f,
∏n1

j=1 ∆f1,j

)

R8 R7 & 440 ⇒ εf,n1 (∆f) =
∏n1

j=1 ∆f1,j

R9 R3 & R8 ⇒ εf,n1 (∆f) =
∏n1

j=1 ∆f = (∆f)
n1

R10 R1, R5 & R9 ⇒ εf,n (∆f) = (∆f)
n

when n > 0

R11 (∆f)
0

= 1

R12 R11 ⇒ τf

(

f, (∆f)0
)

= τf (f, 1)

R13 R12 & 437 ⇒ τf

(

f, (∆f)0
)

= f × 1 = f

R14 548 ⇒ τf (f, εf,0 (∆f)) = f

R15 R13, R14 & 440 ⇒ εf,0 (∆f) = (∆f)
0

R16 R1 & R15 ⇒ εf,n (∆f) = (∆f)
n

when n = 0

R17 Let n2 be any integer less than zero

R18 R4, R17 & 548 ⇒ τf (f, εf,n2 (∆f)) = τf (f, σf (∆f2,1,∆f2,2, . . .∆f2,−n2))

R19 R18 & 542 ⇒ τf (f, εf,n2 (∆f)) = τf

(

f,
∏−n2

j=1 ∆f2,j

)

R20 R19 & 440 ⇒ εf,n2 (∆f) =
∏−n2

j=1 ∆f2,j

R21 R4 & R20 ⇒ εf,n2 (∆f) =
∏−n2

j=1 ιf (∆f) = (ιf (∆f))
−n2

R22 R21 & 546 ⇒ εf,n2 (∆f) =
(

1
∆f

)−n2

= (∆f)n2

R23 R1, R17 & R22 ⇒ εf,n (∆f) = (∆f)n when n < 0

R24 R1, R10, R16 & R23 ⇒ εf,n (∆f) = (∆f)
n

for all integer n
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Theorem 550 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆f is any frequency interval in ψ then

ιf (∆f) = εf,−1 (∆f)

Proof

R1 546 ⇒ ιf (∆f) = 1
∆f = (∆f)

−1

R2 549 ⇒ εf,−1 (∆f) = (∆f)
−1

R3 R1 & R2 ⇒ ιf (∆f) = εf,−1 (∆f)

Theorem 551 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n1, n2, . . . nk is a collection of integers and ∆f is a frequency interval in ψ then

εf,nk
(. . . εf,n2 (εf,n1 (∆f)) . . .) = ε

f,
∏

k
j=1 nj

(∆f)
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Proof

R1 Let xk = εf,nk
(. . . εf,n2 (εf,n1 (∆f)) . . .)

R2 Let yk = ε
f,
∏k

j=1 nj
(∆f)

R3 R1 ⇒ x1 = εf,n1 (∆f)

R4 R2 ⇒ y1 = εf,
∏

1
j=1 nj

(∆f) = εf,n1 (∆f)

R5 R3 & R4 ⇒ x1 = y1

R6 R1 ⇒
(

xk = yk ⇒ xk+1 = εf,nk+1
(yk)

)

R7 R2 ⇒ εf,nk+1
(yk) = εf,nk+1

(

ε
f,
∏

k
j=1 nj

(∆f)
)

R8 R7 & 549 ⇒ εf,nk+1
(yk) = εf,nk+1

(

(∆f)
∏k

j=1 nj

)

=
(

(∆f)
∏k

j=1 nj

)nk+1

= (∆f)nk+1×
∏k

j=1 nj = (∆f)
∏k+1

j=1 nj

= ε
f,
∏k+1

j=1 nj
(∆f)

R9 R2 & R8 ⇒ εf,nk+1
(yk) = yk+1

R10 R6 & R9 ⇒ (xk = yk ⇒ xk+1 = yk+1)

R11 R5 & R10 ⇒ xk = yk for all integer k greater than zero

R12 R1, R2 & R11 ⇒ εf,nk
(. . . εf,n2 (εf,n1 (∆f)) . . .) = ε

f,
∏

k
j=1 nj

(∆f)

Theorem 552 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n is an integer and ∆f is a frequency interval in ψ then

ιf (εf,n (∆f)) = εf,−n (∆f)

Proof

R1 549 ⇒ ιf (εf,n (∆f)) = ιf ((∆f)
n
)

R2 R1 & 546 ⇒ ιf (εf,n (∆f)) = 1
(∆f)n = (∆f)

−n

R3 R2 & 549 ⇒ ιf (εf,n (∆f)) = εf,−n (∆f)
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Theorem 553 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n is an integer and ∆f is a frequency interval in ψ then:

∆ pc (εf,n (∆f)) = εpc,n (∆ pc (∆f))

Proof

R1 549 ⇒ ∆ pc (εf,n (∆f)) = ∆ pc ((∆f)
n
)

R2 R1 & 293 ⇒ ∆ pc (εf,n (∆f)) = µc ×
ln((∆f)n)

ln 2

= n× µc ×
ln(∆f)

ln 2

= n×∆ pc (∆f)

R3 R2 & 518 ⇒ ∆ pc (εf,n (∆f)) = εpc,n (∆ pc (∆f))

Theorem 554 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n is an integer and ∆f is a frequency interval in ψ then:

∆ c (εf,n (∆f)) = εc,n (∆ c (∆f))

Proof

R1 549 ⇒ ∆ c (εf,n (∆f)) = ∆ c ((∆f)n)

R2 R1 & 296 ⇒ ∆ c (εf,n (∆f)) =
(

µc ×
(

ln((∆f)n)
ln 2

))

mod µc

=
(

n× µc ×
ln(∆f)

ln 2

)

mod µc

R3 R2 & 45 ⇒ ∆ c (εf,n (∆f)) =
(

n×
((

µc ×
ln(∆f)

ln 2

)

mod µc

))

mod µc

R4 R3 & 296 ⇒ ∆ c (εf,n (∆f)) = (n×∆ c (∆f)) mod µc

R5 R4 & 454 ⇒ ∆ c (εf,n (∆f)) = εc,n (∆ c (∆f))

Theorem 555 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n1, n2, . . . nk is a collection of integers and ∆f is a frequency interval in ψ then

σf (εf,n1 (∆f) , εf,n2 (∆f) , . . . , εf,nk
(∆f)) = ε

f,
∑

k
j=1 nj

(∆f)
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Proof

R1 Let xk = σf (εf,n1 (∆f) , εf,n2 (∆f) , . . . , εf,nk
(∆f))

R2 R1 & 542 ⇒ xk =
∏k

j=1 εf,nj (∆f)

R3 R2 & 549 ⇒ xk =
∏k

j=1 (∆f)
nj

= (∆f)
∑k

j=1 nj

= ε
f,
∑k

j=1 nj
(∆f)

R4 R1 & R3 ⇒ σf (εf,n1 (∆f) , εf,n2 (∆f) , . . . , εf,nk
(∆f)) = ε

f,
∑

k
j=1 nj

(∆f)

Exponentiation of the frequency tranposition function

Definition 556 (Definition of τf,n (f,∆f)) If ψ is a pitch system and f is a frequency in ψ and ∆f is a

frequency interval in ψ then

τf,n (f,∆f) = τf (f, εf,n (∆f))

Theorem 557 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n1, n2, . . . , nk is a collection of integers, f is a frequency in ψ and ∆f is a frequency interval

in ψ then

τf,nk
(. . . τf,n2 (τf,n1 (f,∆f) ,∆f) . . . ,∆f) = τ

f,
∑k

j=1 nj
(f,∆f)
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Proof

R1 Let xk = τf,nk
(. . . τf,n2 (τf,n1 (f,∆f) ,∆f) . . . ,∆f)

R2 Let yk = τ
f,
∑k

j=1 nj
(f,∆f)

R3 R1 ⇒ x1 = τf,n1 (f,∆f)

R4 R2 ⇒ y1 = τf,
∑

1
j=1 nj

(f,∆f) = τf,n1 (f,∆f)

R5 R3 & R4 ⇒ x1 = y1

R6 R1 ⇒
(

xk = yk ⇒ xk+1 = τf,nk+1
(yk,∆f)

)

R7 R2 ⇒ τf,nk+1
(yk,∆f) = τf,nk+1

(

τ
f,
∑

k
j=1 nj

(f,∆f) ,∆f
)

R8 R7 & 556 ⇒ τf,nk+1
(yk,∆f) = τf,nk+1

(

τf

(

f, εf,
∑

k
j=1 nj

(∆f)
)

,∆f
)

= τf

(

τf

(

f, εf,
∑

k
j=1 nj

(∆f)
)

, εf,nk+1
(∆f)

)

R9 R8 & 549 ⇒ τf,nk+1
(yk,∆f) = τf

(

τf

(

f, (∆f)
∑k

j=1 nj

)

, (∆f)
nk+1

)

R10 R9 & 437 ⇒ τf,nk+1
(yk,∆f) = τf

(

f × (∆f)
∑k

j=1 nj , (∆f)
nk+1

)

= f × (∆f)
∑k

j=1 nj × (∆f)
nk+1

= f × (∆f)
∑k+1

j=1 nj

= τf

(

f, (∆f)
∑k+1

j=1 nj

)

R11 R10 & 549 ⇒ τf,nk+1
(yk,∆f) = τf

(

f, ε
f,
∑k+1

j=1 nj
(∆f)

)

R12 R11 & 556 ⇒ τf,nk+1
(yk,∆f) = τ

f,
∑k+1

j=1 nj
(f,∆f)

R13 R12 & R2 ⇒ τf,nk+1
(yk,∆f) = yk+1

R14 R13 & R6 ⇒ (xk = yk ⇒ xk+1 = yk+1)

R15 R5 & R14 ⇒ xk = yk for all integers k greater than zero

R16 R1, R2 & R15 ⇒ τf,nk
(. . . τf,n2 (τf,n1 (f,∆f) ,∆f) . . . ,∆f) = τ

f,
∑k

j=1 nj
(f,∆f)
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4.6.8 Summation, inversion and exponentiation of pitch intervals

Summation of pitch intervals

Definition 558 (Definition of σp (∆p1,∆p2, . . . ,∆pn)) If

ψ = [µc, µm, f0, pc,0]

is a pitch system and

∆p1,∆p2, . . . ,∆pn

is a collection of pitch intervals in ψ then

σp (∆p1,∆p2, . . . ,∆pn) =

[

n
∑

k=1

(∆ pc (∆pk)) ,

n
∑

k=1

(∆ pm (∆pk))

]

Theorem 559 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and

∆p1,∆p2, . . . ,∆pn

is a collection of pitch intervals in ψ then

σp (∆p1,∆p2, . . . ,∆pn) =







σpc (∆ pc (∆p1) ,∆ pc (∆p2) , . . .∆ pc (∆pk) , . . .∆ pc (∆pn)) ,

σpm (∆ pm (∆p1) ,∆ pm (∆p2) , . . .∆ pm (∆pk) , . . .∆ pm (∆pn))







Proof

R1 Let xn = σp (∆p1,∆p2, . . . ,∆pn)

R2 Let yn = σpc (∆ pc (∆p1) ,∆ pc (∆p2) , . . .∆ pc (∆pk) , . . .∆ pc (∆pn))

R3 Let σpm (∆ pm (∆p1) ,∆ pm (∆p2) , . . .∆ pm (∆pk) , . . .∆ pm (∆pn))

R4 558 & R1 ⇒ xn = [
∑n

k=1 (∆ pc (∆pk)) ,
∑n

k=1 (∆ pm (∆pk))]

R5 511 & R2 ⇒ yn =
∑n

k=1 (∆ pc (∆pk))

R6 527 & R3 ⇒ zn =
∑n

k=1 (∆ pm (∆pk))

R7 R4, R5 & R6 ⇒ xn = [yn, zn]

R8 R7, R1, R2 & R3 ⇒ σp (∆p1,∆p2, . . . ,∆pn)

=







σpc (∆ pc (∆p1) ,∆ pc (∆p2) , . . .∆ pc (∆pk) , . . .∆ pc (∆pn)) ,

σpm (∆ pm (∆p1) ,∆ pm (∆p2) , . . .∆ pm (∆pk) , . . .∆ pm (∆pn))






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Theorem 560 If ψ is a pitch system and

∆p1,∆p2, . . . ,∆pn

is a collection of pitch intervals in ψ and p is a pitch in ψ then

τp (p, σp (∆p1,∆p2, . . . ,∆pn)) = τp (. . . τp (τp (p,∆p1) ,∆p2) . . . ,∆pn)



CHAPTER 4. FORMAL SPECIFICATION OF MIPS 257

Proof

R1 Let xn = τp (p, σp (∆p1,∆p2, . . . ,∆pn))

R2 Let yn = τp (. . . τp (τp (p,∆p1) ,∆p2) . . . ,∆pn)

R3 R1 ⇒ x1 = τp (p, σp (∆p1))

R4 R3 & 558 ⇒ x1 = τp
(

p,
[

∑1
k=1 (∆ pc (∆pk)) ,

∑1
k=1 (∆ pm (∆pk))

])

= τp (p, [∆ pc (∆p1) ,∆ pm (∆p1)])

R5 R4 & 270 ⇒ x1 = τp (p,∆p1)

R6 R2 ⇒ y1 = τp (p,∆p1)

R7 R5 & R6 ⇒ x1 = y1

R8 R1 & R2 ⇒ (xk = yk ⇒ yk+1 = τp (xk,∆pk+1))

R9 R1 ⇒ τp (xk,∆pk+1) = τp (τp (p, σp (∆p1,∆p2, . . . ,∆pk)) ,∆pk+1)

R10 R9 & 558 ⇒ τp (xk,∆pk+1) = τp
(

τp
(

p,
[

∑k
j=1 (∆ pc (∆pj)) ,

∑k
j=1 (∆ pm (∆pj))

])

,∆pk+1

)

R11 R10, 442, 267 & 269 ⇒ τp (xk,∆pk+1) = τp

















τpc

(

pc (p) ,
∑k

j=1 (∆ pc (∆pj))
)

,

τpm

(

pm (p) ,
∑k

j=1 (∆ pm (∆pj))
)









,∆pk+1









R12 R11, 427 & 432 ⇒ τp (xk,∆pk+1) = τp













pc (p) +
∑k

j=1 (∆ pc (∆pj)) ,

pm (p) +
∑k

j=1 (∆ pm (∆pj))






,∆pk+1







R13 R12, 442, 63 & 64 ⇒ τp (xk,∆pk+1) =









τpc

(

pc (p) +
∑k

j=1 (∆ pc (∆pj)) ,∆ pc (∆pk+1)
)

,

τpm

(

pm (p) +
∑k

j=1 (∆ pm (∆pj)) ,∆ pm (∆pk+1)
)









R14 R13, 427 & 432 ⇒ τp (xk,∆pk+1) =







pc (p) +
∑k

j=1 (∆ pc (∆pj)) + ∆ pc (∆pk+1) ,

pm (p) +
∑k

j=1 (∆ pm (∆pj)) + ∆ pm (∆pk+1)







=
[

pc (p) +
∑k+1

j=1 (∆ pc (∆pj)) , pm (p) +
∑k+1

j=1 (∆ pm (∆pj))
]

=
[

τpc

(

pc (p) ,
∑k+1

j=1 (∆ pc (∆pj))
)

, τpm

(

pm (p) ,
∑k+1

j=1 (∆ pm (∆pj))
)]
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R15 R14, 442, 267 & 269 ⇒ τp (xk ,∆pk+1) = τp
(

p,
[

∑k+1
j=1 (∆ pc (∆pj)) ,

∑k+1
j=1 (∆ pm (∆pj))

])

R16 R15 & 558 ⇒ τp (xk ,∆pk+1) = τp (p, σp (∆p1,∆p2, . . . ,∆pk+1))

R17 R16 & R1 ⇒ τp (xk ,∆pk+1) = xk+1

R18 R17 & R8 ⇒ (xk = yk ⇒ xk+1 = yk+1)

R19 R18 & R7 ⇒ xk = yk for all integers k greater than zero

R20 R19, R1 & R2 ⇒ τp (p, σp (∆p1,∆p2, . . . ,∆pn)) = τp (. . . τp (τp (p,∆p1) ,∆p2) . . . ,∆pn)

Inversion of pitch intervals

Definition 561 (Inverse of a pitch interval) If ψ is a pitch system and ∆p is a pitch interval in ψ and

p is a pitch in ψ then the inverse of ∆p, denoted ιp (∆p), is the pitch interval that satisfies the following

equation

τp (τp (p,∆p) , ιp (∆p)) = p

Definition 562 (Inversional equivalence of pitch intervals) If ψ is a pitch system and ∆p1 and ∆p2

are pitch intervals in ψ then ∆p1 and ∆p2 are inversionally equivalent if and only if

(ιp (∆p1) = ∆p2) ∨ (∆p1 = ∆p2)

The fact that two pitch intervals are inversionally equivalent is denoted as follows:

∆p1 ≡ι ∆p2

Theorem 563 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆p is a pitch interval in ψ then

ιp (∆p) = [−∆ pc (∆p) ,−∆ pm (∆p)]
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Proof

R1 561 ⇒ τp (τp (p,∆p) , ιp (∆p)) = p

R2 R1 & 446 ⇒ p = τp ([pc (p) + ∆ pc (∆p) , pm (p) + ∆ pm (∆p)] , ιp (∆p))

R3 R2, 63, 64 & 446 ⇒ p = [pc (p) + ∆ pc (∆p) + ∆ pc (ιp (∆p)) , pm (p) + ∆ pm (∆p) + ∆ pm (ιp (∆p))]

R4 R3 & 63 ⇒ pc (p) = pc (p) + ∆ pc (∆p) + ∆ pc (ιp (∆p))

⇒ ∆ pc (ιp (∆p)) = −∆ pc (∆p)

R5 R3 & 64 ⇒ pm (p) = pm (p) + ∆ pm (∆p) + ∆ pm (ιp (∆p))

⇒ ∆ pm (ιp (∆p)) = −∆ pm (∆p)

R6 R4, R5 & 270 ⇒ ιp (∆p) = [−∆ pc (∆p) ,−∆ pm (∆p)]

Theorem 564 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆p is a pitch interval in ψ then

ιp (∆p) = [ιpc (∆ pc (∆p)) , ιpm (∆ pm (∆p))]

Proof

R1 563 ⇒ ιp (∆p) = [−∆ pc (∆p) ,−∆ pm (∆p)]

R2 515 ⇒ −∆ pc (∆p) = ιpc (∆ pc (∆p))

R3 531 ⇒ −∆ pm (∆p) = ιpm (∆ pm (∆p))

R4 R1, R2 & R3 ⇒ ιp (∆p) = [ιpc (∆ pc (∆p)) , ιpm (∆ pm (∆p))]

Theorem 565 If ψ is a pitch system and ∆p, ∆p1 and ∆p2 are pitch intervals in ψ then

(∆p1 = ιp (∆p)) ∧ (∆p2 = ιp (∆p)) ⇒ (∆p1 = ∆p2)
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Proof

R1 Let ∆p1 = ιp (∆p)

R2 Let ∆p2 = ιp (∆p)

R3 R1 & 563 ⇒ ∆p1 = [−∆ pc (∆p) ,−∆ pm (∆p)]

R4 R2 & 563 ⇒ ∆p2 = [−∆ pc (∆p) ,−∆ pm (∆p)]

R5 R3 & R4 ⇒ ∆p1 = ∆p2

R6 R1 to R5 ⇒ (∆p1 = ιp (∆p)) ∧ (∆p2 = ιp (∆p)) ⇒ (∆p1 = ∆p2)

Exponentiation of pitch intervals

Definition 566 (Definition of εp,n (∆p)) Given that:

1. ψ is a pitch system;

2. p is a pitch in ψ;

3. ∆p is a pitch interval in ψ;

4. n is an integer;

5. k is an integer and 1 ≤ k ≤ abs (n);

6. ∆p1,k = ∆p for all k; and

7. ∆p2,k = ιp (∆p) for all k;

then εp,n (∆p) returns a pitch interval that satisfies the following equation:

τp (p, εp,n (∆p)) =











τp (p, σp (∆p1,1,∆p1,2, . . .∆p1,n))

p

τp (p, σp (∆p2,1,∆p2,2, . . .∆p2,−n))

if

if

if

n > 0

n = 0

n < 0

Theorem 567 (Formula for εp,n (∆p)) If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆p is a pitch interval in ψ and n is an integer then

εp,n (∆p) = [n×∆ pc (∆p) , n×∆ pm (∆p)]
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Proof

R1 Let n1 be any integer greater than zero.

R2 Let ∆p1,k = ∆p for all integer k

R3 Let ∆p2,k = ιp (∆p) for all integer k

R4 566, R2 & R1 ⇒ τp (p, εp,n1 (∆p)) = τp (p, σp (∆p1,1,∆p1,2, . . .∆p1,n1))

R5 445 & R4 ⇒ εp,n1 (∆p) = σp (∆p1,1,∆p1,2, . . .∆p1,n1)

R6 558 & R5 ⇒ εp,n1 (∆p) = [
∑n1

k=1 (∆ pc (∆p1,k)) ,
∑n1

k=1 (∆ pm (∆p1,k))]

R7 R2 & R6 ⇒ εp,n1 (∆p) = [
∑n1

k=1 (∆ pc (∆p)) ,
∑n1

k=1 (∆ pm (∆p))]

= [n1 ×∆ pc (∆p) , n1 ×∆ pm (∆p)]

R8 R1 & R7 ⇒ εp,n (∆p) = [n×∆ pc (∆p) , n×∆ pm (∆p)] for all integers n greater than zero

R9 Let n2 be any integer less than zero.

R10 R3, R9 & 566 ⇒ τp (p, εp,n2 (∆p)) = τp (p, σp (∆p2,1,∆p2,2, . . .∆p2,−n2))

R11 R10 & 445 ⇒ εp,n2 (∆p) = σp (∆p2,1,∆p2,2, . . .∆p2,−n2)

R12 558 & R11 ⇒ εp,n2 (∆p) =
[

∑−n2

k=1 (∆ pc (∆p2,k)) ,
∑−n2

k=1 (∆ pm (∆p2,k))
]

R13 R3 & R12 ⇒ εp,n2 (∆p) =
[

∑−n2

k=1 (∆ pc (ιp (∆p))) ,
∑−n2

k=1 (∆ pm (ιp (∆p)))
]

R14 563 & 267 ⇒ ∆ pc (ιp (∆p)) = −∆ pc (∆p)

R15 563 & 269 ⇒ ∆ pm (ιp (∆p)) = −∆ pm (∆p)

R16 R13, R14 & R15 ⇒ εp,n2 (∆p) =
[

∑−n2

k=1 (−∆ pc (∆p)) ,
∑−n2

k=1 (−∆ pm (∆p))
]

= [−n2 × (−∆ pc (∆p)) ,−n2 × (−∆ pm (∆p))]

= [n2 × (∆ pc (∆p)) , n2 × (∆ pm (∆p))]

R17 R9 & R16 ⇒ εp,n (∆p) = [n×∆ pc (∆p) , n×∆ pm (∆p)] for all integers n less than zero.

R18 566 ⇒ τp (p, εp,0 (∆p)) = p

R19 446 & R18 ⇒ p = [pc (p) + ∆ pc (εp,0 (∆p)) , pm (p) + ∆ pm (εp,0 (∆p))]
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R20 R19 & 65 ⇒ [pc (p) , pm (p)] = [pc (p) + ∆ pc (εp,0 (∆p)) , pm (p) + ∆ pm (εp,0 (∆p))]

R21 R20 ⇒ pc (p) = pc (p) + ∆ pc (εp,0 (∆p)) ⇒ ∆ pc (εp,0 (∆p)) = 0

R22 R20 ⇒ pm (p) = pm (p) + ∆ pm (εp,0 (∆p)) ⇒ ∆ pm (εp,0 (∆p)) = 0

R23 R21, R22 & 65 ⇒ εp,0 (∆p) = [0, 0]

R24 R23 ⇒ εp,n (∆p) = [n×∆ pc (∆p) , n×∆ pm (∆p)] when n = 0

R25 R8, R17 & R24 ⇒ εp,n (∆p) = [n×∆ pc (∆p) , n×∆ pm (∆p)] for all integers n

Theorem 568 If

ψ = [µc, µm, f0, pc,0]

is a pitch system and ∆p is any pitch interval in ψ then

ιp (∆p) = εp,−1 (∆p)

Proof

R1 563 ⇒ ιp (∆p) = [−∆ pc (∆p) ,−∆ pm (∆p)]

R2 567 ⇒ εp,−1 (∆p) = [−1×∆ pc (∆p) ,−1×∆ pm (∆p)]

R3 R1 & R2 ⇒ ιp (∆p) = εp,−1 (∆p)

Theorem 569 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n1, n2, . . . nk is a collection of integers and ∆p is a pitch interval in ψ then

εp,nk
(. . . εp,n2 (εp,n1 (∆p)) . . .) = εp,

∏k
j=1 nj

(∆p)



CHAPTER 4. FORMAL SPECIFICATION OF MIPS 263

Proof

R1 Let xk = εp,nk
(. . . εp,n2 (εp,n1 (∆p)) . . .)

R2 Let yk = εp,
∏k

j=1 nj
(∆p)

R3 R1 ⇒ x1 = εp,n1 (∆p)

R4 R2 ⇒ y1 = εp,
∏

1
j=1 nj

(∆p) = εp,n1 (∆p)

R5 R3 & R4 ⇒ x1 = y1

R6 R1 ⇒
(

xk = yk ⇒ xk+1 = εp,nk+1
(yk)

)

R7 R2 ⇒ εp,nk+1
(yk) = εp,nk+1

(

εp,
∏

k
j=1 nj

(∆p)
)

R8 R7 & 567 ⇒ εp,nk+1
(yk) = εp,nk+1

([

∏k
j=1 nj ×∆ pc (∆p) ,

∏k
j=1 nj ×∆ pm (∆p)

])

R9 R8, 567, 267 & 269 ⇒ εp,nk+1
(yk) =

[

nk+1 ×
∏k

j=1 nj ×∆ pc (∆p) , nk+1 ×
∏k

j=1 nj ×∆ pm (∆p)
]

=
[

∏k+1
j=1 nj ×∆ pc (∆p) ,

∏k+1
j=1 nj ×∆ pm (∆p)

]

R10 R9 & 567 ⇒ εp,nk+1
(yk) = εp,

∏k+1
j=1 nj

(∆p)

R11 R2 & R10 ⇒ εp,nk+1
(yk) = yk+1

R12 R6 & R11 ⇒ (xk = yk ⇒ xk+1 = yk+1)

R13 R5 & R12 ⇒ xk = yk for all integers k greater than zero.

R14 R1, R2 & R13 ⇒ εp,nk
(. . . εp,n2 (εp,n1 (∆p)) . . .) = εp,

∏

k
j=1 nj

(∆p)

Theorem 570 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n is an integer and ∆p is a pitch interval in ψ then

ιp (εp,n (∆p)) = εp,−n (∆p)

Proof

R1 568 ⇒ ιp (εp,n (∆p)) = εp,−1 (εp,n (∆p))

R2 569 & R1 ⇒ ιp (εp,n (∆p)) = εp,(−1×n) (∆p) = εp,−n (∆p)
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Theorem 571 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n is an integer and ∆p is a pitch interval in ψ then:

∆ c (εp,n (∆p)) = εc,n (∆ c (∆p))

Proof

R1 567 ⇒ ∆ c (εp,n (∆p)) = ∆ c ([n×∆ pc (∆p) , n×∆ pm (∆p)])

R2 274, 267 & R1 ⇒ ∆ c (εp,n (∆p)) = (n×∆ pc (∆p)) mod µc

R3 454 ⇒ εc,n (∆ c (∆p)) = (n×∆ c (∆p)) mod µc

R4 274 & R3 ⇒ εc,n (∆ c (∆p)) = (n× (∆ pc (∆p) mod µc)) mod µc

R5 R4 & 45 ⇒ εc,n (∆ c (∆p)) = (n×∆ pc (∆p)) mod µc

R6 R2 & R5 ⇒ ∆ c (εp,n (∆p)) = εc,n (∆ c (∆p))

Theorem 572 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n is an integer and ∆p is a pitch interval in ψ then:

∆ m (εp,n (∆p)) = εm,n (∆ m (∆p))

Proof

R1 567 ⇒ ∆ m (εp,n (∆p)) = ∆ m ([n×∆ pc (∆p) , n×∆ pm (∆p)])

R2 276, 269 & R1 ⇒ ∆ m (εp,n (∆p)) = (n×∆ pm (∆p)) mod µm

R3 468 ⇒ εm,n (∆ m (∆p)) = (n×∆ m (∆p)) mod µm

R4 276 & R3 ⇒ εm,n (∆ m (∆p)) = (n× (∆ pm (∆p) mod µm)) mod µm

R5 R4 & 45 ⇒ εm,n (∆ m (∆p)) = (n×∆ pm (∆p)) mod µm

R6 R2 & R5 ⇒ ∆ m (εp,n (∆p)) = εm,n (∆ m (∆p))

Theorem 573 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n is an integer and ∆p is a pitch interval in ψ then:

∆ q(εp,n (∆p)) = εq,n (∆ q (∆p))
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Proof

R1 482 ⇒ εq,n (∆ q (∆p)) = [εc,n (∆ c (∆ q (∆p))) , εm,n (∆ m (∆ q (∆p)))]

R2 301, 304 & R1 ⇒ εq,n (∆ q (∆p)) = [εc,n (∆ c (∆p)) , εm,n (∆ m (∆p))]

R3 571, 572 & R2 ⇒ εq,n (∆ q (∆p)) = [∆ c (εp,n (∆p)) ,∆ m (εp,n (∆p))]

R4 R3, 301 & 304 ⇒ εq,n (∆ q (∆p)) = [∆ c (∆ q (εp,n (∆p))) ,∆ m (∆ q (εp,n (∆p)))]

R5 R4 & 305 ⇒ ∆ q (εp,n (∆p)) = εq,n (∆ q (∆p))

Theorem 574 If ψ is a pitch system, n is an integer and ∆p is a pitch interval in ψ then:

∆ g (εp,n (∆p)) = εg,n (∆ g (∆p))
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Proof

R1 282 ⇒ ∆ g (εp,n (∆p)) = [∆ gc (εp,n (∆p)) ,∆ m (εp,n (∆p))]

R2 567 ⇒ ∆ gc (εp,n (∆p)) = ∆ gc ([n×∆ pc (∆p) , n×∆ pm (∆p)])

R3 R2, 280, 267 & 269 ⇒ ∆ gc (εp,n (∆p)) = n×∆ pc (∆p)− µc × ((n×∆ pm (∆p)) div µm)

R4 572 ⇒ ∆ m (εp,n (∆p)) = εm,n (∆ m (∆p))

R5 R1, R3 & R4 ⇒ ∆ g (εp,n (∆p)) =







n×∆ pc (∆p)− µc × ((n×∆ pm (∆p)) div µm) ,

εm,n (∆ m (∆p))







R6 501 ⇒ εg,n (∆ g (∆p)) =

















n×∆ gc (∆ g (∆p))

−µc × ((n×∆ m (∆ g (∆p))) div µm) ,

(n×∆ m (∆ g (∆p))) mod µm

















R7 317, 311 & R6 ⇒ εg,n (∆ g (∆p)) =







n×∆ gc (∆p)− µc × ((n×∆ m (∆p)) div µm) ,

(n×∆ m (∆p)) mod µm







R8 R7, 280 & 276 ⇒ εg,n (∆ g (∆p)) =

















n× (∆ pc (∆p)− µc × (∆ pm (∆p) div µm))

−µc × ((n× (∆ pm (∆p) mod µm)) div µm) ,

(n×∆ m (∆p)) mod µm

















⇒ εg,n (∆ g (∆p)) =

























n×∆ pc (∆p)

−µc ×







n× (∆ pm (∆p) div µm)

+ ((n× (∆ pm (∆p) mod µm)) div µm)






,

(n×∆ m (∆p)) mod µm

























R9 R8 & 58 ⇒ εg,n (∆ g (∆p)) =







n×∆ pc (∆p)− µc × ((n×∆ pm (∆p)) div µm) ,

(n×∆ m (∆p)) mod µm







R10 R9 & 468 ⇒ εg,n (∆ g (∆p)) =







n×∆ pc (∆p)− µc × ((n×∆ pm (∆p)) div µm) ,

εm,n (∆ m (∆p))







R11 R10 & R5 ⇒ ∆ g (εp,n (∆p)) = εg,n (∆ g (∆p))
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Theorem 575 If ψ is a pitch system, n is an integer and ∆p is a pitch interval in ψ then:

∆ pc (εp,n (∆p)) = εpc,n (∆ pc (∆p))

Proof

R1 518 ⇒ εpc,n (∆ pc (∆p)) = n×∆ pc (∆p)

R2 567 ⇒ εp,n (∆p) = [n×∆ pc (∆p) , n×∆ pm (∆p)]

R3 267 & R2 ⇒ ∆ pc (εp,n (∆p)) = n×∆ pc (∆p)

R4 R1 & R3 ⇒ ∆ pc (εp,n (∆p)) = εpc,n (∆ pc (∆p))

Theorem 576 If ψ is a pitch system, n is an integer and ∆p is a pitch interval in ψ then:

∆ pm (εp,n (∆p)) = εpm,n (∆ pm (∆p))

Proof

R1 534 ⇒ εpm,n (∆ pm (∆p)) = n×∆ pm (∆p)

R2 567 ⇒ εp,n (∆p) = [n×∆ pc (∆p) , n×∆ pm (∆p)]

R3 269 & R2 ⇒ ∆ pm (εp,n (∆p)) = n×∆ pm (∆p)

R4 R1 & R3 ⇒ ∆ pm (εp,n (∆p)) = εpm,n (∆ pm (∆p))

Theorem 577 If ψ is a pitch system, n is an integer and ∆p is a pitch interval in ψ then:

∆ f (εp,n (∆p)) = εf,n (∆ f (∆p))

Proof

R1 549 ⇒ εf,n (∆ f (∆p)) = (∆ f (∆p))
n

R2 567 ⇒ εp,n (∆p) = [n×∆ pc (∆p) , n×∆ pm (∆p)]

R3 272 ⇒ ∆ f (εp,n (∆p)) = 2(∆pc(εp,n(∆p))/µc)

R4 R2, R3 & 267 ⇒ ∆ f (εp,n (∆p)) = 2(n×∆pc(∆p)/µc)

=
(

2(∆pc(∆p)/µc)
)n

R5 R4 & 272 ⇒ ∆ f (εp,n (∆p)) = (∆ f (∆p))
n

R6 R1 & R5 ⇒ ∆ f (εp,n (∆p)) = εf,n (∆ f (∆p))
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Theorem 578 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n1, n2, . . . nk is a collection of integers and ∆p is a pitch interval in ψ then

σp (εp,n1 (∆p) , εp,n2 (∆p) , . . . , εp,nk
(∆p)) = εp,

∑

k
j=1 nj

(∆p)

Proof

R1 Let xk = σp (εp,n1 (∆p) , εp,n2 (∆p) , . . . , εp,nk
(∆p))

R2 R1 & 558 ⇒ xk =
[

∑k
j=1

(

∆ pc

(

εp,nj (∆p)
))

,
∑k

j=1

(

∆ pm

(

εp,nj (∆p)
))

]

R3 567 ⇒ εp,nj (∆p) = [nj ×∆ pc (∆p) , nj ×∆ pm (∆p)]

R4 R3, 267, 269 & R2 ⇒ xk =
[

∑k
j=1 (nj ×∆ pc (∆p)) ,

∑k
j=1 (nj ×∆ pm (∆p))

]

=
[(

∑k
j=1 nj

)

×∆ pc (∆p) ,
(

∑k
j=1 nj

)

×∆ pm (∆p)
]

R5 R4 & 567 ⇒ xk = εp,
∑k

j=1 nj
(∆p)

R6 R1 & R5 ⇒ σp (εp,n1 (∆p) , εp,n2 (∆p) , . . . , εp,nk
(∆p)) = εp,

∑

k
j=1 nj

(∆p)

Exponentiation of the pitch tranposition function

Definition 579 (Definition of τp,n (p,∆p)) If ψ is a pitch system and p is a pitch in ψ and ∆p is a pitch

interval in ψ then

τp,n (p,∆p) = τp (p, εp,n (∆p))

Theorem 580 If

ψ = [µc, µm, f0, pc,0]

is a pitch system, n1, n2, . . . , nk is a collection of integers, p is a pitch in ψ and ∆p is a pitch interval in ψ

then

τp,nk
(. . . τp,n2 (τp,n1 (p,∆p) ,∆p) . . . ,∆p) = τp,

∑k
j=1 nj

(p,∆p)
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Proof

R1 Let xk = τp,nk
(. . . τp,n2 (τp,n1 (p,∆p) ,∆p) . . . ,∆p)

R2 R1 & 579 ⇒ xk = τp (. . . τp (τp (p, εp,n1 (∆p)) , εp,n2 (∆p)) . . . , εp,nk
(∆p))

R3 R2 & 560 ⇒ xk = τp (p, σp (εp,n1 (∆p) , εp,n2 (∆p) , . . . εp,nk
(∆p)))

R4 R3 & 578 ⇒ xk = τp
(

p, εp,
∑k

j=1 nj
(∆p)

)

R5 R4 & 579 ⇒ xk = τp,
∑

k
j=1 nj

(p,∆p)

R6 R1 & R5 ⇒ τp,nk
(. . . τp,n2 (τp,n1 (p,∆p) ,∆p) . . . ,∆p) = τp,

∑

k
j=1 nj

(p,∆p)

4.7 Sets of MIPS objects

4.7.1 Universal sets of MIPS objects

Definition 581 The universal set of pitches p
u

for a specified pitch system ψ is the set that contains all and

only pitches within ψ.

Theorem 582 For a specified pitch system ψ, p
u

contains all and only those values p = [pc, pm] such that

(pc ∈ Z) ∧ (pm ∈ Z)

where Z is the universal set of integers.

Proof

R1 Let p = [pc, pm] be any pitch whatsoever in a pitch system ψ.

R2 R1 & 62 ⇒ pc can only take any integer value.

R3 R1 & 62 ⇒ pm can only take any integer value.

R4 R2, R3 & 581 ⇒ p
u

contains all and only those values p = [pc, pm]

such that (pc ∈ Z) ∧ (pm ∈ Z)

where Z is the universal set of integers.

Definition 583 The universal set of chromatic pitches p
c,u

for a specified pitch system ψ is the set that

contains all and only chromatic pitches within ψ.

Theorem 584 For a specified pitch system ψ,

p
c,u

= Z

where Z is the universal set of integers.



CHAPTER 4. FORMAL SPECIFICATION OF MIPS 270

Proof

R1 Let p = [pc, pm] be any pitch whatsoever in a pitch system ψ.

R2 R1 & 62 ⇒ pc can only take any integer value.

R3 R2 & 583 ⇒ p
c,u

= Z where Z is the universal set of integers.

Definition 585 The universal set of morphetic pitches p
m,u

for a specified pitch system ψ is the set that

contains all and only morphetic pitches within ψ.

Theorem 586 For a specified pitch system ψ,

p
m,u

= Z

where Z is the universal set of integers.

Proof

R1 Let p = [pc, pm] be any pitch whatsoever in a pitch system ψ.

R2 R1 & 62 ⇒ pm can only take any integer value.

R3 R2 & 585 ⇒ p
m,u

= Z where Z is the universal set of integers.

Definition 587 The universal set of frequencies f
u

for a specified pitch system ψ is the set that contains all

and only those values that can be taken by the frequency of a pitch within ψ.

Theorem 588 For a specified pitch system ψ,

f
u

= R+

where R+ is the universal set of real numbers greater than zero.

Proof

R1 Let f be any frequency in ψ.

R2 67 & R1 ⇒ f can only take any value such that f ∈ R+.

R3 R2 & 587 ⇒ f
u

= R+ where R+ is the universal set of positive real numbers.

Definition 589 The universal set of chromae cu for a specified pitch system ψ is the set that contains all

and only those values that can be taken by a chroma in ψ.

Theorem 590 For a specified pitch system

ψ = [µc, µm, f0, pc,0]

cu contains all and only those values c such that

(c ∈ Z) ∧ (0 ≤ c < µc)
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Proof

R1 Let p be any pitch in ψ.

R2 72 & R1 ⇒ c (p) can only take any value such that (c (p) ∈ Z) ∧ (0 ≤ c (p) < µc).

R3 589 & R2 ⇒ cu contains all and only those values c such that (c ∈ Z) ∧ (0 ≤ c < µc).

Definition 591 The universal set of morphs mu for a specified pitch system ψ is the set that contains all

and only those values that can be taken by a morph in ψ.

Theorem 592 For a specified pitch system

ψ = [µc, µm, f0, pc,0]

mu contains all and only those values m such that

(m ∈ Z) ∧ (0 ≤ m < µm)

Proof

R1 Let p be any pitch in ψ.

R2 77 & R1 ⇒ m (p) can only take any value such that (m (p) ∈ Z) ∧ (0 ≤ m (p) < µm).

R3 591 & R2 ⇒ mu contains all and only those values m such that (m ∈ Z) ∧ (0 ≤ m < µm).

Definition 593 The universal set of chromamorphs q
u

for a specified pitch system ψ is the set that contains

all and only those values that can be taken by a chromamorph in ψ.

Theorem 594 For a specified pitch system

ψ = [µc, µm, f0, pc,0]

q
u

contains all and only those values q = [c,m] such that

(c ∈ cu) ∧ (m ∈ mu)
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Proof

R1 Let p be any pitch in ψ.

R2 80 & R1 ⇒ q (p) = [c (p) ,m (p)]

R3 Let c = c (p)

R4 Let m = m (p)

R5 Let q = q (p)

R6 R2, R3, R4 & R5 ⇒ q = [c,m]

R7 R3 & 589 ⇒ c can only take any value such that c ∈ cu.

R8 R4 & 591 ⇒ m can only take any value such that m ∈ mu.

R9 593, R6, R7 & R8 ⇒ q
u

contains all and only those values q = [c,m] such that (c ∈ cu) ∧ (m ∈ mu).

Definition 595 The universal set of chromatic genera g
c,u

for a specified pitch system ψ is the set that

contains all and only those values that can be taken by a chromatic genus in ψ.

Theorem 596 For a specified pitch system ψ,

g
c,u

= Z

where Z is the universal set of integers.

Proof

R1 Let p be any pitch in ψ.

R2 83 ⇒ gc (p) can only take any integer value.

R3 R2 & 595 ⇒ g
c,u

= Z

Definition 597 The universal set of genera g
u

for a specified pitch system ψ is the set that contains all and

only those values that can be taken by a genus in ψ.

Theorem 598 For a specified pitch system ψ, g
u

contains all and only those values g = [gc,m] such that

(

gc ∈ gc,u

)

∧ (m ∈ mu)
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Proof

R1 Let p be any pitch in ψ.

R2 84 ⇒ g (p) = [gc (p) ,m (p)]

R3 Let gc (p) = gc

R4 Let m (p) = m

R5 Let g (p) = g

R6 R2 to R5 ⇒ g = [gc,m]

R7 595 & R3 ⇒ gc can only take any value in g
c,u

.

R8 591 & R4 ⇒ m can only take any value in mu.

R9 R6, R7 & R8 ⇒ g can only take any value such that
(

gc ∈ gc,u

)

∧ (m ∈ mu).

R10 597, R6 & R9 ⇒ g
u

contains all and only those values g = [gc,m] such that
(

gc ∈ gc,u

)

∧ (m ∈ mu).

4.7.2 Definitions for sets of MIPS objects

Definition 599 If p
u

is the universal set of pitches for the pitch system ψ, then p is a well-formed pitch set

in ψ if and only if

p ⊆ p
u

Definition 600 If p
c,u

is the universal set of chromatic pitches for the pitch system ψ, then p
c

is a well-

formed chromatic pitch set in ψ if and only if

p
c
⊆ p

c,u

Definition 601 If p
m,u

is the universal set of morphetic pitches for the pitch system ψ, then p
m

is a well-

formed morphetic pitch set in ψ if and only if

p
m
⊆ p

m,u

Definition 602 If f
u

is the universal set of frequencies for the pitch system ψ, then f is a well-formed

frequency set in ψ if and only if

f ⊆ f
u

Definition 603 If cu is the universal set of chromae for the pitch system ψ, then c is a well-formed chroma

set in ψ if and only if

c ⊆ cu

Definition 604 If mu is the universal set of morphs for the pitch system ψ, then m is a well-formed morph

set in ψ if and only if

m ⊆ mu
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Definition 605 If q
u

is the universal set of chromamorphs for the pitch system ψ, then q is a well-formed

chromamorph set in ψ if and only if

q ⊆ q
u

Definition 606 If g
c,u

is the universal set of chromatic genera for the pitch system ψ, then g
c

is a well-

formed chromatic genus set in ψ if and only if

g
c
⊆ g

c,u

Definition 607 If g
u

is the universal set of genera for the pitch system ψ, then g is a well-formed genus set

in ψ if and only if

g ⊆ g
u

4.7.3 Chroma set number and morph set number

Definition 608 If c is any chroma set in a pitch system ψ,

c =
{

c1, c2, . . . ck, . . . c|c|
}

then the set number of c, n (c) is given by the following equation:

n (c) =

|c|
∑

k=1

2ck

Definition 609 If m is any morph set in a pitch system ψ,

m =
{

m1,m2, . . .mk, . . .m|m|

}

then the set number of m, n (m) is given by the following equation:

n (m) =

|m|
∑

k=1

2mk

4.7.4 Functions that convert between MIPS object sets of different types

Functions that take a MIPS pitch set as argument

Definition 610 If

p = {p1, p2, . . . pk, . . .}

is a pitch set in a pitch system ψ, then the following function returns the chromatic pitch set of p:

p
c

(

p
)

=

|p|
⋃

k=1

{pc (pk)}

Definition 611 If

p = {p1, p2, . . . pk, . . .}

is a pitch set in a pitch system ψ, then the following function returns the morphetic pitch set of p:

p
m

(

p
)

=

|p|
⋃

k=1

{pm (pk)}
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Definition 612 If

p = {p1, p2, . . . pk, . . .}

is a pitch set in a pitch system ψ, then the following function returns the frequency set of p:

f
(

p
)

=

|p|
⋃

k=1

{f (pk)}

Definition 613 If

p = {p1, p2, . . . pk, . . .}

is a pitch set in a pitch system ψ, then the following function returns the chroma set of p:

c
(

p
)

=

|p|
⋃

k=1

{c (pk)}

Definition 614 If

p = {p1, p2, . . . pk, . . .}

is a pitch set in a pitch system ψ, then the following function returns the morph set of p:

m
(

p
)

=

|p|
⋃

k=1

{m (pk)}

Definition 615 If

p = {p1, p2, . . . pk, . . .}

is a pitch set in a pitch system ψ, then the following function returns the chromamorph set of p:

q
(

p
)

=

|p|
⋃

k=1

{q (pk)}

Definition 616 If

p = {p1, p2, . . . pk, . . .}

is a pitch set in a pitch system ψ, then the following function returns the chromatic genus set of p:

g
c

(

p
)

=

|p|
⋃

k=1

{gc (pk)}

Definition 617 If

p = {p1, p2, . . . pk, . . .}

is a pitch set in a pitch system ψ, then the following function returns the genus set of p:

g
(

p
)

=

|p|
⋃

k=1

{g (pk)}
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Functions that take a MIPS chromatic pitch set as argument

Definition 618 If

p
c

= {pc,1, pc,2, . . . pc,k, . . .}

is a chromatic pitch set in a pitch system ψ, then the following function returns the chroma set of p
c
:

c
(

p
c

)

=

|p
c
|

⋃

k=1

{c (pc,k)}

Definition 619 If

p
c

= {pc,1, pc,2, . . . pc,k, . . .}

is a chromatic pitch set in a pitch system ψ, then the following function returns the frequency set of p
c
:

f
(

p
c

)

=

|p
c
|

⋃

k=1

{f (pc,k)}

Functions that take a MIPS morphetic pitch set as argument

Definition 620 If

p
m

= {pm,1, pm,2, . . . pm,k, . . .}

is a morphetic pitch set in a pitch system ψ, then the following function returns the morph set of p
m
:

m
(

p
m

)

=

|p
m
|

⋃

k=1

{m (pm,k)}

Functions that take a MIPS frequency set as argument

Definition 621 If

f = {f1, f2, . . . fk, . . .}

is a frequency set in a pitch system ψ, then the following function returns the chromatic pitch set of f :

p
c

(

f
)

=

|f |
⋃

k=1

{pc (fk)}

Definition 622 If

f = {f1, f2, . . . fk, . . .}

is a frequency set in a pitch system ψ, then the following function returns the chroma set of f :

c
(

f
)

=

|f |
⋃

k=1

{c (fk)}
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Functions that take a MIPS chromamorph set as argument

Definition 623 If

q = {q1, q2, . . . qk, . . . qn}

is a chromamorph set in a pitch system ψ, then the following function returns the chroma set of q:

c
(

q
)

=

|q|
⋃

k=1

{c (qk)}

Definition 624 If

q = {q1, q2, . . . qk, . . . qn}

is a chromamorph set in a pitch system ψ, then the following function returns the morph set of q:

m
(

q
)

=

|q|
⋃

k=1

{m (qk)}

Functions that take a MIPS chromatic genus set as argument

Definition 625 If

g
c

= {gc,1, gc,2, . . . gc,k, . . .}

is a chromatic genus set in a pitch system ψ, then the following function returns the chroma set of g
c
:

c
(

g
c

)

=

|g
c
|

⋃

k=1

{c (gc,k)}

Functions that take a MIPS genus set as argument

Definition 626 If

g = {g1, g2, . . . gk, . . .}

is a genus set in a pitch system ψ, then the following function returns the chromatic genus set of g:

g
c

(

g
)

=

|g|
⋃

k=1

{gc (gk)}

Definition 627 If

g = {g1, g2, . . . gk, . . .}

is a genus set in a pitch system ψ, then the following function returns the morph set of g:

m
(

g
)

=

|g|
⋃

k=1

{m (gk)}

Definition 628 If

g = {g1, g2, . . . gk, . . .}

is a genus set in a pitch system ψ, then the following function returns the chroma set of g:

c
(

g
)

=

|g|
⋃

k=1

{c (gk)}
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Definition 629 If

g = {g1, g2, . . . gk, . . .}

is a genus set in a pitch system ψ, then the following function returns the chromamorph set of g:

q
(

g
)

=

|g|
⋃

k=1

{q (gk)}

4.7.5 Equivalence relations between MIPS object sets

Equivalence relations between pitch sets

Definition 630 (p
1
≡pc p2) Two pitch sets p

1
and p

2
in a well-formed pitch system are chromatic pitch

equivalent if and only if

p
c

(

p
1

)

= p
c

(

p
2

)

The fact that two pitch sets are chromatic pitch equivalent will be denoted

p
1
≡pc p2

Definition 631 (p
1
≡pm p

2
) Two pitch sets p

1
and p

2
in a well-formed pitch system are morphetic pitch

equivalent if and only if

p
m

(

p
1

)

= p
m

(

p
2

)

The fact that two pitch sets are morphetic pitch equivalent will be denoted

p
1
≡pm p

2

Definition 632 (p
1
≡f p2) Two pitch sets p

1
and p

2
in a well-formed pitch system are frequency equivalent

if and only if

f
(

p
1

)

= f
(

p
2

)

The fact that two pitch sets are frequency equivalent will be denoted

p
1
≡f p2

Definition 633 (p
1
≡c p2

) Two pitch sets p
1

and p
2

in a well-formed pitch system are chroma equivalent if

and only if

c
(

p
1

)

= c
(

p
2

)

The fact that two pitch sets are chroma equivalent will be denoted

p
1
≡c p2

Definition 634 (p
1
≡m p

2
) Two pitch sets p

1
and p

2
in a well-formed pitch system are morph equivalent if

and only if

m
(

p
1

)

= m
(

p
2

)

The fact that two pitch sets are morph equivalent will be denoted

p
1
≡m p

2
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Definition 635 (p
1
≡q p

2
) Two pitch sets p

1
and p

2
in a well-formed pitch system are chromamorph equiv-

alent if and only if

q
(

p
1

)

= q
(

p
2

)

The fact that two pitch sets are chromamorph equivalent will be denoted

p
1
≡q p

2

Definition 636 (p
1
≡gc p2

) Two pitch sets p
1

and p
2

in a well-formed pitch system are chromatic genus

equivalent if and only if

g
c

(

p
1

)

= g
c

(

p
2

)

The fact that two pitch sets are chromatic genus equivalent will be denoted

p
1
≡gc p2

Definition 637 (p
1
≡g p

2
) Two pitch sets p

1
and p

2
in a well-formed pitch system are genus equivalent if

and only if

g
(

p
1

)

= g
(

p
2

)

The fact that two pitch sets are genus equivalent will be denoted

p
1
≡g p

2

Equivalence relations between chromatic pitch sets

Definition 638 (p
c,1
≡f pc,2

) Two chromatic pitch sets p
c,1

and p
c,2

in a well-formed pitch system are fre-

quency equivalent if and only if

f
(

p
c,1

)

= f
(

p
c,2

)

The fact that two chromatic pitch sets are frequency equivalent will be denoted

p
c,1
≡f pc,2

Definition 639 (p
c,1
≡c pc,2

) Two chromatic pitch sets p
c,1

and p
c,2

in a well-formed pitch system are

chroma equivalent if and only if

c
(

p
c,1

)

= c
(

p
c,2

)

The fact that two chromatic pitch sets are chroma equivalent will be denoted

p
c,1
≡c pc,2

Equivalence relations between morphetic pitch sets

Definition 640 (p
m,1

≡m p
m,2

) Two morphetic pitch sets p
m,1

and p
m,2

in a well-formed pitch system are

morph equivalent if and only if

m
(

p
m,1

)

= m
(

p
m,2

)

The fact that two morphetic pitch sets are morph equivalent will be denoted

p
m,1

≡m p
m,2
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Equivalence relations between frequency sets

Definition 641 (f
1
≡pc f2

) Two frequency sets f
1

and f
2

in a well-formed pitch system are chromatic pitch

equivalent if and only if

p
c

(

f
1

)

= p
c

(

f
2

)

The fact that two frequency sets are chromatic pitch equivalent will be denoted

f
1
≡pc f2

Definition 642 (f
1
≡c f2

) Two frequency sets f
1

and f
2

in a well-formed pitch system are chroma equiv-

alent if and only if

c
(

f
1

)

= c
(

f
2

)

The fact that two frequency sets are chroma equivalent will be denoted

f
1
≡c f2

Equivalence relations between chromamorph sets

Definition 643 (q
1
≡c q2) Two chromamorph sets q

1
and q

2
in a well-formed pitch system are chroma

equivalent if and only if

c
(

q
1

)

= c
(

q
2

)

The fact that two chromamorph sets are chroma equivalent will be denoted

q
1
≡c q2

Definition 644 (q
1
≡m q

2
) Two chromamorph sets q

1
and q

2
in a well-formed pitch system are morph

equivalent if and only if

m
(

q
1

)

= m
(

q
2

)

The fact that two chromamorph sets are morph equivalent will be denoted

q
1
≡m q

2

Equivalence relations between chromatic genus sets

Definition 645 (g
c,1
≡c gc,2

) Two chromatic genus sets g
c,1

and g
c,2

in a well-formed pitch system are

chroma equivalent if and only if

c
(

g
c,1

)

= c
(

g
c,2

)

The fact that two chromatic genus sets are chroma equivalent will be denoted

g
c,1
≡c gc,2

Equivalence relations between genus sets

Definition 646 (g
1
≡gc g2

) Two genus sets g
1

and g
2

in a well-formed pitch system are chromatic genus

equivalent if and only if

g
c

(

g
1

)

= g
c

(

g
2

)

The fact that two genus sets are chromatic genus equivalent will be denoted

g
1
≡gc g2
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Definition 647 (g
1
≡m g

2
) Two genus sets g

1
and g

2
in a well-formed pitch system are morph equivalent

if and only if

m
(

g
1

)

= m
(

g
2

)

The fact that two genus sets are morph equivalent will be denoted

g
1
≡m g

2

Definition 648 (g
1
≡c g2

) Two genus sets g
1

and g
2

in a well-formed pitch system are chroma equivalent

if and only if

c
(

g
1

)

= c
(

g
2

)

The fact that two genus sets are chroma equivalent will be denoted

g
1
≡c g2

Definition 649 (g
1
≡q g

2
) Two genus sets g

1
and g

2
in a well-formed pitch system are chromamorph equiv-

alent if and only if

q
(

g
1

)

= q
(

g
2

)

The fact that two genus sets are chromamorph equivalent will be denoted

g
1
≡q g

2

4.7.6 Sorting MIPS object sets

Sorting pitch sets

Definition 650 If

p
1

=
{

p1,1, p1,2, . . . , p1,k, . . . , p1,|p
1
|

}

is a pitch set in a well-formed pitch system then the function p ↑pc

(

p
1

)

returns the unique ordered pitch set

p ↑pc

(

p
1

)

=
[

p2,1, p2,2, . . . , p2,k, . . . , p2,|p
1
|

]

that satisfies the following conditions:

1.
(

p ∈ p ↑pc

(

p
1

))

⇐⇒
(

p ∈ p
1

)

;

2.
∣

∣

∣
p ↑pc

(

p
1

)∣

∣

∣
=
∣

∣

∣
p
1

∣

∣

∣
;

3. For all natural numbers k such that 1 ≤ k < |p
1
|, it is true that

p2,k ≤pc p2,k+1

4. For all natural numbers k such that 1 ≤ k < |p
1
|, it is true that

(p2,k ≡pc p2,k+1) ⇒ (p2,k <pm p2,k+1)

Definition 651 If

p
1

=
{

p1,1, p1,2, . . . , p1,k, . . . , p1,|p
1
|

}

is a pitch set in a well-formed pitch system then the function p ↓pc

(

p
1

)

returns the unique ordered pitch set

p ↓pc

(

p
1

)

=
[

p2,1, p2,2, . . . , p2,k, . . . , p2,|p
1
|

]

that satisfies the following conditions:
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1.
(

p ∈ p ↓pc

(

p
1

))

⇐⇒
(

p ∈ p
1

)

;

2.
∣

∣

∣
p ↓pc

(

p
1

)∣

∣

∣
=
∣

∣

∣
p
1

∣

∣

∣
;

3. For all natural numbers k such that 1 ≤ k < |p
1
|, it is true that

p2,k ≥pc p2,k+1

4. For all natural numbers k such that 1 ≤ k < |p
1
|, it is true that

(p2,k ≡pc p2,k+1) ⇒ (p2,k >pm p2,k+1)

Definition 652 If

p
1

=
{

p1,1, p1,2, . . . , p1,k, . . . , p1,|p
1
|

}

is a pitch set in a well-formed pitch system then the function p ↑pm

(

p
1

)

returns the unique ordered pitch set

p ↑pm

(

p
1

)

=
[

p2,1, p2,2, . . . , p2,k, . . . , p2,|p
1
|

]

that satisfies the following conditions:

1.
(

p ∈ p ↑pm

(

p
1

))

⇐⇒
(

p ∈ p
1

)

;

2.
∣

∣

∣
p ↑pm

(

p
1

)∣

∣

∣
=
∣

∣

∣
p
1

∣

∣

∣
;

3. For all natural numbers k such that 1 ≤ k < |p
1
|, it is true that

p2,k ≤pm p2,k+1

4. For all natural numbers k such that 1 ≤ k < |p
1
|, it is true that

(p2,k ≡pm p2,k+1) ⇒ (p2,k <pc p2,k+1)

Definition 653 If

p
1

=
{

p1,1, p1,2, . . . , p1,k, . . . , p1,|p
1
|

}

is a pitch set in a well-formed pitch system then the function p ↓pm

(

p
1

)

returns the unique ordered pitch set

p ↓pm

(

p
1

)

=
[

p2,1, p2,2, . . . , p2,k, . . . , p2,|p
1
|

]

that satisfies the following conditions:

1.
(

p ∈ p ↓pm

(

p
1

))

⇐⇒
(

p ∈ p
1

)

;

2.
∣

∣

∣p ↓pm

(

p
1

)∣

∣

∣ =
∣

∣

∣p
1

∣

∣

∣;

3. For all natural numbers k such that 1 ≤ k < |p
1
|, it is true that

p2,k ≥pm p2,k+1

4. For all natural numbers k such that 1 ≤ k < |p
1
|, it is true that

(p2,k ≡pm p2,k+1) ⇒ (p2,k >pc p2,k+1)
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Sorting chromatic pitch sets

Definition 654 If

p
c,1

=
{

pc,1,1, pc,1,2, . . . , pc,1,k, . . . , pc,1,|p
c,1

|

}

is a chromatic pitch set in a well-formed pitch system then the function p
c
↑
(

p
c,1

)

returns the unique ordered

chromatic pitch set

p
c
↑
(

p
c,1

)

=
[

pc,2,1, pc,2,2, . . . , pc,2,k, . . . , pc,2,|p
c,1

|

]

that satisfies the following conditions:

1.
(

pc ∈ p
c
↑
(

p
c,1

))

⇐⇒
(

pc ∈ pc,1

)

;

2.
∣

∣

∣p
c
↑
(

p
c,1

)∣

∣

∣ =
∣

∣

∣p
c,1

∣

∣

∣;

3. For all natural numbers k such that 1 ≤ k < |p
c,1
|, it is true that

pc,2,k < pc,2,k+1

Definition 655 If

p
c,1

=
{

pc,1,1, pc,1,2, . . . , pc,1,k, . . . , pc,1,|p
c,1

|

}

is a chromatic pitch set in a well-formed pitch system then the function p
c
↓
(

p
c,1

)

returns the unique ordered

chromatic pitch set

p
c
↓
(

p
c,1

)

=
[

pc,2,1, pc,2,2, . . . , pc,2,k, . . . , pc,2,|p
c,1

|

]

that satisfies the following conditions:

1.
(

pc ∈ p
c
↓
(

p
c,1

))

⇐⇒
(

pc ∈ pc,1

)

;

2.
∣

∣

∣p
c
↓
(

p
c,1

)∣

∣

∣ =
∣

∣

∣p
c,1

∣

∣

∣;

3. For all natural numbers k such that 1 ≤ k < |p
c,1
|, it is true that

pc,2,k > pc,2,k+1

Sorting morphetic pitch sets

Definition 656 If

p
m,1

=
{

pm,1,1, pm,1,2, . . . , pm,1,k, . . . , pm,1,|p
m,1

|

}

is a morphetic pitch set in a well-formed pitch system then the function p
m
↑
(

p
m,1

)

returns the unique

ordered morphetic pitch set

p
m
↑
(

p
m,1

)

=
[

pm,2,1, pm,2,2, . . . , pm,2,k, . . . , pm,2,|p
m,1

|

]

that satisfies the following conditions:

1.
(

pm ∈ p
m
↑
(

p
m,1

))

⇐⇒
(

pm ∈ p
m,1

)

;

2.
∣

∣

∣p
m
↑
(

p
m,1

)∣

∣

∣ =
∣

∣

∣p
m,1

∣

∣

∣;

3. For all natural numbers k such that 1 ≤ k < |p
m,1
|, it is true that

pm,2,k < pm,2,k+1
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Definition 657 If

p
m,1

=
{

pm,1,1, pm,1,2, . . . , pm,1,k, . . . , pm,1,|p
m,1

|

}

is a morphetic pitch set in a well-formed pitch system then the function p
m
↓
(

p
m,1

)

returns the unique

ordered morphetic pitch set

p
m
↓
(

p
m,1

)

=
[

pm,2,1, pm,2,2, . . . , pm,2,k, . . . , pm,2,|p
m,1

|

]

that satisfies the following conditions:

1.
(

pm ∈ p
m
↓
(

p
m,1

))

⇐⇒
(

pm ∈ p
m,1

)

;

2.
∣

∣

∣
p

m
↓
(

p
m,1

)∣

∣

∣
=
∣

∣

∣
p
m,1

∣

∣

∣
;

3. For all natural numbers k such that 1 ≤ k < |p
m,1
|, it is true that

pm,2,k > pm,2,k+1

Sorting frequency sets

Definition 658 If

f
1

=
{

f1,1, f1,2, . . . , f1,k, . . . , f1,|f
1
|

}

is a frequency set in a well-formed pitch system then the function f ↑
(

f
1

)

returns the unique ordered frequency

set

f ↑
(

f
1

)

=
[

f2,1, f2,2, . . . , f2,k, . . . , f2,|f
1
|

]

that satisfies the following conditions:

1.
(

f ∈ f ↑
(

f
1

))

⇐⇒
(

f ∈ f
1

)

;

2.
∣

∣

∣f ↑
(

f
1

)∣

∣

∣ =
∣

∣

∣f
1

∣

∣

∣;

3. For all natural numbers k such that 1 ≤ k < |f
1
|, it is true that

f2,k < f2,k+1

Definition 659 If

f
1

=
{

f1,1, f1,2, . . . , f1,k, . . . , f1,|f
1
|

}

is a frequency set in a well-formed pitch system then the function f ↓
(

f
1

)

returns the unique ordered frequency

set

f ↓
(

f
1

)

=
[

f2,1, f2,2, . . . , f2,k, . . . , f2,|f
1
|

]

that satisfies the following conditions:

1.
(

f ∈ f ↓
(

f
1

))

⇐⇒
(

f ∈ f
1

)

;

2.
∣

∣

∣f ↓
(

f
1

)∣

∣

∣ =
∣

∣

∣f
1

∣

∣

∣;

3. For all natural numbers k such that 1 ≤ k < |f
1
|, it is true that

f2,k > f2,k+1
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Sorting chroma sets

Definition 660 If

c1 =
{

c1,1, c1,2, . . . , c1,k, . . . , c1,|c1|

}

is a chroma set in a well-formed pitch system then the function c ↑ (c1) returns the unique ordered chroma

set

c ↑ (c1) =
[

c2,1, c2,2, . . . , c2,k, . . . , c2,|c1|

]

that satisfies the following conditions:

1. (c ∈ c ↑ (c1)) ⇐⇒ (c ∈ c1);

2. |c ↑ (c1)| = |c1|;

3. For all natural numbers k such that 1 ≤ k < |c1|, it is true that

c2,k < c2,k+1

Definition 661 If

c1 =
{

c1,1, c1,2, . . . , c1,k, . . . , c1,|c1|

}

is a chroma set in a well-formed pitch system then the function c ↓ (c1) returns the unique ordered chroma

set

c ↓ (c1) =
[

c2,1, c2,2, . . . , c2,k, . . . , c2,|c1|

]

that satisfies the following conditions:

1. (c ∈ c ↓ (c1)) ⇐⇒ (c ∈ c1);

2. |c ↓ (c1)| = |c1|;

3. For all natural numbers k such that 1 ≤ k < |c1|, it is true that

c2,k > c2,k+1

Sorting morph sets

Definition 662 If

m1 =
{

m1,1,m1,2, . . . ,m1,k, . . . ,m1,|m1|

}

is a morph set in a well-formed pitch system then the function m ↑ (m1) returns the unique ordered morph

set

m ↑ (m1) =
[

m2,1,m2,2, . . . ,m2,k, . . . ,m2,|m1|

]

that satisfies the following conditions:

1. (m ∈ m ↑ (m1)) ⇐⇒ (m ∈ m1);

2. |m ↑ (m1)| = |m1|;

3. For all natural numbers k such that 1 ≤ k < |m1|, it is true that

m2,k < m2,k+1
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Definition 663 If

m1 =
{

m1,1,m1,2, . . . ,m1,k, . . . ,m1,|m1|

}

is a morph set in a well-formed pitch system then the function m ↓ (m1) returns the unique ordered morph

set

m ↓ (m1) =
[

m2,1,m2,2, . . . ,m2,k, . . . ,m2,|m1|

]

that satisfies the following conditions:

1. (m ∈ m ↓ (m1)) ⇐⇒ (m ∈ m1);

2. |m ↓ (m1)| = |m1|;

3. For all natural numbers k such that 1 ≤ k < |m1|, it is true that

m2,k > m2,k+1

Sorting chromamorph sets

Definition 664 If

q
1

=
{

q1,1, q1,2, . . . , q1,k, . . . , q1,|q
1
|

}

is a chromamorph set in a well-formed pitch system then the function q ↑c

(

q
1

)

returns the unique ordered

chromamorph set

q ↑c
(

q
1

)

=
[

q2,1, q2,2, . . . , q2,k, . . . , q2,|q
1
|

]

that satisfies the following conditions:

1.
(

q ∈ q ↑c
(

q
1

))

⇐⇒
(

q ∈ q
1

)

;

2.
∣

∣

∣q ↑c
(

q
1

)∣

∣

∣ =
∣

∣

∣q
1

∣

∣

∣;

3. For all natural numbers k such that 1 ≤ k < |q
1
|, it is true that

q2,k ≤c q2,k+1

4. For all natural numbers k such that 1 ≤ k < |q
1
|, it is true that

(q2,k ≡c q2,k+1) ⇒ (q2,k <m q2,k+1)

Definition 665 If

q
1

=
{

q1,1, q1,2, . . . , q1,k, . . . , q1,|q
1
|

}

is a chromamorph set in a well-formed pitch system then the function q ↓c

(

q
1

)

returns the unique ordered

chromamorph set

q ↓c
(

q
1

)

=
[

q2,1, q2,2, . . . , q2,k, . . . , q2,|q
1
|

]

that satisfies the following conditions:

1.
(

q ∈ q ↓c
(

q
1

))

⇐⇒
(

q ∈ q
1

)

;

2.
∣

∣

∣q ↓c
(

q
1

)∣

∣

∣ =
∣

∣

∣q
1

∣

∣

∣;
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3. For all natural numbers k such that 1 ≤ k < |q
1
|, it is true that

q2,k ≥c q2,k+1

4. For all natural numbers k such that 1 ≤ k < |q
1
|, it is true that

(q2,k ≡c q2,k+1) ⇒ (q2,k >m q2,k+1)

Definition 666 If

q
1

=
{

q1,1, q1,2, . . . , q1,k, . . . , q1,|q
1
|

}

is a chromamorph set in a well-formed pitch system then the function q ↑m

(

q
1

)

returns the unique ordered

chromamorph set

q ↑m
(

q
1

)

=
[

q2,1, q2,2, . . . , q2,k, . . . , q2,|q
1
|

]

that satisfies the following conditions:

1.
(

q ∈ q ↑m
(

q
1

))

⇐⇒
(

q ∈ q
1

)

;

2.
∣

∣

∣q ↑m
(

q
1

)∣

∣

∣ =
∣

∣

∣q
1

∣

∣

∣;

3. For all natural numbers k such that 1 ≤ k < |q
1
|, it is true that

q2,k ≤m q2,k+1

4. For all natural numbers k such that 1 ≤ k < |q
1
|, it is true that

(q2,k ≡m q2,k+1) ⇒ (q2,k <c q2,k+1)

Definition 667 If

q
1

=
{

q1,1, q1,2, . . . , q1,k, . . . , q1,|q
1
|

}

is a chromamorph set in a well-formed pitch system then the function q ↓m

(

q
1

)

returns the unique ordered

chromamorph set

q ↓m
(

q
1

)

=
[

q2,1, q2,2, . . . , q2,k, . . . , q2,|q
1
|

]

that satisfies the following conditions:

1.
(

q ∈ q ↓m
(

q
1

))

⇐⇒
(

q ∈ q
1

)

;

2.
∣

∣

∣q ↓m
(

q
1

)∣

∣

∣ =
∣

∣

∣q
1

∣

∣

∣;

3. For all natural numbers k such that 1 ≤ k < |q
1
|, it is true that

q2,k ≥m q2,k+1

4. For all natural numbers k such that 1 ≤ k < |q
1
|, it is true that

(q2,k ≡m q2,k+1) ⇒ (q2,k >c q2,k+1)
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Sorting chromatic genus sets

Definition 668 If

g
c,1

=
{

gc,1,1, gc,1,2, . . . , gc,1,k, . . . , gc,1,|g
c,1

|

}

is a chromatic genus set in a well-formed pitch system then the function g
c
↑
(

g
c,1

)

returns the unique ordered

chromatic genus set

g
c
↑
(

g
c,1

)

=
[

gc,2,1, gc,2,2, . . . , gc,2,k, . . . , gc,2,|g
c,1

|

]

that satisfies the following conditions:

1.
(

gc ∈ g
c
↑
(

g
c,1

))

⇐⇒
(

gc ∈ gc,1

)

;

2.
∣

∣

∣g
c
↑
(

g
c,1

)∣

∣

∣ =
∣

∣

∣g
c,1

∣

∣

∣;

3. For all natural numbers k such that 1 ≤ k < |g
c,1
|, it is true that

gc,2,k < gc,2,k+1

Definition 669 If

g
c,1

=
{

gc,1,1, gc,1,2, . . . , gc,1,k, . . . , gc,1,|g
c,1

|

}

is a chromatic genus set in a well-formed pitch system then the function g
c
↓
(

g
c,1

)

returns the unique ordered

chromatic genus set

g
c
↓
(

g
c,1

)

=
[

gc,2,1, gc,2,2, . . . , gc,2,k, . . . , gc,2,|g
c,1

|

]

that satisfies the following conditions:

1.
(

gc ∈ g
c
↓
(

g
c,1

))

⇐⇒
(

gc ∈ gc,1

)

;

2.
∣

∣

∣g
c
↓
(

g
c,1

)∣

∣

∣ =
∣

∣

∣g
c,1

∣

∣

∣;

3. For all natural numbers k such that 1 ≤ k < |g
c,1
|, it is true that

gc,2,k > gc,2,k+1

Sorting genus sets

Definition 670 If

g
1

=
{

g1,1, g1,2, . . . , g1,k, . . . , g1,|g
1
|

}

is a genus set in a well-formed pitch system then the function g ↑
gc

(

g
1

)

returns the unique ordered genus set

g ↑
gc

(

g
1

)

=
[

g2,1, g2,2, . . . , g2,k, . . . , g2,|g
1
|

]

that satisfies the following conditions:

1.
(

g ∈ g ↑
gc

(

g
1

))

⇐⇒
(

g ∈ g
1

)

;

2.
∣

∣

∣g ↑
gc

(

g
1

)∣

∣

∣ =
∣

∣

∣g
1

∣

∣

∣;

3. For all natural numbers k such that 1 ≤ k < |g
1
|, it is true that

g2,k ≤gc g2,k+1
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4. For all natural numbers k such that 1 ≤ k < |g
1
|, it is true that

(g2,k ≡gc g2,k+1) ⇒ (g2,k <m g2,k+1)

Definition 671 If

g
1

=
{

g1,1, g1,2, . . . , g1,k, . . . , g1,|g
1
|

}

is a genus set in a well-formed pitch system then the function g ↓
gc

(

g
1

)

returns the unique ordered genus set

g ↓
gc

(

g
1

)

=
[

g2,1, g2,2, . . . , g2,k, . . . , g2,|g
1
|

]

that satisfies the following conditions:

1.
(

g ∈ g ↓
gc

(

g
1

))

⇐⇒
(

g ∈ g
1

)

;

2.
∣

∣

∣g ↓
gc

(

g
1

)∣

∣

∣ =
∣

∣

∣g
1

∣

∣

∣;

3. For all natural numbers k such that 1 ≤ k < |g
1
|, it is true that

g2,k ≥gc g2,k+1

4. For all natural numbers k such that 1 ≤ k < |g
1
|, it is true that

(g2,k ≡gc g2,k+1) ⇒ (g2,k >m g2,k+1)

Definition 672 If

g
1

=
{

g1,1, g1,2, . . . , g1,k, . . . , g1,|g
1
|

}

is a genus set in a well-formed pitch system then the function g ↑
m

(

g
1

)

returns the unique ordered genus set

g ↑
m

(

g
1

)

=
[

g2,1, g2,2, . . . , g2,k, . . . , g2,|g
1
|

]

that satisfies the following conditions:

1.
(

g ∈ g ↑
m

(

g
1

))

⇐⇒
(

g ∈ g
1

)

;

2.
∣

∣

∣g ↑
m

(

g
1

)∣

∣

∣ =
∣

∣

∣g
1

∣

∣

∣;

3. For all natural numbers k such that 1 ≤ k < |g
1
|, it is true that

g2,k ≤m g2,k+1

4. For all natural numbers k such that 1 ≤ k < |g
1
|, it is true that

(g2,k ≡m g2,k+1) ⇒ (g2,k <gc g2,k+1)

Definition 673 If

g
1

=
{

g1,1, g1,2, . . . , g1,k, . . . , g1,|g
1
|

}

is a genus set in a well-formed pitch system then the function g ↓
m

(

g
1

)

returns the unique ordered genus set

g ↓
m

(

g
1

)

=
[

g2,1, g2,2, . . . , g2,k, . . . , g2,|g
1
|

]

that satisfies the following conditions:
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1.
(

g ∈ g ↓
m

(

g
1

))

⇐⇒
(

g ∈ g
1

)

;

2.
∣

∣

∣g ↓
m

(

g
1

)∣

∣

∣ =
∣

∣

∣g
1

∣

∣

∣;

3. For all natural numbers k such that 1 ≤ k < |g
1
|, it is true that

g2,k ≥m g2,k+1

4. For all natural numbers k such that 1 ≤ k < |g
1
|, it is true that

(g2,k ≡m g2,k+1) ⇒ (g2,k >gc g2,k+1)

4.7.7 Inequalities between MIPS object sets

Inequalities between pitch sets

Definition 674 If p
1

and p
2

are any two pitch sets in a pitch system ψ then p
1

is chromatic pitch less than

p
2
, denoted

p
1
<pc p2

if and only if one of the following conditions is satisfied:

1. e
(

p ↑pc

(

p
1

)

, 1
)

<pc
e
(

p ↑pc

(

p
2

)

, 1
)

2. There exists a value n such that

(

e
(

p ↑pc

(

p
1

)

, k
)

= e
(

p ↑pc

(

p
2

)

, k
)

∀k : 1 ≤ k ≤ n
)

∧
(

e
(

p ↑pc

(

p
1

)

, n+ 1
)

<pc
e
(

p ↑pc

(

p
2

)

, n+ 1
))

Definition 675 If p
1

and p
2

are any two pitch sets in a pitch system ψ then p
1

is chromatic pitch greater

than p
2
, denoted

p
1
>pc p2

if and only if one of the following conditions is satisfied:

1. e
(

p ↑pc

(

p
1

)

, 1
)

>pc
e
(

p ↑pc

(

p
2

)

, 1
)

2. There exists a value n such that

(

e
(

p ↑pc

(

p
1

)

, k
)

= e
(

p ↑pc

(

p
2

)

, k
)

∀k : 1 ≤ k ≤ n
)

∧
(

e
(

p ↑pc

(

p
1

)

, n+ 1
)

>pc
e
(

p ↑pc

(

p
2

)

, n+ 1
))

Definition 676 If p
1

and p
2

are any two pitch sets in a pitch system ψ then p
1

is morphetic pitch less than

p
2
, denoted

p
1
<pm p

2

if and only if one of the following conditions is satisfied:

1. e
(

p ↑pm

(

p
1

)

, 1
)

<pm
e
(

p ↑pm

(

p
2

)

, 1
)
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2. There exists a value n such that

(

e
(

p ↑pm

(

p
1

)

, k
)

= e
(

p ↑pm

(

p
2

)

, k
)

∀k : 1 ≤ k ≤ n
)

∧
(

e
(

p ↑pm

(

p
1

)

, n+ 1
)

<pm
e
(

p ↑pm

(

p
2

)

, n+ 1
))

Definition 677 If p
1

and p
2

are any two pitch sets in a pitch system ψ then p
1

is morphetic pitch greater

than p
2
, denoted

p
1
>pm p

2

if and only if one of the following conditions is satisfied:

1. e
(

p ↑pm

(

p
1

)

, 1
)

>pm
e
(

p ↑pm

(

p
2

)

, 1
)

2. There exists a value n such that

(

e
(

p ↑pm

(

p
1

)

, k
)

= e
(

p ↑pm

(

p
2

)

, k
)

∀k : 1 ≤ k ≤ n
)

∧
(

e
(

p ↑pm

(

p
1

)

, n+ 1
)

>pm
e
(

p ↑pm

(

p
2

)

, n+ 1
))

Definition 678 If p
1

and p
2

are any two pitch sets in a pitch system ψ then p
1

is chromatic pitch less than

or equal to p
2
, denoted

p
1
≤pc p2

if and only if
(

p
1

= p
2

)

∨
(

p
1
<pc p2

)

Definition 679 If p
1

and p
2

are any two pitch sets in a pitch system ψ then p
1

is chromatic pitch greater

than or equal to p
2
, denoted

p
1
≥pc p2

if and only if
(

p
1

= p
2

)

∨
(

p
1
>pc p2

)

Definition 680 If p
1

and p
2

are any two pitch sets in a pitch system ψ then p
1

is morphetic pitch less than

or equal to p
2
, denoted

p
1
≤pm p

2

if and only if
(

p
1

= p
2

)

∨
(

p
1
<pm p

2

)

Definition 681 If p
1

and p
2

are any two pitch sets in a pitch system ψ then p
1

is morphetic pitch greater

than or equal to p
2
, denoted

p
1
≥pm p

2

if and only if
(

p
1

= p
2

)

∨
(

p
1
>pm p

2

)
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Inequalities between chromatic pitch sets

Definition 682 If p
c,1

and p
c,2

are any two chromatic pitch sets in a pitch system ψ then p
c,1

is less than

p
c,2

, denoted

p
c,1

< p
c,2

if and only if one of the following conditions is satisfied:

1. e
(

p
c
↑
(

p
c,1

)

, 1
)

< e
(

p
c
↑
(

p
c,2

)

, 1
)

2. There exists a value n such that

(

e
(

p
c
↑
(

p
c,1

)

, k
)

= e
(

p
c
↑
(

p
c,2

)

, k
)

∀k : 1 ≤ k ≤ n
)

∧
(

e
(

p
c
↑
(

p
c,1

)

, n+ 1
)

< e
(

p
c
↑
(

p
c,2

)

, n+ 1
))

Definition 683 If p
c,1

and p
c,2

are any two chromatic pitch sets in a pitch system ψ then p
c,1

is greater

than p
c,2

, denoted

p
c,1

> p
c,2

if and only if one of the following conditions is satisfied:

1. e
(

p
c
↑
(

p
c,1

)

, 1
)

> e
(

p
c
↑
(

p
c,2

)

, 1
)

2. There exists a value n such that

(

e
(

p
c
↑
(

p
c,1

)

, k
)

= e
(

p
c
↑
(

p
c,2

)

, k
)

∀k : 1 ≤ k ≤ n
)

∧
(

e
(

p
c
↑
(

p
c,1

)

, n+ 1
)

> e
(

p
c
↑
(

p
c,2

)

, n+ 1
))

Definition 684 If p
c,1

and p
c,2

are any two chromatic pitch sets in a pitch system ψ then p
c,1

is less than

or equal to p
c,2

, denoted

p
c,1
≤ p

c,2

if and only if
(

p
c,1

= p
c,2

)

∨
(

p
c,1

< p
c,2

)

Definition 685 If p
c,1

and p
c,2

are any two chromatic pitch sets in a pitch system ψ then p
c,1

is greater

than or equal to p
c,2

, denoted

p
c,1
≥ p

c,2

if and only if
(

p
c,1

= p
c,2

)

∨
(

p
c,1

> p
c,2

)

Inequalities between morphetic pitch sets

Definition 686 If p
m,1

and p
m,2

are any two morphetic pitch sets in a pitch system ψ then p
m,1

is less than

p
m,2

, denoted

p
m,1

< p
m,2

if and only if one of the following conditions is satisfied:
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1. e
(

p
m
↑
(

p
m,1

)

, 1
)

< e
(

p
m
↑
(

p
m,2

)

, 1
)

2. There exists a value n such that
(

e
(

p
m
↑
(

p
m,1

)

, k
)

= e
(

p
m
↑
(

p
m,2

)

, k
)

∀k : 1 ≤ k ≤ n
)

∧
(

e
(

p
m
↑
(

p
m,1

)

, n+ 1
)

< e
(

p
m
↑
(

p
m,2

)

, n+ 1
))

Definition 687 If p
m,1

and p
m,2

are any two morphetic pitch sets in a pitch system ψ then p
m,1

is greater

than p
m,2

, denoted

p
m,1

> p
m,2

if and only if one of the following conditions is satisfied:

1. e
(

p
m
↑
(

p
m,1

)

, 1
)

> e
(

p
m
↑
(

p
m,2

)

, 1
)

2. There exists a value n such that
(

e
(

p
m
↑
(

p
m,1

)

, k
)

= e
(

p
m
↑
(

p
m,2

)

, k
)

∀k : 1 ≤ k ≤ n
)

∧
(

e
(

p
m
↑
(

p
m,1

)

, n+ 1
)

> e
(

p
m
↑
(

p
m,2

)

, n+ 1
))

Definition 688 If p
m,1

and p
m,2

are any two morphetic pitch sets in a pitch system ψ then p
m,1

is less than

or equal to p
m,2

, denoted

p
m,1

≤ p
m,2

if and only if
(

p
m,1

= p
m,2

)

∨
(

p
m,1

< p
m,2

)

Definition 689 If p
m,1

and p
m,2

are any two morphetic pitch sets in a pitch system ψ then p
m,1

is greater

than or equal to p
m,2

, denoted

p
m,1

≥ p
m,2

if and only if
(

p
m,1

= p
m,2

)

∨
(

p
m,1

> p
m,2

)

Inequalities between frequency sets

Definition 690 If f
1

and f
2

are any two frequency sets in a pitch system ψ then f
1

is less than f
2
, denoted

f
1
< f

2

if and only if one of the following conditions is satisfied:

1. e
(

f ↑
(

f
1

)

, 1
)

< e
(

f ↑
(

f
2

)

, 1
)

2. There exists a value n such that
(

e
(

f ↑
(

f
1

)

, k
)

= e
(

f ↑
(

f
2

)

, k
)

∀k : 1 ≤ k ≤ n
)

∧
(

e
(

f ↑
(

f
1

)

, n+ 1
)

< e
(

f ↑
(

f
2

)

, n+ 1
))
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Definition 691 If f
1

and f
2

are any two frequency sets in a pitch system ψ then f
1

is greater than f
2
,

denoted

f
1
> f

2

if and only if one of the following conditions is satisfied:

1. e
(

f ↑
(

f
1

)

, 1
)

> e
(

f ↑
(

f
2

)

, 1
)

2. There exists a value n such that

(

e
(

f ↑
(

f
1

)

, k
)

= e
(

f ↑
(

f
2

)

, k
)

∀k : 1 ≤ k ≤ n
)

∧
(

e
(

f ↑
(

f
1

)

, n+ 1
)

> e
(

f ↑
(

f
2

)

, n+ 1
))

Definition 692 If f
1

and f
2

are any two frequency sets in a pitch system ψ then f
1

is less than or equal

to f
2
, denoted

f
1
≤ f

2

if and only if
(

f
1

= f
2

)

∨
(

f
1
< f

2

)

Definition 693 If f
1

and f
2

are any two frequency sets in a pitch system ψ then f
1

is greater than or equal

to f
2
, denoted

f
1
≥ f

2

if and only if
(

f
1

= f
2

)

∨
(

f
1
> f

2

)

Inequalities between chroma sets

Definition 694 If c1 and c2 are any two chroma sets in a pitch system ψ then c1 is less than c2, denoted

c1 < c2

if and only if one of the following conditions is satisfied:

1. e (c ↑ (c1), 1) < e (c ↑ (c2), 1)

2. There exists a value n such that

(e (c ↑ (c1), k) = e (c ↑ (c2), k) ∀k : 1 ≤ k ≤ n)

∧

(e (c ↑ (c1), n+ 1) < e (c ↑ (c2), n+ 1))

Definition 695 If c1 and c2 are any two chroma sets in a pitch system ψ then c1 is greater than c2, denoted

c1 > c2

if and only if one of the following conditions is satisfied:

1. e (c ↑ (c1), 1) > e (c ↑ (c2), 1)
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2. There exists a value n such that

(e (c ↑ (c1), k) = e (c ↑ (c2), k) ∀k : 1 ≤ k ≤ n)

∧

(e (c ↑ (c1), n+ 1) > e (c ↑ (c2), n+ 1))

Definition 696 If c1 and c2 are any two chroma sets in a pitch system ψ then c1 is less than or equal to

c2, denoted

c1 ≤ c2

if and only if

(c1 = c2) ∨ (c1 < c2)

Definition 697 If c1 and c2 are any two chroma sets in a pitch system ψ then c1 is greater than or equal

to c2, denoted

c1 ≥ c2

if and only if

(c1 = c2) ∨ (c1 > c2)

Inequalities between morph sets

Definition 698 If m1 and m2 are any two morph sets in a pitch system ψ then m1 is less than m2, denoted

m1 < m2

if and only if one of the following conditions is satisfied:

1. e (m ↑ (m1), 1) < e (m ↑ (m2), 1)

2. There exists a value n such that

(e (m ↑ (m1), k) = e (m ↑ (m2), k) ∀k : 1 ≤ k ≤ n)

∧

(e (m ↑ (m1), n+ 1) < e (m ↑ (m2), n+ 1))

Definition 699 If m1 and m2 are any two morph sets in a pitch system ψ then m1 is greater than m2,

denoted

m1 > m2

if and only if one of the following conditions is satisfied:

1. e (m ↑ (m1), 1) > e (m ↑ (m2), 1)

2. There exists a value n such that

(e (m ↑ (m1), k) = e (m ↑ (m2), k) ∀k : 1 ≤ k ≤ n)

∧

(e (m ↑ (m1), n+ 1) > e (m ↑ (m2), n+ 1))
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Definition 700 If m1 and m2 are any two morph sets in a pitch system ψ then m1 is less than or equal to

m2, denoted

m1 ≤ m2

if and only if

(m1 = m2) ∨ (m1 < m2)

Definition 701 If m1 and m2 are any two morph sets in a pitch system ψ then m1 is greater than or equal

to m2, denoted

m1 ≥ m2

if and only if

(m1 = m2) ∨ (m1 > m2)

Inequalities between chromamorph sets

Definition 702 If q
1

and q
2

are any two chromamorph sets in a pitch system ψ then q
1

is chroma less than

q
2
, denoted

q
1
<c q2

if and only if one of the following conditions is satisfied:

1. e
(

q ↑c
(

q
1

)

, 1
)

<c e
(

q ↑c
(

q
2

)

, 1
)

2. There exists a value n such that

(

e
(

q ↑c
(

q
1

)

, k
)

= e
(

q ↑c
(

q
2

)

, k
)

∀k : 1 ≤ k ≤ n
)

∧
(

e
(

q ↑c
(

q
1

)

, n+ 1
)

<c e
(

q ↑c
(

q
2

)

, n+ 1
))

Definition 703 If q
1

and q
2

are any two chromamorph sets in a pitch system ψ then q
1

is chroma greater

than q
2
, denoted

q
1
>c q2

if and only if one of the following conditions is satisfied:

1. e
(

q ↑c
(

q
1

)

, 1
)

>c e
(

q ↑c
(

q
2

)

, 1
)

2. There exists a value n such that

(

e
(

q ↑c
(

q
1

)

, k
)

= e
(

q ↑c
(

q
2

)

, k
)

∀k : 1 ≤ k ≤ n
)

∧
(

e
(

q ↑c
(

q
1

)

, n+ 1
)

>c e
(

q ↑c
(

q
2

)

, n+ 1
))

Definition 704 If q
1

and q
2

are any two chromamorph sets in a pitch system ψ then q
1

is morph less than

q
2
, denoted

q
1
<m q

2

if and only if one of the following conditions is satisfied:

1. e
(

q ↑m
(

q
1

)

, 1
)

<m e
(

q ↑m
(

q
2

)

, 1
)
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2. There exists a value n such that

(

e
(

q ↑m
(

q
1

)

, k
)

= e
(

q ↑m
(

q
2

)

, k
)

∀k : 1 ≤ k ≤ n
)

∧
(

e
(

q ↑m
(

q
1

)

, n+ 1
)

<m e
(

q ↑m
(

q
2

)

, n+ 1
))

Definition 705 If q
1

and q
2

are any two chromamorph sets in a pitch system ψ then q
1

is morph greater

than q
2
, denoted

q
1
>m q

2

if and only if one of the following conditions is satisfied:

1. e
(

q ↑m
(

q
1

)

, 1
)

>m e
(

q ↑m
(

q
2

)

, 1
)

2. There exists a value n such that

(

e
(

q ↑m
(

q
1

)

, k
)

= e
(

q ↑m
(

q
2

)

, k
)

∀k : 1 ≤ k ≤ n
)

∧
(

e
(

q ↑m
(

q
1

)

, n+ 1
)

>m e
(

q ↑m
(

q
2

)

, n+ 1
))

Definition 706 If q
1

and q
2

are any two chromamorph sets in a pitch system ψ then q
1

is chroma less than

or equal to q
2
, denoted

q
1
≤c q2

if and only if
(

q
1

= q
2

)

∨
(

q
1
<c q2

)

Definition 707 If q
1

and q
2

are any two chromamorph sets in a pitch system ψ then q
1

is chroma greater

than or equal to q
2
, denoted

q
1
≥c q2

if and only if
(

q
1

= q
2

)

∨
(

q
1
>c q2

)

Definition 708 If q
1

and q
2

are any two chromamorph sets in a pitch system ψ then q
1

is morph less than

or equal to q
2
, denoted

q
1
≤m q

2

if and only if
(

q
1

= q
2

)

∨
(

q
1
<m q

2

)

Definition 709 If q
1

and q
2

are any two chromamorph sets in a pitch system ψ then q
1

is morph greater

than or equal to q
2
, denoted

q
1
≥m q

2

if and only if
(

q
1

= q
2

)

∨
(

q
1
>m q

2

)
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Inequalities between chromatic genus sets

Definition 710 If g
c,1

and g
c,2

are any two chromatic genus sets in a pitch system ψ then g
c,1

is less than

g
c,2

, denoted

g
c,1

< g
c,2

if and only if one of the following conditions is satisfied:

1. e
(

g
c
↑
(

g
c,1

)

, 1
)

< e
(

g
c
↑
(

g
c,2

)

, 1
)

2. There exists a value n such that

(

e
(

g
c
↑
(

g
c,1

)

, k
)

= e
(

g
c
↑
(

g
c,2

)

, k
)

∀k : 1 ≤ k ≤ n
)

∧
(

e
(

g
c
↑
(

g
c,1

)

, n+ 1
)

< e
(

g
c
↑
(

g
c,2

)

, n+ 1
))

Definition 711 If g
c,1

and g
c,2

are any two chromatic genus sets in a pitch system ψ then g
c,1

is greater

than g
c,2

, denoted

g
c,1

> g
c,2

if and only if one of the following conditions is satisfied:

1. e
(

g
c
↑
(

g
c,1

)

, 1
)

> e
(

g
c
↑
(

g
c,2

)

, 1
)

2. There exists a value n such that

(

e
(

g
c
↑
(

g
c,1

)

, k
)

= e
(

g
c
↑
(

g
c,2

)

, k
)

∀k : 1 ≤ k ≤ n
)

∧
(

e
(

g
c
↑
(

g
c,1

)

, n+ 1
)

> e
(

g
c
↑
(

g
c,2

)

, n+ 1
))

Definition 712 If g
c,1

and g
c,2

are any two chromatic genus sets in a pitch system ψ then g
c,1

is less than

or equal to g
c,2

, denoted

g
c,1
≤ g

c,2

if and only if
(

g
c,1

= g
c,2

)

∨
(

g
c,1

< g
c,2

)

Definition 713 If g
c,1

and g
c,2

are any two chromatic genus sets in a pitch system ψ then g
c,1

is greater

than or equal to g
c,2

, denoted

g
c,1
≥ g

c,2

if and only if
(

g
c,1

= g
c,2

)

∨
(

g
c,1

> g
c,2

)

Inequalities between genus sets

Definition 714 If g
1

and g
2

are any two genus sets in a pitch system ψ then g
1

is chromatic genus less

than g
2
, denoted

g
1
<gc g2

if and only if one of the following conditions is satisfied:
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1. e
(

g ↑
gc

(

g
1

)

, 1
)

<gc
e
(

g ↑
gc

(

g
2

)

, 1
)

2. There exists a value n such that
(

e
(

g ↑
gc

(

g
1

)

, k
)

= e
(

g ↑
gc

(

g
2

)

, k
)

∀k : 1 ≤ k ≤ n
)

∧
(

e
(

g ↑
gc

(

g
1

)

, n+ 1
)

<gc
e
(

g ↑
gc

(

g
2

)

, n+ 1
))

Definition 715 If g
1

and g
2

are any two genus sets in a pitch system ψ then g
1

is chromatic genus greater

than g
2
, denoted

g
1
>gc g2

if and only if one of the following conditions is satisfied:

1. e
(

g ↑
gc

(

g
1

)

, 1
)

>gc
e
(

g ↑
gc

(

g
2

)

, 1
)

2. There exists a value n such that
(

e
(

g ↑
gc

(

g
1

)

, k
)

= e
(

g ↑
gc

(

g
2

)

, k
)

∀k : 1 ≤ k ≤ n
)

∧
(

e
(

g ↑
gc

(

g
1

)

, n+ 1
)

>gc
e
(

g ↑
gc

(

g
2

)

, n+ 1
))

Definition 716 If g
1

and g
2

are any two genus sets in a pitch system ψ then g
1

is morph less than g
2
,

denoted

g
1
<m g

2

if and only if one of the following conditions is satisfied:

1. e
(

g ↑
m

(

g
1

)

, 1
)

<m e
(

g ↑
m

(

g
2

)

, 1
)

2. There exists a value n such that
(

e
(

g ↑
m

(

g
1

)

, k
)

= e
(

g ↑
m

(

g
2

)

, k
)

∀k : 1 ≤ k ≤ n
)

∧
(

e
(

g ↑
m

(

g
1

)

, n+ 1
)

<m e
(

g ↑
m

(

g
2

)

, n+ 1
))

Definition 717 If g
1

and g
2

are any two genus sets in a pitch system ψ then g
1

is morph greater than g
2
,

denoted

g
1
>m g

2

if and only if one of the following conditions is satisfied:

1. e
(

g ↑
m

(

g
1

)

, 1
)

>m e
(

g ↑
m

(

g
2

)

, 1
)

2. There exists a value n such that
(

e
(

g ↑
m

(

g
1

)

, k
)

= e
(

g ↑
m

(

g
2

)

, k
)

∀k : 1 ≤ k ≤ n
)

∧
(

e
(

g ↑
m

(

g
1

)

, n+ 1
)

>m e
(

g ↑
m

(

g
2

)

, n+ 1
))
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Definition 718 If g
1

and g
2

are any two genus sets in a pitch system ψ then g
1

is chromatic genus less

than or equal to g
2
, denoted

g
1
≤gc g2

if and only if
(

g
1

= g
2

)

∨
(

g
1
<gc g2

)

Definition 719 If g
1

and g
2

are any two genus sets in a pitch system ψ then g
1

is chromatic genus greater

than or equal to g
2
, denoted

g
1
≥gc g2

if and only if
(

g
1

= g
2

)

∨
(

g
1
>gc g2

)

Definition 720 If g
1

and g
2

are any two genus sets in a pitch system ψ then g
1

is morph less than or equal

to g
2
, denoted

g
1
≤m g

2

if and only if
(

g
1

= g
2

)

∨
(

g
1
<m g

2

)

Definition 721 If g
1

and g
2

are any two genus sets in a pitch system ψ then g
1

is morph greater than or

equal to g
2
, denoted

g
1
≥m g

2

if and only if
(

g
1

= g
2

)

∨
(

g
1
>m g

2

)

4.8 Sets of MIPS intervals

4.8.1 Universal sets of MIPS intervals

Definition 722 The universal set of chromatic pitch intervals ∆p
c,u

for a specified pitch system ψ is the set

that contains all and only chromatic pitch intervals within ψ.

Theorem 723 For a specified pitch system ψ,

∆p
c,u

= Z

where Z is the universal set of integers.

Proof

R1 Let ∆p = [∆pc,∆pm] be any pitch interval whatsoever in a pitch system ψ.

R2 R1 & 237 ⇒ ∆pc can only take any integer value.

R3 R2 & 722 ⇒ ∆p
c,u

= Z where Z is the universal set of integers.

Definition 724 The universal set of morphetic pitch intervals ∆p
m,u

for a specified pitch system ψ is the

set that contains all and only morphetic pitch intervals within ψ.
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Theorem 725 For a specified pitch system ψ,

∆p
m,u

= Z

where Z is the universal set of integers.

Proof

R1 Let ∆p = [∆pc,∆pm] be any pitch interval whatsoever in a pitch system ψ.

R2 R1 & 241 ⇒ ∆pm can only take any integer value.

R3 R2 & 724 ⇒ ∆p
m,u

= Z where Z is the universal set of integers.

Definition 726 The universal set of pitch intervals ∆p
u

for a specified pitch system ψ is the set that contains

all and only pitch intervals within ψ.

Theorem 727 For a specified pitch system ψ, ∆p
u

contains all and only those values

∆p = [∆pc,∆pm]

such that
(

∆pc ∈ ∆p
c,u

)

∧
(

∆pm ∈ ∆p
m,u

)

Proof

R1 Let ∆p = [∆pc,∆pm] be any pitch interval whatsoever in a pitch system ψ.

R2 R1 & 722 ⇒ ∆pc can only take any value such that ∆pc ∈ ∆p
c,u

.

R3 R1 & 724 ⇒ ∆pm can only take any value such that ∆pm ∈ ∆p
m,u

.

R4 R1, R2, R3 & 726 ⇒ ∆p
u

contains all and only those values ∆p = [∆pc,∆pm]

such that
(

∆pc ∈ ∆p
c,u

)

∧
(

∆pm ∈ ∆p
m,u

)

.

Definition 728 The universal set of frequency intervals ∆f
u

for a specified pitch system ψ is the set that

contains all and only those values that can be taken by a frequency interval in ψ.

Theorem 729 For a specified pitch system ψ,

∆f
u

= R+

where R+ is the universal set of real numbers greater than zero.

Proof

R1 Let ∆f = ∆ f (f1, f2) where f1 and f2 are any two frequencies in a pitch system ψ.

R2 R1 & 243 ⇒ ∆f can only take any positive real value.

R3 R2 & 728 ⇒ ∆f
u

= R+
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Definition 730 The universal set of chroma intervals ∆cu for a specified pitch system ψ is the set that

contains all and only those values that can be taken by a chroma interval in ψ.

Theorem 731 For a specified pitch system

ψ = [µc, µm, f0, pc,0]

∆cu contains all and only those values ∆c such that

(∆c ∈ Z) ∧ (0 ≤ ∆c < µc)

where Z is the universal set of integers.

Proof

R1 Let ∆c = ∆ c (c1, c2) where c1 and c2 are any two chromae in ψ.

R2 R1 & 214 ⇒ ∆c can only take any value such that (∆c ∈ Z) ∧ (0 ≤ ∆c < µc).

R3 R1, R2 & 730 ⇒ ∆cu contains all and only those values ∆c such that

(∆c ∈ Z) ∧ (0 ≤ ∆c < µc)

where Z is the universal set of integers.

Definition 732 The universal set of morph intervals ∆mu for a specified pitch system ψ is the set that

contains all and only those values that can be taken by a morph interval in ψ.

Theorem 733 For a specified pitch system

ψ = [µc, µm, f0, pc,0]

∆mu contains all and only those values ∆m such that

(∆m ∈ Z) ∧ (0 ≤ ∆m < µm)

where Z is the universal set of integers.

Proof

R1 Let ∆m = ∆ m (m1,m2) where m1 and m2 are any two morphs in ψ.

R2 R1 & 218 ⇒ ∆m can only take any value such that (∆m ∈ Z) ∧ (0 ≤ ∆m < µm).

R3 R1, R2 & 732 ⇒ ∆mu contains all and only those values ∆m such that

(∆m ∈ Z) ∧ (0 ≤ ∆m < µm)

where Z is the universal set of integers.
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Definition 734 The universal set of chromamorph intervals ∆q
u

for a specified pitch system ψ is the set

that contains all and only those values that can be taken by a chromamorph interval in ψ.

Theorem 735 For a specified pitch system

ψ = [µc, µm, f0, pc,0]

∆q
u

contains all and only those values

∆q = [∆c,∆m]

such that

(∆m ∈ ∆mu) ∧ (∆c ∈ ∆cu)

Proof

R1 Let ∆q = [∆c,∆m] be any chromamorph interval whatsoever in a pitch system ψ.

R2 R1 & 730 ⇒ ∆c can only take any value such that ∆c ∈ ∆cu.

R3 R1 & 732 ⇒ ∆m can only take any value such that ∆m ∈ ∆mu.

R4 R1, R2, R3 & 734 ⇒ ∆q
u

contains all and only those values ∆q = [∆c,∆m]

such that (∆c ∈ ∆cu) ∧ (∆m ∈ ∆mu).

Definition 736 The universal set of chromatic genus intervals ∆g
c,u

for a specified pitch system ψ is the set

that contains all and only those values that can be taken by a chromatic genus interval in ψ.

Theorem 737 For a specified pitch system ψ, ∆g
c,u

= Z where Z is the universal set of integers.

Proof

R1 Let ∆gc = ∆ gc (p1, p2) where p1 and p2 are any two pitches in ψ.

R2 R1 & 256 ⇒ ∆gc can only take any integer value.

R3 736 & R2 ⇒ ∆g
c,u

= Z where Z is the universal set of integers.

Definition 738 The universal set of genus intervals ∆g
u

for a specified pitch system ψ is the set that contains

all and only those values that can be taken by a genus interval in ψ.

Theorem 739 For a specified pitch system ψ, ∆g
u

contains all and only those values

∆g = [∆gc,∆m]

such that

(∆m ∈ ∆mu) ∧
(

∆gc ∈ ∆g
c,u

)
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Proof

R1 Let ∆g = [∆gc,∆m] be any genus interval whatsoever in a pitch system ψ.

R2 R1 & 736 ⇒ ∆gc can only take any value such that ∆gc ∈ ∆g
c,u

.

R3 R1 & 732 ⇒ ∆m can only take any value such that ∆m ∈ ∆mu.

R4 R1, R2, R3 & 738 ⇒ ∆g
u

contains all and only those values ∆g = [∆gc,∆m]

such that
(

∆gc ∈ ∆g
c,u

)

∧ (∆m ∈ ∆mu).

4.8.2 Definitions for sets of MIPS intervals

Definition 740 If ∆p
u

is the universal set of pitch intervals for the pitch system ψ, then ∆p is a well-formed

pitch interval set in ψ if and only if

∆p ⊆ ∆p
u

Definition 741 If ∆p
c,u

is the universal set of chromatic pitch intervals for the pitch system ψ, then ∆p
c

is a well-formed chromatic pitch interval set in ψ if and only if

∆p
c
⊆ ∆p

c,u

Definition 742 If ∆p
m,u

is the universal set of morphetic pitch intervals for the pitch system ψ, then ∆p
m

is a well-formed morphetic pitch interval set in ψ if and only if

∆p
m
⊆ ∆p

m,u

Definition 743 If ∆f
u

is the universal set of frequency intervals for the pitch system ψ, then ∆f is a

well-formed frequency interval set in ψ if and only if

∆f ⊆ ∆f
u

Definition 744 If ∆cu is the universal set of chroma intervals for the pitch system ψ, then ∆c is a well-

formed chroma interval set in ψ if and only if

∆c ⊆ ∆cu

Definition 745 If ∆mu is the universal set of morph intervals for the pitch system ψ, then ∆m is a well-

formed morph interval set in ψ if and only if

∆m ⊆ ∆mu

Definition 746 If ∆q
u

is the universal set of chromamorph intervals for the pitch system ψ, then ∆q is a

well-formed chromamorph interval set in ψ if and only if

∆q ⊆ ∆q
u

Definition 747 If ∆g
c,u

is the universal set of chromatic genus intervals for the pitch system ψ, then ∆g
c

is a well-formed chromatic genus interval set in ψ if and only if

∆g
c
⊆ ∆g

c,u
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Definition 748 If ∆g
u

is the universal set of genus intervals for the pitch system ψ, then ∆g is a well-formed

genus interval set in ψ if and only if

∆g ⊆ ∆g
u

4.8.3 Derived MIPS interval sets

Deriving MIPS interval sets from a pitch interval set

Definition 749 If

∆p = {∆p1,∆p2, . . .∆pk, . . .}

is a pitch interval set in a pitch system ψ, then the following function returns the chromatic pitch interval

set of ∆p:

∆ p
c

(

∆p
)

=

|∆p|
⋃

k=1

{∆ pc (∆pk)}

Definition 750 If

∆p = {∆p1,∆p2, . . .∆pk, . . .}

is a pitch interval set in a pitch system ψ, then the following function returns the morphetic pitch interval

set of ∆p:

∆ p
m

(

∆p
)

=

|∆p|
⋃

k=1

{∆ pm (∆pk)}

Definition 751 If

∆p = {∆p1,∆p2, . . .∆pk, . . .}

is a pitch interval set in a pitch system ψ, then the following function returns the frequency interval set of

∆p:

∆ f
(

∆p
)

=

|∆p|
⋃

k=1

{∆ f (∆pk)}

Definition 752 If

∆p = {∆p1,∆p2, . . .∆pk, . . .}

is a pitch interval set in a pitch system ψ, then the following function returns the chroma interval set of ∆p:

∆ c
(

∆p
)

=

|∆p|
⋃

k=1

{∆ c (∆pk)}

Definition 753 If

∆p = {∆p1,∆p2, . . .∆pk, . . .}

is a pitch interval set in a pitch system ψ, then the following function returns the morph interval set of ∆p:

∆ m
(

∆p
)

=

|∆p|
⋃

k=1

{∆ m (∆pk)}
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Definition 754 If

∆p = {∆p1,∆p2, . . .∆pk, . . .}

is a pitch interval set in a pitch system ψ, then the following function returns the chromamorph interval set

of ∆p:

∆ q
(

∆p
)

=

|∆p|
⋃

k=1

{∆ q (∆pk)}

Definition 755 If

∆p = {∆p1,∆p2, . . .∆pk, . . .}

is a pitch interval set in a pitch system ψ, then the following function returns the chromatic genus interval

set of ∆p:

∆ g
c

(

∆p
)

=

|∆p|
⋃

k=1

{∆ gc (∆pk)}

Definition 756 If

∆p = {∆p1,∆p2, . . .∆pk, . . .}

is a pitch interval set in a pitch system ψ, then the following function returns the genus interval set of ∆p:

∆ g
(

∆p
)

=

|∆p|
⋃

k=1

{∆ g (∆pk)}

Deriving MIPS interval sets from a chromatic pitch interval set

Definition 757 If

∆p
c

= {∆pc,1,∆pc,2, . . .∆pc,k, . . .}

is a chromatic pitch interval set in a pitch system ψ, then the following function returns the chroma interval

set of ∆p
c
:

∆ c
(

∆p
c

)

=

|∆p
c
|

⋃

k=1

{∆ c (∆pc,k)}

Definition 758 If

∆p
c

= {∆pc,1,∆pc,2, . . .∆pc,k, . . .}

is a chromatic pitch interval set in a pitch system ψ, then the following function returns the frequency interval

set of ∆p
c
:

∆ f
(

∆p
c

)

=

|∆p
c
|

⋃

k=1

{∆ f (∆pc,k)}

Deriving MIPS interval sets from a morphetic pitch interval set

Definition 759 If

∆p
m

= {∆pm,1,∆pm,2, . . .∆pm,k, . . .}

is a morphetic pitch interval set in a pitch system ψ, then the following function returns the morph interval

set of ∆p
m
:

∆ m
(

∆p
m

)

=

|∆p
m
|

⋃

k=1

{∆ m (∆pm,k)}
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Deriving MIPS interval sets from a frequency interval set

Definition 760 If

∆f = {∆f1,∆f2, . . .∆fk, . . .}

is a frequency interval set in a pitch system ψ, then the following function returns the chromatic pitch interval

set of ∆f :

∆ p
c

(

∆f
)

=

|∆f |
⋃

k=1

{∆ pc (∆fk)}

Definition 761 If

∆f = {∆f1,∆f2, . . .∆fk, . . .}

is a frequency interval set in a pitch system ψ, then the following function returns the chroma interval set of

∆f:

∆ c
(

∆f
)

=

|∆f |
⋃

k=1

{∆ c (∆fk)}

Deriving MIPS interval sets from a chromamorph interval set

Definition 762 If

∆q = {∆q1,∆q2, . . .∆qk, . . .∆qn}

is a chromamorph interval set in a pitch system ψ, then the following function returns the chroma interval

set of ∆q:

∆ c
(

∆q
)

=

|∆q|
⋃

k=1

{∆ c (∆qk)}

Definition 763 If

∆q = {∆q1,∆q2, . . .∆qk, . . .∆qn}

is a chromamorph interval set in a pitch system ψ, then the following function returns the morph interval set

of ∆q:

∆ m
(

∆q
)

=

|∆q|
⋃

k=1

{∆ m (∆qk)}

Deriving MIPS interval sets from a chromatic genus interval set

Definition 764 If

∆g
c

= {∆gc,1,∆gc,2, . . .∆gc,k, . . .}

is a chromatic genus interval set in a pitch system ψ, then the following function returns the chroma interval

set of ∆g
c
:

∆ c
(

∆g
c

)

=

|∆g
c
|

⋃

k=1

{∆ c (∆gc,k)}



CHAPTER 4. FORMAL SPECIFICATION OF MIPS 308

Deriving MIPS interval sets from a genus interval set

Definition 765 If

∆g = {∆g1,∆g2, . . .∆gk, . . .}

is a genus interval set in a pitch system ψ, then the following function returns the chromatic genus interval

set of ∆g:

∆ g
c

(

∆g
)

=

|∆g|
⋃

k=1

{∆ gc (∆gk)}

Definition 766 If

∆g = {∆g1,∆g2, . . .∆gk, . . .}

is a genus interval set in a pitch system ψ, then the following function returns the morph interval set of ∆g:

∆ m
(

∆g
)

=

|∆g|
⋃

k=1

{∆ m (∆gk)}

Definition 767 If

∆g = {∆g1,∆g2, . . .∆gk, . . .}

is a genus interval set in a pitch system ψ, then the following function returns the chroma interval set of ∆g:

∆ c
(

∆g
)

=

|∆g|
⋃

k=1

{∆ c (∆gk)}

Definition 768 If

∆g = {∆g1,∆g2, . . .∆gk, . . .}

is a genus interval set in a pitch system ψ, then the following function returns the chromamorph interval set

of ∆g:

∆ q
(

∆g
)

=

|∆g|
⋃

k=1

{∆ q (∆gk)}
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4.8.4 Equivalence relations between MIPS interval sets

Equivalence relations between pitch interval sets

Equivalence relations between chromatic pitch interval sets

Equivalence relations between morphetic pitch interval sets

Equivalence relations between frequency interval sets

Equivalence relations between chromamorph interval sets

Equivalence relations between chromatic genus interval sets

Equivalence relations between genus interval sets

4.8.5 Inequalities between MIPS interval sets

Inequalities between pitch interval sets

Inequalities between chromatic pitch interval sets

Inequalities between morphetic pitch interval sets

Inequalities between frequency interval sets

Inequalities between chroma interval sets

Inequalities between morph interval sets

Inequalities between chromamorph interval sets

Inequalities between chromatic genus interval sets

Inequalities between genus interval sets

4.8.6 Equivalence partitions on MIPS interval sets

Equivalence partitions on pitch interval sets

Equivalence partitions on chromatic pitch interval sets

Equivalence partitions on morphetic pitch interval sets

Equivalence partitions on frequency interval sets

Equivalence partitions on chroma interval sets

Equivalence partitions on morph interval sets

Equivalence partitions on chromamorph interval sets

Equivalence partitions on genus interval sets

Theorem 769 If ∆g is a genus interval set in a pitch system ψ then there exists a unique partition on ∆g,

called the morph interval equivalence partition of ∆g and denoted P∆m

(

∆g
)

, such that

(

∆g
1
∈ P∆m

(

∆g
)

)

∧
(

∆g1,∆g2 ∈ ∆g
1

)

⇐⇒ (∆g1 ≡∆m ∆g2)

Each element of P∆m

(

∆g
)

is called a morph interval equivalence class of genus intervals on ∆g.
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Proof

R1 343 ⇒ Morph interval equivalence of genus intervals is an equivalence relation.

R2 R1 ⇒ Theorem is proved.

4.8.7 Deriving sets of MIPS intervals from sets of MIPS objects

Deriving sets of MIPS intervals from pitch sets

Deriving sets of MIPS intervals from chromatic pitch sets

Deriving sets of MIPS intervals from morphetic pitch sets

Deriving sets of MIPS intervals from frequency sets

Deriving sets of MIPS intervals from chroma sets

Deriving sets of MIPS intervals from morph sets

Deriving sets of MIPS intervals from chromamorph sets

Deriving sets of MIPS intervals from genus sets

Definition 770 If g is a genus set in a specified pitch system ψ then the set of genus intervals in g, denoted

∆ g
(

g
)

is given by the following formula:

∆ g
(

g
)

=
⋃

(g1∈g)

⋃

(g2∈g)

{∆ g (g1, g2)}
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