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Chapter 1

Introduction to MIPS and the genus

representation of octave equivalence

1.1 Introduction

MIPS is a mathematical formal language devised by the author for investigating the structural properties of
scales, pitch systems and their associated notational systems.! The complete current specification of MIPS
is given in Chapter 4. MIPS has been implemented as a computer program written in Common Lisp.

MIPS models the way that pitch information is represented within Western staff notation. In fact, it
models a whole class of pitch notation systems that contains the Western staff notation system as one of its
members. In this sense, MIPS mathematically models and generalises the pitch representation system used
in Western staff notation.

MIPS is based on four representations of octave equivalence: chroma equivalence, morph equivalence,
chromamorph equivalence and genus equivalence. Chroma equivalence is essentially identical to the concept
of pitch-class equivalence used by Babbitt ([Bab65]), Forte ([For73]), Rahn ([Rah80]), Morris ([Mor87]) and
many others. The MIPS concept of a morph is basically the same as Brinkman’s concept of name class
([Bri90, 124-126]). The MIPS concept of a chromamorph is closely related to both Brinkman’s binomial
representation ([Bri90, 128]) and the representation of octave equivalence used by Agmon ([Agm8&9, 11],
[Agm96, 44]). Genus equivalence is a new representation of octave equivalence invented by the author which
provides a correct model of the traditional tonal concept of octave equivalence. That is, two pitches are
genus equivalent if and only if they are an integer number of perfect octaves apart. Genus equivalence can
also be generalised to any other pitch system without first having to specify which sets in that pitch system
correspond to the diatonic sets in the Western tonal system.

Chroma equivalence is not a particularly good model of the traditional tonal concept of octave equivalence.
The three pitches in Figure 1.1 are octave equivalent in the traditional tonal sense and, of course, they have
the same chroma—they are therefore chroma equivalent.

The two pitches in Figure 1.2 are also chroma equivalent, but they are not octave equivalent in the
traditional tonal sense because the interval between them is an augmented seventh and not an integer number
of perfect octaves. So although the sounds produced when the two notes are performed in an equal-tempered
system might be psycho-acoustically an octave apart, they are not ‘octave equivalent’ in terms of the logic of

the Western tonal pitch notation system.

1 MIPS stands for Mathematical Investigation of Pitch Systems.
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Pitch name El:h Ehﬁ Ehﬁ
Frequency 262Hz 52%Hz 1047 Hz
Chroma 3 3 3

Figure 1.1: Three pitches that are chroma equivalent and ‘octave equivalent’ in the traditional tonal sense.

1 2
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Chroma 1] 1]
harph 0 i
Chromamorph [0,0] [0,5]

Figure 1.2: Two pitches that are chroma equivalent but not ‘octave equivalent’ in the traditional tonal sense

and not chromamorph equivalent.
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Chroma o 4
hdarph i i
Pitch [52,27] [52,24]
Chromamorph  [4.6] [4,6]
Qld genus [6 6] [6i,-6]
Genus [16.6] [4,6]

Figure 1.3: Two pitches that are chromamorph equivalent but not octave equivalent in the traditional tonal

sense.

This demonstrates that the concept of pitch class as used by Forte ([For73]), Rahn ([Rah80]) and others,
does not provide a correct model of octave equivalence within the Western tonal pitch system.

There have been a number of attempts to produce better models of the traditional tonal concept of
octave equivalence. For example, Brinkman ([Bri90, 128]) and Agmon ([Agm89, 11], [Agm96, 44]) use
a representation of octave equivalence that Brinkman calls a binomial representation which is essentially
identical to the MIPS concept of a chromamorph. A chromamorph is an ordered pair of integers in which
the first number represents the chroma and the second number (which in MIPS is called morph and which
Brinkman calls name class ([Bri90, 124-126])) represents the letter-name of the note. So, in the Western
tonal system, the second element in a chromamorph (that is, the morph) will have an integer value between
0 and 6, with 0 corresponding to the letter-name A and 6 corresponding to G. Similarly, in a system that
uses five-note scales, the value of a morph would lie between 0 and 4.

If two notes that have the same chromamorph are defined to be chromamorph equivalent then it can be
seen from Figure 1.2 that chromamorph equivalence is a better model of the Western tonal concept of octave
equivalence than chroma equivalence—at least chromamorph equivalence correctly captures the fact that two
notes an augmented seventh apart are not octave equivalent in the traditional tonal sense.

However, the two notes in Figure 1.3 are chromamorph equivalent but they are certainly not octave
equivalent in the traditional Western tonal sense—the interval between them is a ‘12xdiminished octave.’

This demonstrates that chromamorph equivalence is not a correct model of the traditional Western tonal
concept of octave equivalence.

Some may dispute the claim that the two notes in Figure 1.3 are logically possible and meaningful within
the Western tonal pitch notation system, but, in principle, there is no limit to the number of sharps and flats
that could be placed before a note in the Western tonal staff notation system. On the upper staff in Figure
1.4 is a sequence of notes in which the interval from each note to the next note is a rising major third. Each

note on the lower staff is enharmonically equivalent to the note immediately above it on the upper staff.
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Figure 1.4: Demonstration of the logical possibility of multiple sharps and flats in the Western tonal pitch

notation system.

The sequence of notes on the upper staff begins with an F double-sharp—a note that is encountered in tonal
music as the leading note in the key of G sharp minor, the relative minor of the commonly used key of B
major. As can be seen in Figure 1.4, after two consecutive leaps of a rising major third from F double sharp,
we have already arrived at a note that must have three sharp symbols placed before it if it is to be notated
correctly. After eleven consecutive leaps of a rising major third we are compelled to use eight sharps! This
example illustrates the fact that a formal language that correctly represents the logic of the Western tonal
system of pitch and pitch intervals must allow for pitches to have any number of sharps or flats.

In the Western pitch-naming system, a note has a letter-name (A to G), an inflection (... bbbt 8,84, ...)
and an octave number (for example, middle C—Chy—has an octave number of 4 and the C above middle
C (Ct5) has an octave number of 5). This naming system derives from the staff notation system which has
evolved over the past four hundred years or so to be a highly effective means of notating Western tonal music.
To this extent, the pitch-naming system correctly models the Western tonal pitch system. And if the octave
number of a pitch-name is omitted (for example, Cly becomes Ch), the result is a correct representation of
octave equivalence within the Western tonal system.

So, if one wishes to find a correct mathematical representation of the traditional Western tonal concept of
octave equivalence, one strategy might be to base a numerical representation on the traditional pitch-naming
system. Such a strategy has been adopted by Cambouropoulos ([Cam96, 233], [Cam98, 49]) in his General
Pitch Interval Representation (GPIR). In this system, the letter-name (A to G) is represented by an integer
between 0 and 6 and the inflection (or modifier-accidental as Cambouropoulos calls it) is represented by an
integer (0 corresponds to B, 1 corresponds to #, —1 corresponds to b and so on).

The row labelled ‘Old genus’ in Figure 1.3 shows that this representation correctly captures the fact that
the two notes are not octave equivalent in the traditional sense. So this simple numeric representation of the
Western tonal pitch-naming system provides a correct model of the traditional concept of octave equivalence
within that system.

However, one of the motivations behind the development of MIPS was to produce a system that would
allow one to examine the special mathematical properties of the Western tonal scales and then go on to
determine if scales with similar properties exist in other systems where the octave is divided into more or
less than 12 intervals. In other words, it should be possible to use MIPS to discover those sets within any
pitch system that correspond in some significant sense to the sets associated with scales in the Western tonal
system. But unfortunately, it is not possible to generalise a representation such as Cambouropoulos’ to other
pitch systems without first knowing which sets within that system should be considered to correspond to the

diatonic sets in the Western tonal pitch system. This is because one first has to know which pitch classes
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correspond to the natural notes (that is, the notes that are not inflected with one or more sharp or flat
symbols).

It turns out, however, that it is possible to devise a representation of octave equivalence that is both
a correct model of the traditional tonal concept of octave equivalence and generalisable to any other pitch
system without first specifying the sets in that system that correspond to the diatonic sets in the Western
tonal system.

In MIPS, this model of octave equivalence is called genus equivalence: two pitches are genus equivalent
if and only if they have the same genus. A genus is an ordered pair rather like a chromamorph. As in a
chromamorph, the second element in the ordered pair is a morph and represents the letter-name (see the
row marked ‘Genus’ in Figure 1.3). However, the first member of a genus is not a chroma but a chromatic
genus which is not quite the same as chroma (see section 1.3.1 below for formal definitions of chromamorph,
chromatic genus and genus). Unfortunately the fact that chromatic genus is ‘not quite’ chroma means that the
whole theory surrounding the genus representation—the theory that defines, for example, how to transpose
and invert genus sets, find powers and sums of genus intervals and so on—is rather more involved than the
pitch-class set theory of Babbitt, Forte and Rahn.

In summary, MIPS is a formal language for investigating the mathematical properties of pitch systems and
scales within those systems. It is based on four distinct mathematical representations of octave equivalence:
chroma equivalence, morph equivalence, chromamorph equivalence and genus equivalence. Genus equivalence
correctly models the traditional Western tonal concept of octave equivalence wherein two pitches are consid-
ered octave equivalent if and only if they are an integer number of perfect octaves apart. Furthermore, the
concept of genus equivalence can be generalised to any pitch system without first having to specify which
sets within that system correspond to the diatonic sets of the Western tonal system.

The rest of this section will be devoted to introducing certain basic concepts that will be used throughout
this document. In section 1.2 the MIPS representations for the intuitive concepts of pitch system and pitch are
introduced and discussed in detail. In section 1.3 the genus representation of octave equivalence is defined and
the mathematical theory surrounding this representation is introduced. In section 1.4 four useful algorithms
are described for

1. generating the MIPS pitch representation that corresponds to any given A.S.A. pitch name;
2. generating the A.S.A. pitch name that corresponds to a given MIPS pitch representation;

3. generating the MIPS pitch interval representation that corresponds to a traditional Western tonal pitch

interval name (e.g. “Rising Major Third”); and

4. generating the traditional Western tonal pitch interval name that corresponds to a given MIPS pitch

interval representation.

These algorithms employ the concepts presented in sections 1.2 and 1.3 and therefore constitute concrete
examples of the kind of application that can be developed using MIPS concepts. Finally, in section 1.5 the

main points of this chapter are summarised.

1.1.1 The relationship between pitch and frequency

In the text that follows, reference will be made on a number of occasions to ‘the frequency of a pitch.” It is
therefore important to understand the relationship between frequency and pitch.
The American Standards Association define the term ‘pitch’ to be “that attribute of auditory sensation in

terms of which sounds may be ordered on a musical scale” ([Ass60]). However this definition is not satisfactory
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because of the ambiguity of the term “musical scale.” It is proposed here that the term ‘pitch’ as this term is
used in psycho-acoustics should be defined to mean that perceptual attribute of a simple tone (a tone with a
sinusoidal waveform) that varies when the frequency of the tone is changed and the loudness is kept constant.
The frequency of a simple tone can be adjusted until it is perceived to have the same pitch as some given
complex tone. The pitch of the complex tone can then be represented by the frequency of the simple tone
that has the same perceived pitch as it.

Usually, the perceived pitch of a complex harmonic tone is the same as that of a simple tone whose
frequency is equal to the periodicity of the complex tone. For example, a complex tone with components at
400, 800 and 1200Hz will have a perceived pitch approximately equal to that of a simple tone with frequency
400Hz. Similarly, a complex tone with components at 1800, 2000 and 2200Hz has a pitch which is similar to
that of a 200Hz simple tone.?

There are, however, exceptions to this simple rule. For example, Moore ([M0089, 169]) points out that a
complex tone with sine wave components at 1840, 2040 and 2240Hz has a periodicity of 40Hz. However its
perceived pitch is approximately the same as that of a 204Hz sinusoid (although its pitch can also be matched
to that of a sinusoid of frequency 185Hz and to that of a sinusoid of frequency 227Hz).3

It has also been shown that the pitch of a simple tone varies very slightly with amplitude (see [Mo089,
165]). In general, the pitch of tones below about 2000Hz decreases with increasing amplitude, while the pitch
of tones above about 4000Hz increases with increasing amplitude. However, this effect is extremely small for
most listeners and can be safely ignored for the purposes of this document.

Therefore, if at any point in this document it is suggested that a pitch p has a frequency f, this should
be understood to mean that p is the perceived pitch of a simple tone S with frequency f. This implies that

p is also the pitch of any complex tone whose pitch is perceived to be the same as that of S.

1.1.2 Some basic set-theoretical concepts

In this section and the next a number of basic set-theoretical concepts and arithmetical operations will be
defined that will be used often throughout this document. An understanding of the definitions and theorems
given here will make the remainder of the document much easier to follow.* The definitions of mathematical
concepts given in this document are for the most part consistent with common mathematical usage. However
there may be slight differences between the definitions given here and those that one might find in a standard
mathematical dictionary such as [BB89]. These differences arise from the fact that the concepts presented

here are defined for use specifically in a formal language for investigating musical pitch systems.

Definition 1 (Universal set) An object is a well-formed universal set if and only if it is a well-defined

collection of objects that are all distinct in some specified way.

For example, {1,2,3,4} is a well-formed universal set but {1, 1,2, 3} is not because two of the objects in the

collection are equal.

Definition 2 (Universal set membership) If S is a universal set then a is an element or member of S,
denoted a € S, if and only if a is equal to one of the objects in S. If a is not equal to any of the objects in S

then one can say that a is not an element of S and denote this fact as follows: a ¢ S.

2This is called the ‘phenomenon of the missing fundamental’. For more details about this effect, see [Mo089, 167-175].

3For more details on the relationship between pitch and frequency, see [Moo89, 158-193].

4All definitions and theorems presented in the main body of this document are stated again in Chapter 4. The reference
number of a definition or theorem given in the main body of the document is the same as the number of that definition or
theorem in Chapter 4. In other words, the number of a definition or theorem in the main text indicates the order of appearance

of the item in Chapter 4 and not its order of appearance in the main text.
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For example, if S ={1,2,3,4} then 1€ Sbut 5 ¢ S.

Definition 3 (Set) An object is a well-formed set if and only if it is a collection of objects that are all
distinct members of a single specified universal set. When written out in full, a set is enclosed within braces

and the objects in the set are separated from each other by commas:
S = {81,52, .. }

It is important to note that a set is, by definition, a collection of distinct objects. For example, if one defines
A to be a universal set that contains all and only those integers greater than or equal to 0 and less than or
equal to 10:

A=1{0,1,2,3,4,5,6,7,8,9,10}

then the collection
C={1,1,2,3}

is not a well-formed set of objects in A because two of the objects in C' are equal to the same object in A.
However, the collection
B={1,2,3}

is an example of a well-formed set of objects in A. Note that in this document, all the objects in a set must
be members of some single specified universal set whereas a universal set can be any collection of distinct
objects whatsoever.

Definition 4 (Ordered set) An object is a well-formed ordered set if and only if it is a collection of objects
(not necessarily distinct and not necessarily all from the same universal set). When written out in full, an
ordered set is enclosed in square brackets and the objects in the ordered set are separated from each other by
commas:

S = [81,82, . ]
For example, the following are all well-formed ordered sets:
[4,3,2,1] [4,4,4,4] [3,¢,m, G, 3]
If an ordered set contains exactly two objects then it can be called an ordered pair, if it contains three objects
it can be called an ordered triple, if it contains four objects it can be called an ordered quadruple and so on.

Definition 5 (Set membership) If S is a set or ordered set then a is an element or member of S, denoted
a €S, if and only if a is equal to one of the objects in S. If a is not equal to any member of S then one can

say that a is not an element of S and denote this fact as follows: a & S.
For example, if S ={1,2,3,4} then 1€ Sbut 5 & S.

Definition 6 (Set order) If S is a set or ordered set then the order or cardinality of S, denoted |S|, is

equal to the number of elements in S.
For example, if S = {1,2,3,4} then |S| =4 and if S =[1,2,3,4,4,4] then |S| = 6.

Definition 7 (Empty set) The empty set is that unique set that contains no members. It is denoted () or

{}

Definition 8 (Empty ordered set) The empty ordered set is that unique ordered set that contains no

members. It is denoted [].
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Definition 9 (Element of an ordered set) If S is an ordered set,
S =1[81,82,.-8k,.-.]

then, by definition,
e(S,k) = sg
for all integer k such that 1 < k <|S|. That is, the function e (S, k) returns the kth element of S.
For example, if S =[1,2,3,4,3,2,1] then e(S5,2) =2, e(S5,4) =4 and e (S,6) = 2.
Definition 14 (Ordered set equality) If S and T are two ordered sets,
S = [31,52,...3|5|] T= [tl,tg,...tm]
then S =T if and only if |S| = |T| and e (S, k) = e (T, k) for all integer values of k such that 1 < k < |S|.

It is this concept of ordered set equality that distinguishes an ordered set from an arbitrary collection of
objects. For two ordered sets to be equal, they must not only contain exactly the same objects, it must also
be true that each object in one set is equal to the object that occupies the same position in the other set.

For example,
[3,2,1] # [1, 2, 3]

Definition 15 (Set equality) If S and T are two sets then S is equal to T, denoted S =T, if and only if

one of the following two conditions is satisfied:
1. Both S and T are equal to the empty set.
2. Every element in S is an element in T and every element in T is an element in S.

If S is not equal to T' then this is denoted S # T.

Note that for two sets to be equal, the order in which the elements occur does not have to be the same. For

example,
{1.2.3} ={3,2,1}

Definition 16 (Subset) If S and T are two sets then S is a subset of T, denoted S C T, if and only if one

of the following two conditions is satisfied:
1. S is the empty set.
2. Every element of S is also an element of T.
If S is not a subset of T then this is denoted S ¢ T
For example, {1,2} C {1,2,3}, 0 C {1,2,3} and {1,2,3} C {1,2,3}.

Definition 20 (Set union) If S and T are two sets then the union of S and T, denoted SUT, is the set
that only contains every object that is an element of S or an element of T or an element of both S and T.
That s

(se(SUT)) < ((seS)V(seT))

For example, {1,2} U {2,3} = {1,2,3}.
The operation of set union is associative, as stated by the following theorem:
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Theorem 21 (Associativity of set union) The union operation on sets is associative. That is, if R, S
and T are sets then
RUSUT)=(RUS)UT

The expressions RU(SUT) and (RUS)UT can therefore both be written
RUSUT

All the theorems given in the main body of this document are stated without proof. However, every one of
these theorems is re-stated with proof in Chapter 4.

The fact that set union is associative allows for the following operation to be defined:
Definition 22 (Union of sequence of sets) If S1,Sa,... Sk, ... Sy is a collection of sets then, by definition,

S1USsU...USLU...US, = USk
k=1

Also, if S is a set, then

UF(S)

seS
returns the set that only contains every object that is a member of one or more of the sets F (s) where s only

takes any value such that s € S and where F (s) is some function of s that returns a set.

For example, if k only takes integer values then
Uk =1{1.2,3,...n}
k=1

and if S = {1,2,3} then
U {2k} = {2.4,6}

kes

Definition 23 (Set intersection) If S and T are two sets then the intersection of S and T, denoted SNT,

1s the set that only contains every object s that is a member of S and a member of T':
(se(SNT)) < ((seS)A(seT))
For example, if S = {1,2,3,4} and T = {3,4,5,6} then SNT = {3,4}.

Definition 26 (Set partition) If S is a set then P (S) is a partition on S if and only if the following

conditions are satisfied:
1. P (S) is a set.

2. Usep(s) s=2S.

3. (81,82 cP (S)) A (81 #* 82) = (81 M s = (Z))

For example, if S ={1,2,3,4,5,6,7,8} then all of the following sets are partitions on S:

{11,2,3},{4,5,6} ,{7.8}}  {{2,4,6,8},{1,3,5,7}}  {{1,8,2,7},{3.6,4,5}}
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1.1.3 Some arithmetical operations

In MIPS, much use is made of the three arithmetical operations, int, mod and div. These will now be
defined.

Definition 27 (int) The function int (z) takes any real number x as its argument and returns the largest

integer less than or equal to x. In other words, int (x) is defined as follows:
int(z)=y:(z—-1<y<a)A(y€Z)

where Z is the universal set of integers.

For example, int (3.4) = 3 and int (—3.4) = —4.

Definition 33 (mod) Given that x is a real number and y is a non-zero real number, then the binary

operation mod is defined as follows:

) x
xmody—x—yx1nt<—>
Y

The following table gives some examples of this operation:

4.3 mod 3 = 13
4.3 mod —3 = —1.7
—4.3mod 3 = 1.7
—43mod -3 = -—-1.3
4 mod 3 = 1

4 mod —3 = =2
—4 mod 3 = 2
—4 mod —3 = -1

Definition 48 (div) If x is a real number and y is a non-zero real number then the binary operation div is

defined as follows:
. . x
z div y = int <—>
Y

The following table gives some examples of this operation:

4.3 div 3 = 1
4.3 div -3 = -2
—4.3div 3 = -2
—4.3div -3 =

4 div 3 =

4 div -3 = =2
—4 div 3 = -2
—4 div -3 = 1

Some use is also made of the function abs which is defined as follows:

Definition 60 (abs) If x is a real number then

T if >0
abs(x):{—x if z<0

This function returns the ‘absolute value’ of a real number.
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1.2 Representing pitch systems and pitch in MIPS

This section is devoted to describing how pitch systems and pitch are represented in MIPS.

1.2.1 The concept of a MIPS pitch system

The intuitive concept of an equal-tempered pitch system is modelled in MIPS by a mathematical concept

called a pitch system. A MIPS pitch system is defined as follows:

Definition 61 (Pitch system) An object ¢ is a well-formed pitch system if and only if it is an ordered
quadruple

1/) = [IUJCa Hm, vapC.,O]

such that the following conditions are satisfied:
1. e is a natural number called the chromatic modulus;

2. lm 18 a natural number called the morphetic modulus;

3. pe = pm;
4. fo is a positive real number called the standard frequency;
5. pe,o 15 an integer called the standard chromatic pitch.

The symbols used to represent MIPS concepts will be used consistently throughout this document so the
reader is advised to memorize each symbol as it is introduced.

The chromatic modulus p. of a pitch system indicates the number of equal intervals into which the octave
is divided. For example, for the Western 12-tone equal-tempered system, the chromatic modulus is 12.
The concept of chromatic modulus is essentially identical to the concept of chromatic cardinality defined by
Clough and Douthett ([CD91, 94]). It also corresponds to the value N in Cambouropoulos’ ‘N-tone discrete
equal-tempered pitch space’ ([Cam98, 50|, [Cam96, 234]) and to the value that Agmon customarily labels a
in his formal representation of the diatonic system ([Agm89, 11], [Agm96, 44]). In Balzano’s exploration of
the group-theoretic properties of ‘equal-tempered systems of n-fold octave division’ ([Bal80, 66]), the value
n corresponds to the MIPS chromatic modulus.

The morphetic modulus is equal to the number of notes in scales within the pitch system. More precisely,
it indicates the number of different functional categories that a pitch can have within a key within the pitch
system. For example, for the Western tonal system, the morphetic modulus is 7 corresponding to the seven
different letter-names (A to G) used in the Western pitch notation system.

The Western pitch notation system has evolved to use 7 different letter-names because, according to
traditional tonal theory, each pitch in a piece of tonal music can be understood to have one of seven different
tonal functions (tonic, supertonic, mediant,...) within the key that operates at the location in the music
where the pitch occurs. Pitches with the same tonal function in the same key have the same letter-name. This
relates to the idea that the pitch structure of Western tonal music can be interpreted using the traditional,
7-note, major and minor scales.

The concept of morphetic modulus is essentially identical to the concept of diatonic cardinality defined
by Clough and Douthett ([CD91, 94]). Tt also corresponds to the value M in Cambouropoulos’ ‘M-tone scale’
([Cam98, 50-51], [Cam96, 234-235]). In Agmon’s work, the value that corresponds to morphetic modulus is
customarily denoted b ([Agm89, 11], [Agm96, 44]).
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So, for example, if a musical style was based on anhemitonic pentatonic scales embedded in a 12-note
chromatic, then its pitch system would have a morphetic modulus of 5 and a chromatic modulus of 12; and
for a musical style based on the equipentatonic scale—a system that uses 5-note scales embedded in a 5-note
chromatic—both the chromatic modulus and the morphetic modulus would be 5.

Thus, whereas the chromatic modulus tells us something about the physical structure of the pitch system
(the number of equal frequency intervals into which an octave is divided), the morphetic modulus tells us
something about the cognitive structure of the pitch system (the number of notes in the scales that are used

in the pitch system).

1.2.2 The concept of a MIPS pitch

The concept of a MIPS pitch models the intuitive concept of a pitch within an equal-tempered pitch system

and its associated system of notation. It is defined as follows:

Definition 62 (Pitch) An object p is a well-formed pitch in a pitch system if and only if it is an ordered
pair
P = [Pc; ]

that satisfies the following conditions:
1. pc is an integer called the chromatic pitch;
2. pm 1s an integer called the morphetic pitch.

The chromatic pitch represents the frequency associated with the pitch in the equal-tempered system.®

In fact, given a pitch system,
1/) = [,UJCa Hm, vapC,O]

the frequency of a pitch in ¥ can be calculated from its chromatic pitch using the standard frequency fq
and the standard chromatic pitch pco (see Definition 66 on page 17 below). In the Western, 12-tone, equal-
tempered system, the chromatic pitch associated with a note in a score can be thought of as indicating the
key on a normal piano keyboard that must be pressed in order to play the note. A rise of one semitone results
in an increase of 1 in chromatic pitch and a fall of one semitone results in a decrease of 1 in chromatic pitch.
If one specifies that a chromatic pitch of 0 is associated with the lowest Af on a normal piano keyboard (Al)
then the chromatic pitch of G is —1 and the chromatic pitch associated with middle C' (Cl,) is 39.6 Figure
1.5 shows a variety of notes in the Western 12-tone equal-tempered pitch system, each labelled with its MIPS
pitch. The first element in each MIPS pitch indicates the chromatic pitch associated with the note.

In Western staff notation, the morphetic pitch of a note is determined by
1. the vertical position of the note-head on the staff,
2. the clef in operation on the staff at the location of the note, and

3. the transposition of the staff.

5See section 1.1.1 for a discussion of the relationship and distinction between pitch and frequency.

6 Pitch names will be denoted throughout this document using the A.S.A. pitch naming system. In this system, the pitch
of middle C' is denoted Cl4, the C an octave above middle C is denoted Clhs. Multiple sharps and flats will be denoted with
the appropriate number of s and bs. The double-sharp symbol will not be used. For example, Ct4 has a sounding pitch two
semitones above middle C. Cfff4 has the same sounding pitch within an equal-tempered system as Bffffs and Df4. The octave
number of a pitch-name within the A.S.A system is always the same as that of the closest C below it on the staff. Thus the
sounding pitch of Bfs within a 12-tone equal-tempered system is one semitone higher than that of Cby. See section 1.4.1 for

algorithms for converting between MIPS pitches and A.S.A. pitch names.
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Figure 1.5: Examples of MIPS pitches in the Western staff notation system.

The morphetic pitch of a note is independent of the sounding pitch of the note and independent of its
chromatic pitch. It indicates only the vertical position of the note on the staff. If the morphetic pitch of Afg
is defined to be 0 then the morphetic pitch of Bbby is 1 and the morphetic pitch of Cbbb; is 2 even though
all three have the same sounding pitch in an equal-tempered system and would be performed by pressing the
same key on a piano keyboard. The second element in each MIPS pitch in Figure 1.5 indicates the morphetic
pitch of the note.

In Figure 1.5 (a) notes 1, 2 and 3 have the same chromatic pitch but different morphetic pitches and in
Figure 1.5 (b) notes 1, 2 and 3 have the same morphetic pitch but different chromatic pitches. This illustrates
the fact that morphetic pitch and chromatic pitch are mutually independent.

1.2.3 Calculating the chromatic pitch, morphetic pitch and frequency of a pitch

It is useful to define functions for calculating certain values from a MIPS pitch. The following two definitions

provide functions for finding the chromatic pitch and morphetic pitch of a MIPS pitch:

Definition 63 (Chromatic pitch of a pitch) If p = [pc, pm| is a pitch in a well-formed pitch system then

the following function returns the chromatic pitch of p:

Pe (p) = pe

Definition 64 (Morphetic pitch of a pitch) If p = [pc, pm]| is a pitch in a well-formed pitch system then
the following function returns the morphetic pitch of p:

Pm (p) = Pm
These two definitions can be used to prove the following simple but useful theorem:
Theorem 65 If v is a pitch system and p is a pitch in v then

p = [pc (), Pm (p)]

(The reader is reminded that the proof of each theorem stated in the main body of the document is given in
Chapter 4.)
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The following definition provides a function for returning the frequency of a pitch within a MIPS pitch
system”:

Definition 66 (Frequency of a pitch) If p is a pitch in the pitch system

w = [Mcv Hm, anpC,O]

then the function
f(p) = fo x 9(Pe(P)—pe,0)/ te

returns the frequency of p.

This function assumes that the pitch system being modelled is an equal-tempered pitch system in which each
octave is divided into p. equal intervals. To model a non-equal-tempered pitch system in MIPS, this function
would have to be modified appropriately. In principle, if the frequency of a pitch within a pitch system can
be calculated from its MIPS pitch, then the pitch system can be modelled in MIPS (provided that one defines
an appropriate frequency function in place of that given in Definition 66).

Enough concepts have now been introduced for a number of concrete examples of MIPS pitch systems to

be presented.

1.2.4 Some examples of MIPS pitch systems

A MIPS pitch system,

P = [MCa Hm, anpc,O]
models a pitch system that employs scales containing u,, notes, performed in an equal-tempered tuning
system where the frequency fj is associated with the chromatic pitch p.o and where the octave is divided
into pc equal frequency intervals.

In the 12-tone equal-tempered system commonly used in the West, the frequency of the pitch Afy is
commonly set to 440Hz. If Al is defined to have a MIPS pitch of [0, 0] then the Western tonal equal-tempered
pitch system and its associated staff-notation system which is designed to represent music constructed using
7-note scales, would be represented in MIPS as follows:

Yw = [12, 7,440, 48] (1.1)

Within this pitch system, the pitch of Cly (middle C) is [39,23]. Therefore, using the frequency function
defined above (Definition 66), the frequency of Cly is given by

£ ([39,23]) = 440 x 2(39-48)/12
~ 262Hz

As another example, consider the MIPS pitch system
Yap = [12,5,440, 48] (1.2)

This models a pitch system that employs 5-note scales, embedded in a 12-tone equal-tempered chromatic,
tuned in the same way as that used in ¥w (see Equation 1.1). An example of such a system would be one
that uses anhemitonic pentatonic scales (hence the ‘AP’ suffix on ¥ap).

Just as the Western equal-tempered system divides the octave into 12 equal intervals, each of 100 cents,

so the ‘equipentatonic’ system divides the octave into 5 equal intervals each of 240 cents. An equipentatonic

7See section 1.1.1 for a discussion of the relationship and distinction between pitch and frequency
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system in which the pitch [0, 0] has the same frequency as Al in the Western system modelled by ¢w would
be represented in MIPS as follows:

As afinal example, according to Clough et al. ([CDRR93, 36]) the classical Indian pitch system is supposed

¢ “chromatic” universe of 22 microtonal divisions of the octave (the Srutis)’ in which

to have consisted of a
scales containing seven degrees or ‘svaras’ were constructed. This system was almost definitely not strictly
equal-tempered but by appropriately changing the function defined in Definition 66, one could model this

classical Indian pitch system in MIPS using a pitch system such as
1 = [22,7,440, 88] (1.4)

(Again, in this pitch system, the value of pc ¢ is chosen (arbitrarily) so that the pitch [0,0] has the same
sounding pitch as Ay in the Western tonal system.)

1.2.5 Analogues of pitch, chromatic pitch and morphetic pitch in other pitch
representation systems

The pitch representation system devised by Brinkman ([Bri90, 119-135]) is designed to represent the Western
tonal pitch system and its associated staff notation system. Brinkman does not explicitly generalise his
system to all equal-tempered pitch systems. The MIPS pitch system that corresponds to the one modelled
by Brinkman is

YBrinkman = [12, 7,440, 57] (1.5)

where the pitch-name Cl is assigned a MIPS pitch of [0,0]. The chromatic pitch of a pitch in ¥prinkman
corresponds to Brinkman’s continuous pitch code (abbreviated cpc) ([Bri90, 122]) and a morphetic pitch in
WBrinkman corresponds to Brinkman’s continuous name code (c¢nc) ([Bri90, 126]). Brinkman’s continuous
binomial representation (cbr) ([Bri90, 133]) is essentially identical to a MIPS pitch in ¥Brinkman-

Unlike Brinkman, Agmon explicitly generalises his pitch representation system to any equal-tempered
system. In Agmon’s system, the function of a MIPS pitch is served by the integer pair that he consistently
labels (x,y), the value z corresponding to chromatic pitch and the value y corresponding to morphetic pitch
([Agm96, 44], [Agm89, 11)).

MIDI note numbers ([Rot92, 25, 143, 214], [MMA96, 10]) are similar to chromatic pitches in MIPS.
However, whereas a chromatic pitch can take any integer value whatsoever, a MIDI note number must be
an integer greater than or equal to 0 and less than 128. The frequency of the pitch associated with a MIDI
note number depends on the note mapping and tuning of the instrument producing the tone ([Rot92, 143)).
However, it is common for a MIDI note number of 60 to correspond to Cly, and in this particular case, the
MIDI note numbers are identical to a subset of the values that can be taken by a chromatic pitch in the pitch

system
Ymipr = [12,7,440, 69] (1.6)

There is no analogue of morphetic pitch in the MIDI system and therefore nothing that corresponds to the
MIPS concept of a pitch.

1.2.6 Chromatic pitch equivalence, chroma and chroma equivalence

Figure 1.6 shows a number of notes which the reader should interpret as being in the normal Western 12-tone
equal-tempered system (i.e. 1»ww—see Equation 1.1 above). The pitches of notes 1, 2 and 3 in Figure 1.6 are

enharmonically equivalent. The pitches of notes 4, 5 and 6 in Figure 1.6 are also enharmonically equivalent.
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Figure 1.6: Examples of chromatic pitch equivalence and chroma equivalence in ¥y .

The MIPS pitch of each note in Y is given underneath the staff. Notes 1, 2 and 3 all have a chromatic pitch
of 48 and notes 4, 5 and 6 all have a chromatic pitch of 60. In MIPS, two pitches have the same chromatic
pitch if and only if they are enharmonically equivalent. The concept of enharmonic equivalence is therefore

modelled in MIPS by the concept of chromatic pitch equivalence which is defined as follows:

Definition 125 (Chromatic pitch equivalence of pitches) Two pitches p1 and p2 in a well-formed pitch

system are chromatic pitch equivalent if and only if

Pe (p1) = pe (p2)

The fact that two pitches are chromatic pitch equivalent will be denoted

P1 =p. P2

All six pitches in Figure 1.6 are also ‘sounding octave equivalent’ in the sense that the frequency of the
sounding pitch of notes 1, 2 and 3 would be 1/2 of the frequency of the sounding pitch of notes 4, 5 and 6 in
an equal-tempered system. In MIPS, two notes are ‘sounding octave equivalent’ in this sense if and only if
they have the same chroma. The chroma of a MIPS pitch is defined as follows:

Definition 71 (Chroma of a pitch) If p is a pitch in a pitch system

¥ = [e, fim, fo, Pe,0]

then the following function returns the chroma of p:

¢(p) = pe (p) mod pc

The concept of ‘sounding octave equivalence’ exhibited by the six notes in Figure 1.6 can be modelled in

MIPS by the concept of chroma equivalence which is defined as follows:

Definition 130 (Chroma equivalence of pitches) Two pitches p1 and ps in a well-formed pitch system

are chroma equivalent if and only if
¢(p1) =c(p2)

The fact that two pitches are chroma equivalent will be denoted

P1 =c P2

The MIPS concept of a chroma is essentially identical to the concept of pitch class used by Babbitt ([Bab60]),
Forte ([For73]), Rahn ([Rah80]), Morris ([Mor87]) and many other theorists concerned with the structure of

atonal and 12-tone music. The term chroma has been used by researchers in the field of music cognition
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Figure 1.7: Examples of morphetic pitch equivalence and morph equivalence in vy .

and perception for at least half a century to signify that quality of the pitch of a tone that makes it similar
to the pitches of tones separated from it by one or more octaves. This perceptual similarity between the
pitches of tones separated by one or more octaves has led cognitive psychologists to model musical pitch
using a bidimensional model in which one dimension represents ‘pitch level’ or tone height and the other
dimension—tone chroma—represents the position of a tone within its octave ([Deu82a, 272], [She82, 352],
[WB82, 432-433]). Bachem used the term in this sense in 1950 ([Bac50]) and many other authors have
used it since including Shepard ([She64], [She65], [She82]), Burns and Ward ([BW82, 246, 262-264], [WBS&2,
432-433]), Deutsch ([Deu82a, 272]), Dowling ([Dow91, 35]), and Cross, West and Howell ((CWH91, 212,
223-224]).

Brinkman’s concept of pitch class (or pe) ([Bri90, 119-122]) is essentially identical to chroma in the MIPS
pitch system ¥Brinkman defined in Equation 1.5 above. Cambouropoulos also uses the term pitch class in this
sense ([Cam98, 50|, [Cam96, 234]) but unlike Brinkman, Cambouropoulos explicitly generalises the concept
to any equal-tempered pitch system of ‘N-tone’ division that uses ‘M-tone’ scales. The MIPS concept of
chroma is also essentially identical to the variable that Agmon consistently labels s in his definition of ‘octave
equivalence’ ([Agm89, 11], [Agm96, 44]).

1.2.7 Morphetic pitch equivalence, morph and morph equivalence

The A.S.A. pitch names of notes 1, 2 and 3 in Figure 1.7 are, respectively Aby, Afl4 and Abbby.® All three
notes have the same letter-name (A) and the same A.S.A. octave number (4) and this is represented in MIPS
by the fact that they all have the same morphetic pitch (in this case, 28). This form of equivalence is therefore
modelled in MIPS by the concept of morphetic pitch equivalence which is formally defined as follows:

Definition 126 (Morphetic pitch equivalence of pitches) Two pitches p1 and ps in a well-formed pitch

system are morphetic pitch equivalent if and only if

Pm (P1) = Pm (P2)

The fact that two pitches are morphetic pitch equivalent will be denoted

P1 =pm P2

Notes 4, 5 and 6 in Figure 1.7 are also morphetic pitch equivalent but notes 1 and 4 are not because their
A.S.A. octave numbers are different. Nonetheless, all six notes in Figure 1.7 have the same letter-name (A)
and this is represented in MIPS by the fact that they all have the same morph.® The morph of a MIPS pitch
is defined as follows:

8See footnote 6 for an explanation of the logic behind A.S.A. pitch names.
9The name morph derives from the Greek word for ‘shape’ on an analogy with the derivation of the word chroma from the

Greek word for ‘colour’. If one property of a pitch is called its ‘colour’ then another one might as well be called its ‘shape’!
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Definition 76 (Morph of a pitch) If p is a pitch in the pitch system

¥ = [He, fim;, fo, Pe,0]

then the following function returns the morph of p:

m (p) = pm (p) mod fim

The ‘letter-name equivalence’ exhibited by the six notes in Figure 1.7 is modelled in MIPS by the concept of

morph equivalence which is formally defined as follows:

Definition 131 (Morph equivalence of pitches) Two pitches p1 and py in a well-formed pitch system
are morph equivalent if and only if

m (p1) = m (pz2)

The fact that two pitches are morph equivalent will be denoted

P1 =m P2

Brinkman’s concept of ‘name class’ (nc¢) ([Bri90, 124-126]) is essentially identical to morph within the MIPS
pitch system ¢prinkman (see Equation 1.5). However Brinkman does not explicitly generalise his concept of
‘name class’ to other pitch systems. Cambouropoulos also uses the term ‘name class’ to refer to the concept
in his GPIR that corresponds to morph in MIPS. In Agmon’s definition of ‘octave equivalence’ ([Agm89, 11],
[Agm96, 44]) the function that morph serves within MIPS is carried out by the variable that he consistently
labels ¢.

In [Clo79], Clough elaborates a ‘theory of diatonic pc sets’ that corresponds to the morph set theory for
a MIPS pitch system in which pm = 7 and the letter-name C' in the Western diatonic system is represented
by the morph 0. In [Clo80], Clough continues to use the term ‘pitch class’ for the concept that is called
morph in MIPS but specifies that although ‘the term pitch class (PC) will be employed in the usual sense’,
‘a universe of seven PC’s is posited’ ([Clo80, 468]). In [CD91], Clough and Douthett avoid using a concept
that corresponds to morph in MIPS by considering ‘subset[s] of d pcs selected from the chromatic universe

of ¢ pcs’ which they label in the following way
Dcq={Do,D1,Ds,...,Dgq_1}

In this system, each Dy, is a pitch class in the 12-tone chromatic (that is, Dy, is a chroma) and the subscript

k actually fulfills the function of morph since it indicates which chroma corresponds to which morph.

1.2.8 Chromatic octave and morphetic octave

If the notes in Figure 1.8 are interpreted as being in the equal-tempered pitch system ¢y, then the frequency
(and chromatic pitch) of note 1 (Bf4) is higher than that of note 2 (Cbs). However, the A.S.A. octave number
and morphetic pitch of note 1 is lower than that of note 2. This suggests the utility of distinguishing between
two types of octave designation—one for sounding pitch (chromatic pitch) and one for morphetic pitch.

In MIPS, the chromatic octave of a pitch is defined as follows:

Definition 68 (Chromatic octave of a pitch) If p is a pitch in the pitch system

1/) = [IUJCa Hm, vapC.,O]

then the following function returns the chromatic octave of p:

oc (p) = pe (p) div puc
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Figure 1.8: Examples of morphetic octave equivalence and chromatic octave equivalence in vy .

The morphetic octave of a pitch is defined as follows:

Definition 69 (Morphetic octave of a pitch) If p is a pitch in the pitch system

U) = [IUJCa Hm, vapC.,O]

then the following function returns the morphetic octave of p:

om (p) = Pm (p) div fim

In Figure 1.8, notes 3 and 4 have the same chromatic octave but different morphetic octaves; and notes 5
and 6 have the same morphetic octave but different chromatic octaves. This suggests the utility of defining
two more equivalence relations: morphetic octave equivalence and chromatic octave equivalence. These are
defined as follows:

Definition 128 (Chromatic octave equivalence of pitches) Two pitches p1 and pa in a well-formed

pitch system are chromatic octave equivalent if and only if

oc (p1) = oc (p2)

The fact that two pitches are chromatic octave equivalent will be denoted

D1 =o. P2

Definition 129 (Morphetic octave equivalence of pitches) Two pitches p1 and ps in a well-formed

pitch system are morphetic octave equivalent if and only if

Om (p1) = Om (p2)

The fact that two pitches are morphetic octave equivalent will be denoted

P1 =om P2

We can now say, therefore, that in Figure 1.8, notes 3 and 4 are chromatic octave equivalent but not
morphetic octave equivalent; and that notes 5 and 6 are morphetic octave equivalent but not chromatic
octave equivalent.

If one takes the MIPS pitch system 9pyinkman defined in Equation 1.5 and sets the pitch-name Clg to
correspond to the MIPS pitch [0, 0] then, for any pitch p in this pitch system, the morphetic octave is equal to

the A.S.A. octave number. In other words, the octave number in the A.S.A. pitch naming system corresponds
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to morphetic octave in the MIPS pitch system 9grinkman With the pitch name Chg set to correspond to the
MIPS pitch [0,0]. As already mentioned above (see section 1.2.5), Brinkman’s concept of ‘continuous pitch
code’ corresponds to chromatic pitch within g inkman and it can be shown that for any pitch p in any MIPS
pitch system

Y = [fic, tm; fo, Pe,o]
it is true that

Pe (p) = (0c (p) X pic) + ¢ (p) (1.7)

(See Theorem 75 in Chapter 4.) However, Brinkman states that his continuous pitch code, ‘cpc’, can be
calculated using the following formula

epe = (oct x 12) + pe (1.8)

where oct is the A.S.A. octave number and pc is his ‘pitch class’ which corresponds exactly to chroma in
YBrinkman- But, as mentioned above, A.S.A octave number corresponds exactly to morphetic octave in the
pitch system ¢pyinkman When Clp is set to correspond to the MIPS pitch [0,0]. Therefore, in MIPS terms,
Brinkman’s definition of ‘cpc’ can be stated as follows:

Pc (p) = (om (p) X pe) + ¢ (p) (1.9)
where pe = 12 and the pitch [0, 0] corresponds to Cljp. But Equation 1.9 and Equation 1.7 together imply
that

om (p) = oc (p)
which was shown above not to be true in general (see, for example, note 3 in Figure 1.8). This, in turn,
implies that at least one of Equation 1.9 and Equation 1.7 is incorrect. Since 1.7 can be shown to be true,
this implies that 1.9 is incorrect.

An example will serve to demonstrate that Equation 1.9 is incorrect. Let p; = [48,27], the MIPS pitch
representation of Bfs in ¥grinkman with Clo corresponding to [0,0]. From Definition 71 it follows that

C (pl) = Pc (pl) mod ¢
=48 mod 12 (1.10)
=0
and from Definition 69 it follows that
Om (P1) = Pm (p1) div pim

=27div 7 (1.11)
=3
Substituting into Equation 1.9 the values of oy (p1) and ¢ (p1) found in Equations 1.10 and 1.11 gives
Pc (p) = (Om (p) X MC) +c (p)
=(3x12)+0 (1.12)
=36
which we know to be incorrect because p; was defined to be equal to [48,27]. In fact, Equation 1.12 implies

that Bfis has the same frequency as Clz which is clearly incorrect. This arises because oc (p1) # om (p1)-
Equations 1.10 and 1.11 are known to be correct therefore Equation 1.9 is incorrect.
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It is interesting to note that in his definition of ‘continuous binomial representation’ (‘cbr’) ([Bri90, 133—
134]) (which corresponds to pitch in the MIPS pitch system ¥prinkman), Brinkman correctly specifies that

[epe, enc] = [(poct x 12) 4 pe, (noct x T) 4+ nc]

where poct corresponds to chromatic octave in ¥Brinkman and noct corresponds to morphetic octave in the
same pitch system with Chg represented by [0,0]. However, Brinkman claims that one only needs to use
‘separate octave designators’ if one needs ‘to represent notes with any number of accidentals’ and goes on
to claim that ‘in practice this is not really necessary, so long as we are willing to accept the limitation of
quintuple accidentals and quintuple augmentation and diminution for intervals’. As shown in the previous
paragraph, this is not true: one needs to distinguish between chromatic and morphetic octave whenever ‘the
notated pitch (enc) is in a different octave from the sounding pitch (cpc)’ ([Bri90, 134]) and this occurs even
for pitches such as Cbs or Bfs which have just a single sharp or flat.

It is therefore disappointing that Brinkman downplays the importance of distinguishing between chromatic
and morphetic octave and, as a consequence, incorrectly concludes that ‘we can use a single octave number,
that in which the pitch is notated, and calculate the correct pitch level with minimal computation’ ([Bri90,
134)).

Like Brinkman, Cambouropoulos decides to use only morphetic octave in his GPIR. However this, in
itself, does not cause a problem because he explicitly represents the accidental of the pitch name. In Cam-
bouropoulos’ GPIR, a pitch is represented as an ordered quadruple, [ne, mdf, pe, oct], where ne and pc are
name class and pitch class as in Brinkman’s system, oct is essentially the same as morphetic octave and
mdf is a numerical representation of the accidental with —1 corresponding to b, 0 corresponding to f, 1
corresponding to f and so on. Cambouropoulos specifies that mdf takes values from {—u,...,—1,0,1,... ,u}
where ‘u is the number of pitch interval units in the largest scale-step interval’ ([Cam98, 50]). This implies
that Cambouropoulos’ system cannot be used to represent notes with more than two sharps or flats. The

reason for this restriction is unclear.

1.2.9 The concept of a MIPS pitch interval

In MIPS, the traditional concept of a pitch interval is modelled by the MIPS concept of a pitch interval.
However, before defining the concept of a MIPS pitch interval, it is necessary to define the ideas of morphetic

pitch interval and chromatic pitch interval:

Definition 236 (Chromatic pitch interval) If pc1 and pc2 are two chromatic pitches in a well-formed
pitch system 1), then the chromatic pitch interval from pc 1 to pec 2 is defined and denoted as follows:

Ape (Pc,17pc,2) = Pc,2 = Pe,1

Definition 240 (Morphetic pitch interval) If pm 1 and pm 2 are two morphetic pitches in a well-formed
pitch system 1, then the morphetic pitch interval from pm 1 to pm 2 @s defined and denoted as follows:

A Pm (pm,lupm,Z) = Pm,2 — Pm,1

It is now possible to present definitions for the chromatic pitch interval between two pitches and the morphetic

pitch interval between two pitches:

Definition 259 (Definition of Ap. (p1,p2)) If p1 and pa are two pitches in a pitch system 1 then the

chromatic pitch interval from p; to ps is defined and denoted as follows:

Ape (p1,p2) = Ape (Pe (p1) 5 Pe (p2))
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Definition 261 (Definition of Apm (p1,p2)) If p1 and p2 are two pitches in a pitch system 1 then the
morphetic pitch interval from p; to ps is defined and denoted as follows:

Apm (p1,p2) = Apm (Pm (1), Pm (p2))
The concept of a MIPS pitch interval can then be defined as follows:

Definition 265 (Pitch interval) If p1 and ps are two pitches in a pitch system 1) then the pitch interval
from py to po is defined and denoted as follows:

AD (p1,p2) = [Ape (p1,02) , APm (P1, p2)]

It is useful to define two functions, one for calculating the chromatic pitch interval of a pitch interval and

one for calculating the morphetic pitch interval of a pitch interval:

Definition 266 (Chromatic pitch interval of a pitch interval) If p; and ps are any two pitches in a
pitch system 1 then

Ap = AP (p1,p2) = Apc (Ap) = Ape (p1,p2)

Definition 268 (Morphetic pitch interval of a pitch interval) If p1 and ps are any two pitches in a
pitch system 1 then
Ap = AP (p1,p2) = Apm (Ap) = Apwm (p1,p2)

These two definitions can be used to prove the following theorems which provide formulae for calculating the

chromatic pitch interval of a pitch interval and the morphetic pitch interval of a pitch interval:
Theorem 269 (Formula for Apy, (Ap)) If Ap = [Ape, Apm] in a pitch system ¢ then
Apm (Ap) = Apm
Theorem 267 (Formula for Ap. (Ap)) If Ap = [Apc, Apm| in a pitch system ¢ then
Ape (Ap) = Ape
It is now possible to define a function for transposing a chromatic pitch by a chromatic pitch interval:

Definition 426 (Definition of 7, (pc, Apc)) If ¢ is a pitch system and pc1 and pea are chromatic pitches

in Y and Ape 18 a chromatic pitch interval in 1 then

Ape = Ape (Pe,1sPe,2) = Tp (Pe,1, APe) = Pe,2

This definition can be used in conjunction with other MIPS definitions and theorems to prove the following
theorem which provides us with a formula for calculating the chromatic pitch that results when one transposes

a chromatic pitch by a chromatic pitch interval:

Theorem 427 (Formula for 7, (pc, Apc)) If ¢ is a pitch system and pc is a chromatic pitch in ¢ and Ap.

is a chromatic pitch interval in i then

Tpe (Pes Ape) = pe + Ape

The definition of the morphetic pitch transposition function is strictly analogous to that of the chromatic

pitch transposition function:
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Definition 431 (Definition of 7, (pm,Apm)) If ¢ is a pitch system and pm,1 and pm 2 are morphetic
pitches in ¢ and Apm is a morphetic pitch interval in 1 then

Apm = Apm (pm,lapm,2) = Tpm (pm,lu Apm) = Pm,2

This definition can be used in conjunction with other MIPS definitions and theorems to prove the following
theorem which provides us with a formula for calculating the morphetic pitch that results when a morphetic

pitch is transposed by a morphetic pitch interval:

Theorem 432 (Formula for 7, (pm, Apm)) If ¢ is a pitch system and pm is a morphetic pitch in ¢ and
Apm is a morphetic pitch interval in 1 then

Tom (Pmy APm) = Pm + Apm
It is now possible to define the pitch transposition function:

Definition 441 (Definition of 7 (p, Ap)) If ¢ is a pitch system and p1 and p2 are pitches in ¢ and Ap is
a pitch interval in i then

Ap = AP (p1,p2) = 7o (p1,Ap) = p2

This definition can be used in conjunction with certain other MIPS definitions and theorems to prove the
following theorem which provides us with a formula for calculating the pitch that results when a MIPS pitch
is transposed by a MIPS pitch interval:

Theorem 442 (Formula for 7, (p, Ap)) If 1 is a pitch system and p is a pitch in ¢ and Ap is a pitch

interval in Y then
o (P, Ap) = [Tp. (Pc (P) , APe (AP)) s Ty, (Pm (P) ; AP (Ap))]

The concept of the inverse of a pitch interval will now be be defined:

Definition 561 (Inverse of a pitch interval) If ¢ is a pitch system and Ap is a pitch interval in 1 and
p is a pitch in v then the inverse of Ap, denoted tp (Ap), is the pitch interval that satisfies the following
equation

o (7o (P, Ap) s 1o (Ap)) =p

This definition together with other definitions and theorems from MIPS can be used to prove the following

theorem which provides a formula for calculating the inverse of a pitch interval:

Theorem 563 If
1/) = [IUJCa Hm, vapC.,O]

is a pitch system and Ap is a pitch interval in 1 then

tp (Ap) = [-Apc (Ap), —Apm (Ap)]

1.3 The genus representation of octave equivalence

This section is devoted to introducing, defining and discussing the genus representation of octave equivalence.
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L

Fitch name ~ Clf, ch ; chﬁ
Frequency 262 Hz 523Hz 1047 Hz
Chroma 3 3 3
hiarph 2 2 2
Chromamarph  [3.2] [.2] [3.2]

Figure 1.9: The traditional concept of ‘octave equivalence’ in ¥y .

1.3.1 Chromamorph and genus

In traditional Western tonal theory, two notes are considered to be ‘octave equivalent’ if and only if they are
an integer number of perfect octaves apart. Thus, in Figure 1.9, notes 1, 2 and 3 are ‘octave equivalent’ in
this traditional sense. It is clear from Figure 1.9 that if two notes are separated by an integer number of
perfect octaves then they will have the same chroma and the same morph. So as a first attempt at modelling
the traditional concept of ‘octave equivalence,’ let us define the concept of a chromamorph and its associated

equivalence relation, chromamorph equivalence:

Definition 80 (Chromamorph of a pitch) If p is a pitch in a well-formed pitch system, then the following

function returns the chromamorph of p:

d(p) = [c(p), m(p)]

Definition 132 (Chromamorph equivalence of pitches) Two pitches p1 and ps in a well-formed pitch

system are chromamorph equivalent if and only if

d(p1) = 4(p2)

The fact that two pitches are chromamorph equivalent will be denoted

P1 =q P2

Notes 1, 2 and 3 in Figure 1.9 all have the same chromamorph and are therefore chromamorph equivalent.
A number of authors have attempted to model the traditional concept of ‘octave equivalence’ using a
concept essentially identical to chromamorph equivalence of pitches.!® However, chromamorph equivalence
does not correctly model the traditional concept of ‘octave equivalence’ within the 12-tone equal-tempered
tonal pitch system and pitch notation system.
Notes 1 and 2 in Figure 1.10 have the same chromamorph—4, 6] in ¢w. They are therefore chromamorph

equivalent. However, the interval between them is certainly not an integer number of perfect octaves—it is,

10See, for example, Brinkman’s ‘binomial representation’ ([Bri90, 128]) and Agmon’s definition of ‘octave equivalence’ ([Agm89,
11], [Agm96, 44]).
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)]

Chroma 4 4
hiarph G il
Pitch [52,27] [52,34]
Chromamorph  [4,6] [4,5]
Qld genus [5 5] [i,-6]
Genus [16 6] [4,6]

Figure 1.10: The difference between genus and chromamorph.

in fact, a ‘12xdiminished octave’. The two notes are therefore not ‘octave equivalent’ in the traditional tonal
sense.

As defined above (Definition 71) the chroma of a pitch p = [pc, pm] is given by the following equation:

¢ (p) = pc mod puc

and the morph of p = [pc, pm] (see Definition 76) is given by the following equation:
m (p) = pm mod fim

Informally speaking, the chroma of a pitch is found by taking the chromatic pitch and subtracting the
chromatic modulus a certain number of times until one has a remainder ¢ that is between 0 and p. — 1. The
number of times we have to subtract the chromatic modulus from the chromatic pitch to get the chroma is

equal to the chromatic octave (see Definition 68):

oc (p) = pe (p) div puc

Similarly, the morph of a pitch is found by taking the morphetic pitch and subtracting the morphetic modulus
a certain number of times until one has a remainder m that is between 0 and py, — 1. The number of times we
have to subtract the morphetic modulus from the morphetic pitch to get the morph is equal to the morphetic
octave (see Definition 69):
Oom (p) = Pm () div pim

But, of course, on, (p) and o (p) for a given pitch are not necessarily the same because p¢ (p) and pm (p) are
mutually independent and can each take any integer value.

For example, to find the chroma of note 1 in Figure 1.10 we find the least positive remainder when we
divide the chromatic pitch (52) by the chromatic modulus. To do this in this case we effectively subtract the
chromatic modulus from the chromatic pitch four times:

52— (4x12) =4
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To find the morph we find the least positive remainder when we divide the morphetic pitch by the morphetic
modulus which, in this case involves subtracting the morphetic modulus three times from the morphetic pitch:

27— (3x7)=6

To find the chroma of note 2 in Figure 1.10 we have to subtract the chromatic modulus four times from the
chromatic pitch
52— (4x12) =4

and to find the morph we subtract the morphetic modulus four times from the morphetic pitch
34— (4x7)=6

For note 2, the chromatic octave is the same as the morphetic octave but for note 1, the chromatic octave

is not equal to the morphetic octave. Let us define the concept of octave difference as follows:

Definition 81 (Octave difference of a pitch) If p is a pitch in a well-formed pitch system, then the

following function returns the octave difference of p:

do (p) = 0c (p) — om (p)

This implies that the octave difference of note 1 is

but the octave difference of note 2 is

For two notes to be ‘octave equivalent’ in the traditional tonal sense they must have not only the same morph
and the same chroma but also the same octave difference.

This example suggests that we can achieve a correct representation of tonal octave equivalence simply by
using a representation in which we replace the chroma in a chromamorph with a value that is the result of
subtracting the chromatic modulus from the chromatic pitch the same number of times that we subtract the
morphetic modulus from the morphetic pitch to get the morph. In MIPS, this replacement for the chroma
in a chromamorph is called the chromatic genus of a pitch and it is defined as follows:

Definition 82 (Chromatic genus of a pitch) If p is a pitch in a well-formed pitch system

1/) = [,UJCa Hm, vapC,O]

then the following function returns the chromatic genus of p:

gc (P) = Pe (P) — fe X Om (p)

This gives us a new representation of octave equivalence which in this document will be called genus. A genus
is an ordered pair similar to a chromamorph, except that the first element is the chromatic genus of the pitch
and the second element is the morph of the pitch. The genus of a pitch is defined as follows:

Definition 84 (Genus of a pitch) If p is a pitch in a well-formed pitch system then the following function

returns the genus of p:
g(p) = [ge (p),m (p)]

The corresponding concept of genus equivalence is defined as follows:
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Definition 135 (Genus equivalence of pitches) Two pitches p1 and ps in a well-formed pitch system are

genus equivalent if and only if
g(p1) =8(p2)

The fact that two pitches are genus equivalent will be denoted

P1 =g P2

It can be shown (see Definition 87 in Chapter 4) that two pitches will have the same genus if and only if they
have the same chroma, the same morph and the same octave difference.

Note that the genus of a pitch can be calculated directly from the chromatic pitch and morphetic pitch
of the pitch. This implies that in order to find the genus of a pitch within a pitch system, one does not
need first to know which sets within that pitch system correspond to the diatonic sets in the Western tonal
system. Genus equivalence therefore correctly models the logic of the Western tonal pitch system and can be
generalised to any other pitch system without first specifying which sets in that pitch system correspond to

the diatonic sets of the Western tonal system.

1.3.2 Deriving MIPS objects from a genus

Given a MIPS pitch, it is possible to calculate its chromatic pitch (Definition 63), its morphetic pitch (Def-
inition 64), its chroma (Definition 71) and so on. In a similar way, it is possible to calculate the chroma,
morph, chromamorph and chromatic genus of a genus.

The function for returning the chromatic genus of a genus is defined as follows:

Definition 114 (Chromatic genus of a genus) If g is the genus of a pitch p in a pitch system 1p then the

function gc (g) must return the chromatic genus of p. In other words, by definition, it must be true that

(9 =8(p)) = (8¢ (9) = g (p))

This definition can be used to prove the following theorem which provides a formula for calculating the

chromatic genus of a genus:

Theorem 115 (Chromatic genus of a genus) If g = [gc, m] is the genus of a pitch in the pitch system )
then

g (9) = ge

The function for returning the morph of a genus is defined as follows:

Definition 116 (Morph of a genus) If g is the genus of a pitch p in a pitch system v then the function

m (g) must return the morph of p. In other words, by definition, it must be true that

This definition can be used to prove the following theorem which provides a formula for calculating the morph

of a genus:

Theorem 117 (Morph of a genus) If g = [gc, m] is the genus of a pitch in the pitch system 1 then
m(g) =m

Theorems 115 and 117 can be used to prove the following simple but useful theorem:
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Theorem 118 If g is a genus in a pitch system 1 then
9= g (9),m(9)]
The function for returning the chroma of a genus is defined as follows:

Definition 119 (Chroma of a genus) If g is the genus of a pitch p in a pitch system ¢ then the function

c(g) must return the chroma of p. In other words, by definition, it must be true that

This definition can be used to prove the following theorem which provides a formula for calculating the
chroma of a genus:

Theorem 120 (Chroma of a genus) If g is the genus of a pitch in the pitch system

1/) = [,UJCa Hm, vapC,O]

then
c(9) = gc (9) mod puc

Finally, the function that returns the chromamorph of a genus is defined as follows:

Definition 121 (Chromamorph of a genus) If g is the genus of a pitch p in a pitch system 1 then the

function 4 (g) must return the chromamorph of p. In other words, by definition, it must be true that

This definition can be used to prove the following theorem which provides a formula for calculating the
chromamorph of a genus:

Theorem 122 (Chromamorph of a genus) If g is the genus of a pitch in the pitch system ) then

1.3.3 The concept of a genus interval
Before defining the concept of a genus interval, it is necessary to define that of a morph interval:
Definition 217 (Morph interval) If m; and mso are two morphs in a well-formed pitch system
Y = [He, fim, fo, Pe,o]
then the morph interval from m; to me is given by the following equation:
Am (my,ma) = (mg —mq) mod pim

This definition specifies how to calculate the morph interval from one morph to another. The following

definition specifies how to calculate the morph interval from one genus to another.

Definition 228 (Morph interval between two genera) If g1 and go are two genera in a pitch system

then the morph interval from g1 to g2 is defined and denoted as follows:

Am (g1, 92) = Am(m(g1),m(g2))
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The following definition provides a formula for calculating the chromatic genus interval between two genera:

Definition 230 (Chromatic genus interval between two genera) If g1 and g2 are two genera in a pitch

system
1/) = [,UJCa Hm, vapC,O]

then the chromatic genus interval from g1 to go is defined and denoted as follows:

Age(g1,92) = gc (92) — gc (91) — pre X ((m(g2) —m (g1)) div pm)

The following definition uses Definitions 230 and 228 to provide an expression for the genus interval between

two genera:

Definition 231 (Genus interval between two genera) If g1 and g2 are two genera in a pitch system

then the genus interval from g1 to g2 is defined and denoted as follows:

Ag(g1,92) = [Age(91,92) , Am (g1, g2)]

1.3.4 Transposing a genus

Having defined the concepts of genus and genus interval, it is now possible to define a function for transposing

a genus by a genus interval:

Definition 421 (Genus transposition function) If ¢ is a pitch system and g1 and g2 are genera in

and Ag is a genus interval in ¢ then the genus transposition function is defined as follows:

Ag(g1,92) = Ag = 75 (91,A9) = g2

This definition in combination with a number of other MIPS theorems and definitions can be used to prove
a theorem which provides a formula for calculating the genus that results from transposing any given genus
by any given genus interval. However, before stating this theorem, it is necessary to introduce three more
concepts, namely, the morph interval of a genus interval, the chromatic genus interval of a genus interval
and the morph transposition function.

The concept of the morph interval of a genus interval is defined as follows:

Definition 315 (Morph interval of a genus interval) If g; and g2 are two genera in a pitch system
then
Ag=Ag(g1,92) = Am(Ag) = Am (g1, 92)

This definition can be used together with Definition 231 to prove the following theorem which provides a

formula for calculating the morph interval of a genus interval:

Theorem 316 (Formula for morph interval of a genus interval) If Ag is a genus interval in a pitch
system 1 then
Ag = [Age, Am] = Am (Ag) = Am

The concept of the chromatic genus interval of a genus interval is defined as follows:

Definition 309 (Chromatic genus interval of a genus interval) If g1 and g2 are two genera in a pitch
system 1 then
Ag=Ag(g1,92) = Age (Ag) = Age (91, 92)
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This definition can be used together with Definition 231 to prove the following theorem which provides a

formula for calculating the chromatic genus interval of a genus interval:

Theorem 310 (Formula for chromatic genus interval of a genus interval) If Ag is a genus interval
in a pitch system 1 then
Ag = [Age, Am] = Age (Ag) = Age

The morph transposition function is defined as follows:

Definition 411 (Morph transposition function) If ¢ is a pitch system and my and ms are morphs in

and Am is a morph interval in v then the morph transposition function is defined as follows:
Am(my,me) = Am = Tm (M1, Am) = mo

This definition, together with other theorems and definitions from MIPS can be used to prove the following
theorem which provides a formula for calculating the morph that results when one transposes a morph by a

morph interval:

Theorem 412 (Formula for morph transposition function) If m is a morph and Am is a morph

interval in a pitch system
1/) = [IUJCa Hm, vapC,O]

then
Tm (m, Am) = (m 4+ Am) mod pim

It is now possible to state a theorem that provides a formula for calculating the genus that results when one

transposes a genus by a genus interval:
Theorem 422 (Formula for genus transposition function) If
¥ = [fic, ;s fo, Peo]
is a pitch system and g is a genus in ¥ and Ag is a genus interval in ¢ then
7 (9,A9) = [gc (9) + Age (Ag) — pe x (m (9) + Am (Ag)) div pim) , T (m(g) , A (Ag))]

This theorem can be used in conjunction with a number of other MIPS definitions and theorems to prove the

following two theorems that state certain important properties of the genus transposition function:

Theorem 424 If i is a pitch system and g1 and g2 are genera in ¥ and Ag is a genus interval in 1 then
7z (91,A9) = g2 <= A8(g1,92) = Ag

Theorem 425 If 1 is a pitch system and Agy and Ags are genus intervals in i and g is a genus in Y then

(75 (9, Ag1) = 75 (9, Ag2)) = (Ag1 = Aga)

1.3.5 Summation of genus intervals
The following definition provides a formula for calculating the sum of a collection of genus intervals:

Definition 491 (Summation of genus intervals) If

¥ = [He, fim;, fo, Pe,0]
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18 a pitch system and
Agi,Ago, ... Agy

s a collection of genus intervals in 1 then
o5 (Ag1, Aga, ... Agn) = KZ Age (Agk)> — e X ((Z Am (Agk)> div um> : (Z Am (Agk)> mod Nm]
This definition in conjunction with other MIPS definitions and theorems can be used to prove the following

theorem which provides a formula for calculating the genus that results when a genus is transposed by the

sum of a collection of genus intervals:

Theorem 492 If
1/) = [IUJCa Hm, vapC,O]

is a pitch system, g is a genus in ¢ and
Agi,Aga, ... Agy

18 a collection of genus intervals in i then

ge (9) + (pes Age (Agk)) — pe x ((Ch=y Am (Agk)) +m (g)) div pim) ,
Tg (gv Og (Aglv Ag?a s Agn)) =
(m (g) + (j—1 Am (Agr))) mod i

The following theorem simply states that transposing a genus g by the sum of a collection of genus inter-
vals Agy, Ags, ... Ag, gives the same result as transposing g by Agp, then transposing the result of this
transposition by Ags, the result of that transposition by Ags and so on:

Theorem 493 If i is a pitch system and
Agi,Aga, ... Agy
s a collection of genus intervals in ¢ and g is a genus in 1 then

75 (9,0¢ (Ag1,Ag2, ... Agn)) = Tg (... 75 (T (9, A91) , Ag2) .., Agn)

1.3.6 Inverse of a genus interval
The Inverse of a genus interval is defined as follows:

Definition 494 (Inverse of a genus interval) If ¢ is a pitch system and Ag is a genus interval in ¢ and
g s a genus in i then the inverse of Ag, denoted g (Ag), is the genus interval that satisfies the following

equation
e (T2 (9, Ag) , e (Ag)) =g
The following theorem provides a formula for calculating the inverse of a genus interval:
Theorem 496 If
¥ = [e; pim; fo, Pe,o]

18 a pitch system and Ag is a genus interval in v then

tg (Ag) = [pe — Age (Ag), (~Am (Ag)) mod fim]
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1.3.7 Exponentiation of a genus interval
The concept of genus interval exponentiation is defined as follows:
Definition 500 (Exponentiation of a genus interval) Given that:
1. v s a pitch system;
2. g is a genus in p;
3. Ag is a genus interval in ;
4. m is an integer;
5. k is an integer and 1 < k < abs (n);
6. Agi k= Ag for all k; and
7. Agar =g (Ag) for all k;

then €g n, (Ag) returns a genus interval that satisfies the following equation:

75 (9,05 (Ag11,A¢g1,2,... Ag1,n))  if n>0
e (9, €an (Ag)) =4 g if n=0
Te (9,0g (Ag2,1,Aga2, ... Aga—p)) if n<0
This definition effectively states that if n is a positive integer, then transposing a genus g by the nth power
of the genus interval Ag must give the same result as that obtained when one transposes g by the sum of n
genus intervals all of which are equal to Ag. The definition also states that if n is a negative integer, then the
result of transposing a genus by the nth power of Ag must be the same as that obtained when one transposes
g by the sum of a collection of —n intervals, all of which are equal to the inverse of Ag. Transposing a genus
by the zeroth power of any genus interval must result in no change in the genus.

The following theorem provides a formula for calculating the nth power of a genus interval:

Theorem 501 (Formula for €, (Ag)) If

1/) = [IUJCa Hm, vapC.,O]
is a pitch system and Ag is a genus interval in 1 and n is an integer then

nx Age (Ag) = pe x ((n x Am (Ag)) div i),
€zn (Ag) =
(nx Am(Ag)) mod pm

The following three theorems state some interesting properties of the exponentiation function for genus

intervals:

Theorem 502 If
1/) = [IUJCa Hm, vapC.,O]

is a pitch system and Ag is any genus interval in 1 then

tg (Ag) = €g,—1 (Ag)

Theorem 503 If
w = [MCv Hm, anpC,O]
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18 a pitch system, ni,na,...nk is a collection of integers and Ag is a genus interval in v then

€g.np ( - €ging (Eg,nl (Ag)) .. ) = Eg,l_[;?:l n; (Ag)
Theorem 508 If
1/) = [:uca Hm, vapC,O]

18 a pitch system, ni,na,...nk is a collection of integers and Ag is a genus interval in ¢ then

Og (egﬂn (Ag) ) €g,no (Ag) oo €gng (Ag)) = E&E?:1 n; (Ag)

J

1.3.8 Exponentiation of the genus transposition function

It is useful to define the concept of exponentiating the genus transposition function. This concept is defined

as follows:

Definition 509 (Definition of 7, (g, Ag)) If ¢ is a pitch system and g is a genus in ¢ and Ag is a genus
interval in i then

Tg,n (ga Ag) =Tg (97 Eg,n (Ag))

This definition, in combination with a number of other MIPS definitions and theorems can be used to prove

the following theorem:

Theorem 510 If
¥ = [le, fm; fo, Pe,o]

is a pitch system, ni,na,...,ny is a collection of integers, g is a genus in Y and Ag is a genus interval in ¥
then
T (- e (Teny (9,89),89) -, Ag) = Ty sor 1, (9,A9)

1.4 Using MIPS to model the A.S.A. pitch naming system and the

Western tonal system of pitch interval names

The concepts introduced above can be used to construct four useful algorithms:

1. an algorithm that takes a MIPS pitch in ¥w as input and generates the A.S.A. pitch name that
corresponds to that pitch as output;

2. an algorithm that takes an A.S.A. pitch name as input and generates as output the MIPS pitch in ¥w

that corresponds to that pitch name;

3. an algorithm that takes a normal Western tonal pitch interval name as input (e.g. “Rising major third”)

and generates the corresponding pitch interval in 1w as output; and

4. an algorithm that takes a pitch interval in 1w as input and generates the normal Western tonal pitch

interval name as output.

This section is devoted to describing these four algorithms.
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1.4.1 Using the MIPS concept of a pitch to model the A.S.A. pitch naming
system

As already mentioned above, in the A.S.A. pitch-naming system, a note has a letter-name (A to G), an
inflection (...,bb,b b 8, 8, ...) and an octave number (for example, middle C—Cly—has an octave number
of 4 and the C above middle C (Cl5) has an octave number of 5). This naming system derives from the staff
notation system which has evolved over the past four hundred years or so to be a highly effective means of
notating Western tonal music. To this extent, the pitch-naming system correctly models the Western tonal
pitch system.

There is a one-to-one correspondence between a pitch in ¢¥w (see Equation 1.1 above) and an A.S.A. pitch-
name. Two algorithms can therefore be defined: one for returning the A.S.A. pitch-name that corresponds to
any particular pitch; and another for returning the pitch that corresponds to any given A.S.A. pitch-name.
The first of these algorithms uses the concept of chromatic genus defined above (see Definition 82).

Before describing these algorithms, it is necessary to define the concept of concatenation with respect
to strings of characters. Let a string a be any sequence of characters ajas...a, and let b be any string
b1by ...b,. The concatenation of b onto a, denoted a @ b, is equal to the string aias...ambibs...b,. The

operation of concatenation on strings is associative: that is, for any three strings, a, b and c,
a®(bdec)=(adb)Dc

Both of these expressions can therefore be written a & b @ ¢ without ambiguity.
The following algorithm, which will be called the p-pn algorithm, returns the A.S.A. pitch-name that

corresponds to any given pitch:
1. Let p be a pitch in the pitch system 1yw. For example, assume p = [52, 34] (see Figure 1.10).

2. Let m be a numerical value used to represent the morph of p and set m to equal the value m (p). For

example, if p = [52,34] then m would be made equal to 6.

3. Let [ be a string of characters that is used to represent the letter-name of the A.S.A. pitch-name. Let [
become equal to the value given in the second row of the following table that corresponds to the value

of m.

m‘O 1 2 3 4 5 6

l LLA77 MB?? HC” LéD” LLE” LLF77 LLG”

For example, if m = 6 then [ will be made equal to “G”.
4. Let g. become equal to g (p). For example, if p = [52,34] then g. would be made equal to 4.

5. Let ¢’ become equal to the value in the second row of the following table that corresponds to the value

of m.

m|0 1 2 3 4 5 6

C/

0 2 3 5 7 8 10

The second row in this table gives, in order, the chroma of Af, Bf,...Gf. In our example, m = 6 so ¢’

will be made equal to 10.
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6. Find the value e = g. — ¢. (For p = [52,34], gc = 4 and ¢/ = 10 therefore e would be made equal to
—6.) If e = 0, this implies that the note is a natural note—that is, no sharps and no flats. If e > 0 then
the note has e sharps and if e < 0 then the note has —e flats.

7. Let i be a string of characters that is used to represent the inflection of the A.S.A. pitch-name. If e =0
then let ¢ become equal to the string “n”. If e > 0 then let ¢ become equal to a string consisting of e
‘s’ characters (for example, if e = 3 then 4 should become equal to the string “sss”). If e < 0 then let ¢
become equal to a string consisting of —e ‘f” characters (for example, if e = —3 then ¢ should become
equal to “fff”.)1!

8. Let om become equal to om (p). If m is 0 or 1 then let 04 5 4. become equal to on. Otherwise, let
04.5.4. become equal to oy + 1.

9. Let o become equal to the string of characters that represents in decimal the value of 04 5.4.. For
example, if 04.5.4. = 3 then o should become equal to the string “3” and if 04.5.4. = —6 then o should

become equal to the string “—6”.

10. Let n become equal to the string [ & i @ o and output n. For example, for p = [52,34], [ would be “G”,
¢ would be “ffffff” and o would be “5” giving a value for n of “Gffffff5” which is the desired result.

The Lisp function p-pn in Chapter 2 is an implementation of the p-pn algorithm. The following table
gives some examples of the output generated by p-pn for a number of input pitches:

p| [0,00 [-1,0] [0,—1] [-9,—5] [-10,—5] [-9,—6] [39,23]  [52,27] [52,34]  [39,22] [38,23]

n LLAnO77 LLAfO” “GSSO’) LCCnO” MCfO” “BS—].” “Cn4” LLGSSSSSS47’ ((Gﬁ'ﬁ'ﬁ'577 LLBS377 (LCf4”

The actual Lisp function call evaluated to generate these values looked like this in the Lisp Listener:

? (mapcar #’p-pn
>((00) (-1 0) (0 -1) (-9 -5) (10 -5) (-9 -6) (39 23) (52 27) (52 34) (39 22) (38 23)))

("Anoll IIAfOII "GSSO" HCnolI IICfOIl IIBS_llI Ilcn4ll IIGSSSSSS4II IIfoffffSll IIBSBU lle4lI)
?

The following algorithm performs the reverse process: when given an A.S.A. pitch-name n as input in the
form of a string of the type generated as output by the p—pn algorithm just described, the following algorithm
calculates the MIPS pitch that corresponds to the pitch-name n. The following algorithm is called the pn-p

algorithm.

1. Let n be a string of characters representing a pitch-name (e.g. “Cn4”, “Gssssssd”, “Bf3”).

2. If k is a string of characters then let |k| be equal to the length of k& (that is, the number of characters
in k.)

3. Let [ be the string that only contains the first character in the string n. So, for example, if n is
“Gssssssd” then [ will be equal to “G”, if n is “Cn4” then [ will be equal to “C”.

H1n the algorithm descriptions, characters will be enclosed between single quotes (e.g. ‘s’, ‘f’) and strings will be enclosed by

double quotes (e.g. “sss”, “fff”).
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4. Let n [z] return the ath character in the string n. For example, if n is equal to “Cn4” then n [2] would
be equal to the character ‘n’.
5. Let ¢ be the string that is constructed using the following procedure:

(132

(a) Let 7 become equal to the empty string,
(b) Let z become equal to 2.
d) Let ¢ become equal to i & j.

Let = become equal to = + 1.

)
)
(c) Let j become equal to the string that consists of the single character n [x].
(d)
e)
)

(
(f) If n[z] is a member of the set of characters

{4_77(17’¢2’7(37’(477£57’(677(77’487,(97}
or if x is greater than the length of n then go to step 6 and return i. Otherwise go to step b5c.

6. If i is equal to the string “n” or a string consisting entirely of ‘s’ characters (e.g. “sssss”) or a string
consisting entirely of ‘f” characters (“fffff”) then go to step 7. Otherwise return an error.

7. Let o become equal to the string that is returned by the following procedure:

(a) Let y become equal to the length of .
(b) Let x become equal to y + 2.
(

(c
d

(e

)
)
) Let o become equal to the string that contains the single character n [z].
) Let « become equal to x + 1.

)

If n[z] exists then let j become equal to the string that consists of the single character n [z].

(355}

Otherwise let j become equal to the empty string
(f) If j is non-empty then let o become equal to o @ j.
(g) If j is non-empty then go to step 7d. Otherwise go to step 8 and return o.

8. Let 04.5.4. become equal to the decimal value expressed by the string o. For example, if o is equal to

the string “—23” then 04.5.4 would become equal to —23.

9. Let m become equal to the value in the second row of the following table that corresponds to the value
of [.

l L£A77 ((B” ttC77 “D?? “E” “F77 “Gﬂ

m‘() 1 2 3 4 5 6

10. Let ¢’ be made equal to the value in the second row of the following table that corresponds to the value

of m.

m|0 1 2 3 4 5 6

Cl

0 2 3 5 7 8 10
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Figure 1.11: Pitch intervals and pitch interval names.

[13e})

11. If i is equal to “n” then let e become equal to 0. If 7 is a string of ‘f” characters (e.g. “fff”) then let e
become equal to the value —1 x |é|. If 4 is a string of ‘s’ characters then let e become equal to the value
li].

12. If m is 0 or 1, then let o, become equal to 04.5.4.. Otherwise let oy, become equal to 04.5.4. — 1.

13. Let pc, the chromatic pitch of the pitch that will be generated as output, become equal to the value
e+ ¢ + pe X om where pc is the chromatic modulus of the pitch system ), that is, pec = 12.

14. Let pm, the morphetic pitch of the pitch that will be generated as output, become equal to the value
Om X [m + m where iy, is the morphetic modulus of the pitch system i, that is, um = 7.

15. Let p become equal to the ordered pair, [pc, pm] and output p.

The Lisp function pn-p in Chapter 2 is an implementation of the pn-p algorithm. The following table

gives some examples of the output generated by p-pn for a number of input pitch names:

n “A_HO” LLAfO” HGSSO” “Cnoﬁ MCfO?? “BS—].” “Cn4” LLGSSSSSS47’ “Gﬁ'ﬁ'ﬁ'577 “BS?)” LLCf47’

p| [0,0] [-1,0] [0,—1] [-9,—5] [-10,—5] [-9,—6] [39,23]  [52,27] [52,34]  [39,22] [38,23]

The actual Lisp function call evaluated to generate these values looked like this in the Lisp Listener:

? (mapcar #’pn-p
) (llAnoll llAfoll IIGSSOII llcnoll lleoll "BS_]." llCn4I| “GSSSSSS4" llefffffsll IIBS3II "Cf4"))

(0 0) (-1 0) (0 -1) (-9 -5) (-10 -5) (-9 -6) (39 23) (52 27) (52 34) (39 22) (38 23))
?

1.4.2 Using the MIPS concept of a pitch interval to model the Western tonal

pitch interval naming system

Figure 1.11 shows a number of pairs of notes and written beneath each pair is a code which is an abbreviation

for the traditional pitch interval name for the pitch interval from the first note in the pair to the second note.
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Direction Abbreviation
rising

falling

Type Abbreviation
perfect P

major ma

minor mi
augmented a

double-augmented aa

triple-augmented  aaa

diminished d
double-diminished dd
triple-diminished ddd

Size Abbreviation
prime 1
second 2
third 3
fourth 4

Table 1.1: Code for abbreviated notation of traditional Western tonal pitch interval names.

A pitch interval name in the traditional Western tonal pitch interval naming system has three parts: a

direction which can either be rising or falling'?; a type which is a member of the infinite set,
{..., double-augmented, augmented, major, perfect, minor, diminished, double-diminished,. ..}
and a size which is a member of the set
{prime, second, third, fourth, fifth, sixth, seventh, octave, ninth, tenth,... }

In this document, an abbreviated format will be used to denote traditional pitch interval names. Table 1.1
describes this abbreviated notation. For example, a rising major third would be denoted ‘rmad’, a falling
double-diminished sixth would be denoted ‘fdd6’ and a perfect prime would be denoted ‘pl’.

There is a one-to-one correspondence between a pitch interval name in the traditional Western tonal
pitch-naming system and a MIPS pitch interval in the pitch system 1w (see Equation 1.1). In Figure 1.11
each pair of notes has written beneath it the traditional pitch name in abbreviated format together with the
pitch interval in 9w that corresponds to that pitch name. As can be seen in Figure 1.11, the chromatic pitch
interval associated with the interval gives the change in chromatic pitch and the morphetic pitch interval

12The interval of a prime does not have a direction because it does not result in a change in morphetic pitch.
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gives the change in morphetic pitch (i.e. the number of steps moved on the staff). A positive chromatic or
morphetic pitch interval corresponds to an increase in chromatic or morphetic pitch respectively. In Figure
1.11, intervals (b), (d) and (f) are the inverses of intervals (a), (c) and (e) respectively.

The remainder of this section will be devoted to describing two algorithms. The first one, called pi-pin,
takes as input a pitch interval Ap in 1w and generates as output the traditional pitch interval name that
corresponds to Ap. The second algorithm, pin-pi, performs the reverse process: when given as input a pitch
name An it generates as output the corresponding pitch interval in .

Before presenting these algorithms, it is necessary to define a function that returns the chromatic genus
interval of a pitch interval, denoted A g. (Ap). This concept is defined as follows:

Definition 279 (Chromatic genus interval of a pitch interval) If p; and ps are any two pitches in a

pitch system 1) then
Ap = AP (p1,p2) = Age (Ap) = Age (p1,p2)

This definition along with other definitions and theorems in MIPS can be used to prove the following theorem

which provides us with a formula for calculating the chromatic genus interval of a pitch interval:

Theorem 280 (Formula for Ag. (Ap)) If Ap is a pitch interval in

w = [MCv Hm, anpC,O]

then:
Age (Ap) = Ape (Ap) — pie X (Apm (Ap) div pim)

The algorithm pi-pin takes the following form:
1. Let Ap be a pitch interval in ¢w.

2. Let d be a string that will be used to represent the direction of the pitch interval name. If A py, (Ap) =0
then let d be made equal to the empty string “”. If A pm (Ap) > 0 then d should be made equal to the
string “r”. If A pm (Ap) < 0 then d should be made equal to the string “f”.

3. Let s’ be made equal to the value abs (Apm (Ap)) + 1 and let s, the string that will represent the size
of the pitch interval name generated as output, be made equal to the string that represents in decimal

format the value of s’. For example, if s/ = 3 then s will be made equal to the string “3”.

4. Let Am’ be made equal to the value abs (A pm (Ap)) mod pm where pim is the morphetic modulus which
in the case of Yw is equal to 7.

5. Let Ac’ become equal to the value in the second row of the following table that corresponds to the

value of Am’ in the top row.

Am’ |0 1 2 3 4 5 6

Acd |0 2 4 5 7 9 11

6. Let t' become equal to the value in the second row of the following table that corresponds to the value
of Am/ in the top row.
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t/
7. If Apm (Ap) > 0 then let e be made equal to the value A g. (Ap) — Ac’. Otherwise, let e become equal
to Age (1p (Ap)) — Ac'.

[{Se)) [13b)

8. (a) If ¢ is equal to the string “p” and e = 0 then let ¢ become equal to the string “p”.

(b) If ¢ is equal to the string “p” and e > 0 then let ¢ become equal to the string that consists of e ‘a’
characters. (For example, if e = 3 then ¢ should be made equal to “aaa”.)

(c) If ' is equal to “p” and e < 0 then let ¢ become equal to the string that consists of —e ‘d’ characters.
(For example, if e = —3 then ¢ should be made equal to “ddd”.)

(d) If ¢’ is equal to “ma” and e = 0 then let ¢ become equal to “ma”.
(e) If t' is equal to “ma” and e = —1 then let ¢ become equal to “mi”.

(f) If ¢’ is equal to “ma” and e < —1 then let ¢ become equal to the string that consists of —e — 1 ‘d’
characters. (For example, if e = —4 then t should be made equal to “ddd”.)

(g) Ift' is equal to “ma” and e > 0 then let ¢ become equal to the string that consists of e ‘a’ characters.

(For example, if e = 2 then ¢ should be made equal to “aa”.)
9. Let An become equal to the string d & ¢ & s and generate An as output.

The Lisp function pi-pin in Chapter 2 is an implementation of the pi-pin algorithm. The following
table gives some examples of the output generated by pi-pin for a number of input pitch intervals:

Ap‘ [2,1] 3,1 [0,1]), [-1,1] [-7,—4] [-6,—-4] [-17,—10] [0, 7] [-1,0] [1,0]

An | “rma2”  “ra2” “rd2” “rdd2” “fp5” “fd5” “fp11” “rdddddddddddd8”  “d1”  “al”

The actual Lisp function call evaluated to generate these values looked like this in the Lisp Listener:

? (mapcar #’pi-pin
((21) (831) (0 1) (-11) (-7 -4) (-6 -4) (-17 -10) (0 7) (-1 0) (1 0)))

(I|rma2ll llra2 n llrd2ll |Irdd2 n Ilfp5|| llfd5 n Ilfpllll IlrddddddddddddSH Ildlll Ilalll)
?

The algorithm pin-pi performs the reverse task to pi-pin: it takes a traditional Western tonal pitch
interval name as input and generates as output the pitch interval in ¢y that corresponds to that pitch interval
name. This algorithm takes the following form:

1. Let An be a string that represents a pitch interval name such as “rma3”, “fd11”, “d1” etc.

2. If the first character in An is a member of the set {r’,f’} then let d be the string that contains only

w”

the first character in An. Otherwise, let d be made equal to the empty string, *”. For example, if An

W,

is “rma3” then d should be made equal to the string “r”; if An is “fmi6” then d should be made equal
to the string “f”; and if An is “p1” then d should be made equal to the string *”.
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3. If d is equal to the empty string, then let ¢ be made equal to the substring of An that begins with the
first character in An and ends with the character that precedes the earliest character in the string that
is a member of the set

{17,234’ *56°,7°,*8’,9’}
For example, if An is equal to “ddd1” then ¢ should be made equal to the string “ddd”. If d is a
member of the set {“r”,“f”} then let ¢ be made equal to the substring of An that begins with the
second character in An and ends with the character that precedes the earliest character in An that is
a member of the set

{12345 ,6,7",'8",‘9’}

3

For example, if An is equal to “rma3” then ¢ should be made equal to the string “ma”.

4. If t is not a member of the set

bREENAY

{ LLp77 , ééma , mi”

and ¢ is not a string that only contains ‘d’ characters (e.g. “ddd”) and ¢ is not a string that contains
only ‘a’ characters (e.g. “aaa”) then stop the algorithm and return an error. Otherwise, go on to the

next step.
5. Let s be the substring of An that begins with the first character in An that is a member of the set
{17,234’ ‘5 6°,7°,*8’,9’}
and ends with the last character in An. For example, if An is equal to “rmal0” then s should be made
equal to the string “10”.
6. If s is a non-empty string that only contains characters that are members of the set
{12345 6°,7",'8",‘9’}
then go on to the next step. Otherwise stop and return an error.

7. Let s’ be made equal to the decimal value represented by the string s. For example, if s is the string

“12” then s’ would be made equal to the value 12.

8. If d is equal to the string “f” then Apy, should be made equal to the value 1 — s” otherwise, Apy, should

be made equal to the value s’ — 1.

9. Let Am’ be made equal to the value abs (Apy,) mod iy where pp, is the morphetic modulus which in
the case of 1w is equal to 7.

10. Let Ac’ be made equal to the value in the second row of the following table that corresponds to the

value of Am’ found in the previous step.

Am’ |0 1 2 3 4 5 6

Acd |0 2 4 5 7 9 11

11. Let Apc 1 be made equal to the value

Ac + pe x (abs (Apy) div pim)
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12. Let ¢’ be made equal to the value in the table that corresponds to the value of Am/’ found in step 9:

Am/ 0 1 2 3 4 5 6

13. (a) If ¢’ is equal to the string “p” and ¢ is also equal to the string “p” then let e become equal to 0.

(b) If ¢ is equal to the string “p” and ¢t is a string that consists entirely of ‘d’ characters (e.g. “ddd”)
then let e become equal to —1 x [¢].

(c) If ¥/ is equal to “p” and “t” is equal to a string that consists entirely of ‘a’ characters (e.g. “aaa”)
then let e become equal to [t].

(d) If ¢’ is equal to “ma” and ¢ is equal to “ma” then let e become equal to 0.
(e) If t’ is equal to “ma” and ¢t is equal to “mi” then let e become equal to —1.

(f) If t/ is equal to “ma” and t is equal to a string that consists entirely of ‘d’ characters then let e
become equal to —1 x ([¢| + 1).

(g) If t/ is equal to “ma” and t is equal to a string that consists entirely of ‘a’ characters then let e
become equal to |[¢].

14. If Apm < 0 then let Apc become equal to the value
—1 X% (Ape1+e)
otherwise let Ap. become equal to the value Apc 1 + e.
15. Let Ap become equal to the ordered pair [Apc, Apm| and return the value Ap.

The Lisp function pin-pi in Chapter 2 is an implementation of the pin-pi algorithm. The following

table gives some examples of the output generated by pin-pi for a number of input pitch interval names:

An

LirmaQ” (Lra27’ “I‘d2” “I’dd2” ééfp577 ((fd57’ Lprllﬁ LerdddddddddddS” (Ldl” “alﬂ

Ap [2,1] 3,1 [0,1], [-1,1] [-7,—4] [-6,—-4] [-17,—10] [0, 7] [-1,0] [1,0]

The actual Lisp function call evaluated to generate these values looked like this in the Lisp Listener:

? (mapcar #’pin-pi
’(rma2 ra2 rd2 rdd2 fp5 £d5 fpll rdddddddddddd8 di al))

((21) (831) (01) (-1 1) (-7 -4) (-6 -4) (-17 -10) (0 7) (-1 0) (1 0))
?

1.5 Summary

1. MIPS is a formal language invented by the author that is designed to be used for investigating the

mathematical properties of pitch systems and collections of pitches within those systems.

2. MIPS is based on two fundamental concepts: the concept of a pitch system and the concept of a pitch.
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3. A MIPS pitch system,
1/} = [,UJCa Hm, anpC,O]

models a pitch system that employs scales containing u,, notes, performed in an equal-tempered tuning
system where the frequency fy is associated with the chromatic pitch pco and where the octave is

divided into p. equal frequency intervals.

4. In principle, if the frequency of a pitch within a pitch system can be calculated from its MIPS pitch,
then the pitch system can be modelled in MIPS (provided that one defines an appropriate frequency
function in place of that given in Definition 66). This provides a way for modelling non-equal-tempered
pitch systems in MIPS.

5. MIPS is constructed around four mathematical representations of octave equivalence: chroma, morph,
chromamorph and genus. The chroma, morph and chromamorph representations have been used else-
where but the genus representation is presented here for the first time. The concepts of chroma, morph
and chromamorph fail to model correctly the traditional tonal concept of octave equivalence. However,
the genus representation of octave equivalence not only correctly models the traditional tonal concept
but also can be generalised to any other pitch system without first having to know which sets in that

pitch system correspond to the diatonic sets of the Western pitch system.

6. Definitions and formulae have been given for deriving the chroma, morph, chromatic genus and chro-
mamorph of a genus. Formulae and theorems have also been provided for transposing a genus by a
genus interval and for summing, inverting and exponentiating genus intervals. Many more concepts and
formulae relating to the genus representation of octave equivalence (including formulae for manipulating

genus sets and genus interval sets) can be found in Chapter 4.

7. Two algorithms, pn-p and p-pn, were presented for converting between A.S.A. pitch names and MIPS
pitches in the pitch system .

8. Two algorithms, pin-pi and pi-pin, were presented for converting between Western tonal pitch interval
names (e.g. “rma3”) and MIPS pitch intervals.

9. All the theorems in this chapter have been presented without proof. However, all the theorems in this

chapter are proved in Chapter 4.



Chapter 2

Lisp implementation of the algorithms

p-pn, pn-p, pi-pin and pin-pi

Given below is the full Lisp source code for implementations of the algorithms p-pn, pn-p, pi-pin and pin-pi
described in sections 1.4.1 and 1.4.2 above.

#|

Algorithms for converting between A.S.A. pitch names and MIPS pitches.
|#

(setf *save-local-symbols* t)

(setf *verbose-eval-selection* t)

(defvar mum 7)
(setf mum 7)
(defvar muc 12)
(setf muc 12)

(defun p-pn (p)
(let* ((m (p-m p))
(1 (elt >("A™ "B" "C" "D" "E" "F" "G") m))
(gc (p-gc p))
(cdash (elt ’(0 2357 8 10) m))
(e (- gc cdash))
ia"m
(i (cond ((< e 0) (dotimes (j (- e) i) (setf i (concatenate ’string i "f"))))
((> e 0) (dotimes (j e i) (setf i (concatenate ’string i "s"))))
((=e 0) "n")))
(om (p-om p))
(oasa (if (or (=m 0) (=m 1))
om
(+ 1 om)))
(o (format nil "“D" oasa)))

(concatenate ’string 1 i 0)))
g

47
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(defun p-m (p)
(bmod (p-pm p) mum))

(defun bmod (x y)
(- x
(xy
(int (/ x ¥)))))

(defun p-pm (p)
(second p))

(defun int (%)

(values (floor x)))

(defun p-gc (p)
(- (p-pc p)
(* muc (p-om p))))

(defun p-pc (p)
(first p))

(defun p-om (p)
(div (p-pm p) mum))

(defun div (x y)
(int (/ x ¥)))

(defun pn-p (pn-as-input)
(let* ((n (if (stringp pn-as-input)
(string-upcase pn-as-input)
(string-upcase (string pn-as-input))))
(1 (string (elt n 0)))
(1 (dox ((1 ")
(x 2)
(j (string (elt n (- x 1))) (string (elt n (- x 1))))
(i (concatenate ’string i j) (concatenate ’string i j))
(x (+1x) (+1x))
((or (>= x (length n))
(member (elt n (- x 1)) 7 (#\- #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9)))
i)))
(is-good-i (well-formed-inflection-p i))
(o (if is-good-i
(dox ((y (length 1))
(x (+y2))
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(o (string (elt n (- x 1))))
(x (+1x) (+1x))
(j (if (<= x (length n))
(string (elt n (- x 1)))
")
(if (<= x (length n))
(string (elt n (- x 1)))
"))
(o (if (equalp j "") o
(concatenate ’string o j))
(if (equalp j "") o
(concatenate ’string o j))))
((equalp j "™
0))))
(oasa (if is-good-i (string-to-number o)))
(m (if is-good-i (position 1
>("A" "B"™ "C" "D" "E" "F" "G")
:test #’equalp)))
(cdash (if is-good-i (elt (0 2 3 57 8 10) m)))
(e (if is-good-i (cond ((equalp i "N") 0)
((equalp (elt i 0) #\F) (¥ -1 (length i)))
((equalp (elt i 0) #\S) (length i)))))
(om (if is-good-i (if (or (=m 1) (= m 0))
oasa (- oasa 1))))
(pc (if is-good-i (+ e cdash (* muc om))))
(pm (if is-good-i (+ m (* om mum)))))
(if is-good-i (list pc pm))))

(defun string-to-number (s)
(if (well-formed-number-string-p s)
(if (string-is-negative-p s)
(let ((n 0))
(dotimes (i (- (length s) 1) (*x -1 n))
(setf n (+ (*x 10 n)
(- (char-code (elt s (+ 1 1)))
(char-code #\0))))))
(let ((n 0))
(dotimes (i (length s) n)
(setf n (+ (x 10 n)
(- (char-code (elt s 1))
(char-code #\0)))))))))

(defun string-is-negative-p (s)
(equalp #\- (char s 0)))



CHAPTER 2. LISP IMPLEMENTATION OF THE ALGORITHMS P-PN, PN-P, PI-PIN AND PIN-PI 50

; (string-is-negative-p "23")

(defun well-formed-number-string-p (s)
(let ((wf t))
(dotimes (i (length s) wf)
(if (not (or (<= (char-code #\0) (char-code (char s i)) (char-code #\9))
(and (= 1 0)

(equalp (char s i) #\-))))
(setf wf nil)))))

#|

(well-formed-number-string-p "23")
| #

(defun well-formed-inflection-p (i)
(or (equalp i "N")
(let ((wf t))
(dotimes (j (length i) wf)
(if (not (equalp (char i j) #\F))
(setf wf nil))))
(let ((wf t))
(dotimes (j (length i) wf)
(if (not (equalp (char i j) #\S))
(setf wf nil))))))

#|
TESTS FOR p-pn and pn-p

(mapcar #’p-pn
>((00) (-1 0) (0 -1) (-9 -5) (10 -5) (-9 -6) (39 23) (52 27) (52 34) (39 22) (38 23)))

(mapcar #’pn-p

)(llAnou IlAfOll IIGSSOII IlCnOII llcfoll IIBS_lll I|Cn4ll "GSSSSSS4" llefffffSll llBSSIl Ile4ll))
| #

(defun pi-pin (pint)
(let* ((pmint (p-int-pm-int pint))

(d (cond ((= O pmint) "")
((> pmint 0) "r")
((< pmint 0) "£")))

(sdash (+ 1 (abs pmint)))

(s (format nil "~“D" sdash))

(mintdash (bmod (abs pmint) mum))

(cintdash (elt (0 2 4 5 7 9 11) mintdash))

(tdash (elt ’("p" "ma" "ma" "p" "p" "ma" "ma") mintdash))
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(e (if (>= pmint 0) (- (p-int-gc-int pint) cintdash) (- (p-int-gc-int (invp pint)) cintdash)))
(ty (cond ((and (equalp tdash "p") (= e 0))
||p||)
((and (equalp tdash "p") (> e 0))
(let ((x "")) (dotimes (i e x) (setf x (concatenate ’string x "a")))))
((and (equalp tdash "p") (< e 0))
(let ((x "")) (dotimes (i (- e) x) (setf x (concatenate ’string x "d")))))
((and (equalp tdash "ma") (= e 0))
"ma")
((and (equalp tdash "ma") (= e -1))
"mi")
((and (equalp tdash "ma") (< e -1))
(let ((x "")) (dotimes (i (- (- e) 1) x) (setf x (concatenate ’string x "d")))))
((and (equalp tdash "ma") (> e 0))
(let ((x "")) (dotimes (i e x) (setf x (concatenate ’string x "a"))))))))
(concatenate ’string d ty s)))

(defun p-int-pm-int (pint)
(second pint))

(defun p-int-gc-int (pint)
(- (p-int-pc-int pint)
(* muc
(div (p-int-pm-int pint)
mum))))

(defun p-int-pc-int (pint)
(first pint))

(defun invp (pint)
(1ist (- (p-int-pc-int pint))
(- (p-int-pm-int pint))))

#|

Tests for pi-pin and pin-pi

(mapcar #’pi-pin
(00 (21) (11) (31) (01) (-11) (41) (-7 -4
(-6 -4) (-5 -4) (-17 -10) (0 7) (-1 0) (1L OO))
| #

(defun pin-pi (pitch-interval-name)
(let* ((pin (if (stringp pitch-interval-name)
(string-upcase pitch-interval-name)

(string-upcase (string pitch-interval-name))))
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(d (char pin 0))
(d (if (member d ’ (#\F #\R) :test #’equalp) (string d) ""))
(ty (dox ((ty "™)
(x (if (equalp d "") 0 1))
(j (string (elt pin x)) (string (elt pin x)))
(ty (concatenate ’string ty j) (concatenate ’string ty j))
(x (+1x) (+1x))
((or (>= x (length pin))
(member (elt pin x) ’(#\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9)))
ty)))
(ty-error (not (well-formed-interval-type-p ty)))
(s (if (not ty-error)
(dox ((y (length ty))
(x (if (equalp d "") y (+y 1))
(s (string (elt pin x)))
(x (+ 1 x) (+1x))
(j (if (< x (length pin))
(string (elt pin x))
")
(if (< x (length pin))
(string (elt pin x))
"))
(s (if (equalp j "") s
(concatenate ’string s j))
(if (equalp j "") s
(concatenate ’string s j))))
((equalp j "")
s))))
(s-error (if (not ty-error) (not (well-formed-number-string-p s))))

(s-dash (if (or s-error ty-error) nil (string-to-number s)))

(pmintvar (if (or s-error ty-error) nil (if (equalp d "f") (- 1 s-dash) (- s-dash 1))))

(mint-dash (if (or s-error ty-error) nil (bmod (abs pmintvar) mum)))
(cint-dash (if (or s-error ty-error) nil (elt (0 2 4 5 7 9 11) mint-dash)))
(pcintone (if (or s-error ty-error) nil (+ cint-dash
(* muc
(div (abs pmintvar)

mum)))))

(t-dash (if (or s-error ty-error) nil (elt ’("p" "ma" "ma" "p" "p" "ma" "ma") mint-dash)))

(e (if (or s-error ty-error) nil

(cond ((and (equalp ty "p") (equalp t-dash "p")) 0)

((and (equalp t-dash "p") (equalp (char ty 0) #\D)) (x (- 1) (length ty)))

((and (equalp t-dash "p") (equalp (char ty 0) #\A)) (length ty))
((and (equalp ty "ma") (equalp t-dash "ma")) 0)

((and (equalp t-dash "ma") (equalp ty "mi")) (- 1))

((and (equalp t-dash "ma") (equalp (char ty 0) #\D)) (* (- 1)
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(+ (length ty) 1)))
((and (equalp t-dash "ma") (equalp (char ty 0) #\A)) (length ty)))))
(pcintvar (if (or s-error ty-error) nil

(if (< pmintvar 0) (* (- 1) (+ e pcintone)) (+ e pcintone)))))
(1ist pcintvar pmintvar)))

(defun well-formed-interval-type-p (ty)

(or (member ty ’("MA" "MI" "P") :test #’equalp)
(et ((wf t))
(dotimes (j (length ty) wf)
(if (not (equalp (char ty j) #\D))
(setf wf nil))))
(let ((wf t))
(dotimes (j (length ty) wf)
(if (not (equalp (char ty j) #\A))
(setf wf nil))))))

#|
(mapcar #’pin-pi
’(rma2 ra2 rd2 rdd2 fp5 £d5 fpll rdddddddddddd8 d1 al))
(pin-pi ’d1)
(setf pitch-interval-name ’d1)
| #



Chapter 3

How to read the tabular proofs

In this document the proof of each theorem is presented in the form of a table with four columns. For
example, Table 3.1 shows the proof of Theorem 582.

Each row in the proof has a label of the form Rn which is given in the first column. Each row is either an
inference, an assumption or a statement of a well-known mathematical result that is not proved within this
document. In Table 3.1, rows R2, R3 and R4 are inferences and row R1 is an assumption.

If a row simply states a well-known mathematical result without proof then it will take the following form:
R3 sin?x +cos?z =1

Such a row will consist of just two elements: the label of the row (in this case ‘R3’) in the first column of the
table and the expression that states the mathematical result in the fourth column.

A row of the form of row R1 in Table 3.1 expresses a condition that is assumed to be true for the remainder
of the proof in which the row occurs. A row that expresses an assumption consists of three elements: the
first element is the label (e.g. ‘R1’) which occurs in the first column of the table; the second element consists
of the word ‘Let’ which occurs in the second column of the table; and the third element is a statement of the
condition that is assumed to be true (e.g. ‘p = [pc, pm] is any pitch whatsoever in a pitch system ). This
statement occurs in the fourth column of the table.

A row of the form of R2 in Table 3.1 expresses an inference and consists of four elements. The first
element is the label (e.g. ‘R2’) which occurs in the first column of the table. The second element is the list
of premises which occurs in the second column of the table. The third element consists of the symbol ‘="’

(implies) and occurs in the third column of the table. Finally, the fourth element consists of the conclusion

R1 Let p = [pc, Pm| be any pitch whatsoever in a pitch system ).
R2 RI1 & 62 = pc can only take any integer value.
R3 Rl & 62 = pm can only take any integer value.

R4 R2,R3& 581 = p ={[pc,pm]:pc,pm € Z} where Z is the universal set of integers.

Table 3.1: Proof of Theorem 582
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of the inference. Taken as a whole, an inference is a statement that the conclusion (the fourth element in the
row) can be logically deduced from the list of premises (the second element in the row). The list of premises
can contain two different types of element: the label of an earlier row in the current proof (e.g. Rl in the
list of premises in row R2 in Table 3.1) or the reference number of a previous definition or theorem (e.g. the
number 62 in the list of premises in row R2). Thus, the row R2 in Table 3.1 should be read: “The row R1 in
this proof and Definition 62, taken together, logically imply that the value p. may take any integer value.”
In some cases, the conclusion of an inference is itself an implication. Consider, for example, the following

TOwW:

R12 R3&4 = z=y

This proof row states that line R3 in the current proof, taken with the previously stated theorem or definition
whose reference number is 4 together imply that x implies y. Note that this row should not be understood
to mean that line R3 and theorem/definition 4 together imply = which in turn implies y.

The definitions and theorems in the specification of MIPS given in Chapter 4 are numbered in the order
in which they appear in the specification in one, single sequence—that is, the definitions are not numbered
separately from the theorems. This means that any theorem or definition can be uniquely identified by its
reference number—each theorem and definition has a unique number that it does not share with any other
theorem or definition. For example, Theorem 582 has the number 582 which is unique to that theorem—mno
definition has the number 582 and no other theorem has this number.

The proofs are intended to be as easy to understand and as complete as possible. It should be possible

for anyone with elementary school algebra (and enough patience) to be able to understand all the proofs.



Chapter 4

Formal specification of MIPS

4.1 Sets and ordered sets

4.1.1 Definitions of set and ordered set

Definition 1 (Universal set) An object is a well-formed universal set if and only if it is a well-defined

collection of objects that are all distinct in some specified way.

Definition 2 (Universal set membership) If S is a universal set then a is an element or member of S,
denoted a € S, if and only if a is equal to one of the objects in S. If a is not equal to any of the objects in S

then one can say that a is not an element of S and denote this fact as follows: a & S.

Definition 3 (Set) An object is a well-formed set if and only if it is a collection of objects that are all
distinct members of a single specified universal set. When written out in full, a set is enclosed within braces

and the objects in the set are separated from each other by commas:
S = {51752, .. }

Definition 4 (Ordered set) An object is a well-formed ordered set if and only if it is a collection of objects
(not necessarily distinct and not necessarily all from the same universal set). When written out in full, an
ordered set is enclosed in square brackets and the objects in the ordered set are separated from each other by

commas:

S = [51752,...]

Definition 5 (Set membership) If S is a set or ordered set then a is an element or member of S, denoted
a €8, if and only if a is equal to one of the objects in S. If a is not equal to any member of S then one can

say that a is not an element of S and denote this fact as follows: a & S.

Definition 6 (Set order) If S is a set or ordered set then the order or cardinality of S, denoted |S|, is

equal to the number of elements in S.

Definition 7 (Empty set) The empty set is that unique set that contains no members. It is denoted () or

{}

Definition 8 (Empty ordered set) The empty ordered set is that unique ordered set that contains no

members. It is denoted [].
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4.1.2 Operations on ordered sets

Definition 9 (Element of an ordered set) If S is an ordered set,
S = [81752,...Sk,...]

then, by definition,
e(S, k) = sg

for all integer k such that 1 < k <|S|. That is, the function e (S, k) returns the kth element of S.
Definition 10 (Concatenation of ordered sets) Given any two ordered sets,
S = [51,52,...,516,...,5‘5@

and
T = [t1,t2,. . ey by

then, by definition,
ST = [81,82,...,Sk,...,S‘S‘,tl,tg,...,tk,...,t‘T‘]

S @ T is called the concatenation of T onto S.

Theorem 11 (Associativity of ordered set concatenation) The concatenation operation on ordered sets

is associative. That is, if R, S and T are ordered sets then
Ro(SoT)=(RdS)aT
The expressions R® (S@®T) and (RE& S) @ T can therefore both be written

ReSeT
Proof

Rl Let R=[r1,r2,...7R]
52[51,32,...s|5|}
T= [tl,tg,...t‘Td

R2 10&R1 = R@(S@T):R@[51,52,...S|S|,t1,t2,...t|T|}
= [7‘1,7‘2,...T‘|R|,81,82,...S‘S‘,tl,tg,...t‘ﬂ]

R3 10& Rl = (R&S)@®T = [ri,re,...7R),51,52,...55)| ®T

= [7‘1,7‘2,...T‘|R|,81,82,...S‘S‘,tl,tg,...t‘ﬂ]

R4 R2&R3 = Ra(SeoT)=(RaS)aT

Definition 12 If S1,55,...S5k,...S, is a collection of ordered sets then, by definition,

$1©8®.. ®S... 08 =Sk
k=1
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Definition 13 (Rotation of ordered sets) Given an ordered set,
S = [51,52,...,516,...,5‘5@

and given that n is a natural number that satisfies the condition

0<n<|S|
then, by definition,
Po (S) =S
and
Pn (S) = [Sn+17 Sn42y - 5|S|} D [51, S2,..., Sn]

Definition 14 (Ordered set equality) If S and T are two ordered sets,
S = [81752,...S|S|] T= [tl,tz,...t|T|]

then S =T if and only if |S| = |T| and € (S, k) = e (T, k) for all integer values of k such that 1 < k < |S|.

4.1.3 Operations on sets

Definition 15 (Set equality) If S and T are two sets then S is equal to T, denoted S =T, if and only if

one of the following two conditions is satisfied:

1. Both S and T are equal to the empty set.

2. Every element in S is an element in T and every element in T is an element in S.
If S is not equal to T then this is denoted S # T .

Definition 16 (Subset) If S and T are two sets then S is a subset of T, denoted S C T, if and only if one

of the following two conditions is satisfied:
1. S is the empty set.
2. Every element of S is also an element of T.

If S is not a subset of T then this is denoted S ¢ T.

Definition 17 (Superset) If S and T are two sets then S is a superset of T, denoted S 2 T, if and only

if one of the following two conditions is satisfied:
1. T is the empty set.
2. Every element of T is also an element of S.

If S is not a superset of T then this is denoted S 2 T.

Definition 18 (Proper subset) If S and T are two sets then S is a proper subset of T, denoted S C T,
if and only if every element of S is also an element of T, S is not the empty set and S # T. If S is not a
proper subset of T' then this is denoted S ¢ T.

Definition 19 (Proper superset) If S and T are two sets then S is a proper superset of T, denoted
S DT, if and only if every element of T is also an element of S, T is not the empty set and S #T. If S is
not a proper superset of T then this is denoted S p T .
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Definition 20 (Set union) If S and T are two sets then the union of S and T, denoted SUT, is the set
that only contains every object that is an element of S or an element of T or an element of both S and T.
That is

(se(SUT)) <= ((seS)V(seT))

Theorem 21 (Associativity of set union) The union operation on sets is associative. That is, if R, S
and T are sets then
RU(SUT)=(RUS)UT

The expressions RU(SUT) and (RUS)UT can therefore both be written

RUSUT
Proof

R1 Let R, S and T be sets.

R2 RI&20 = (ve(RUS)) < ((veR)V(veS))

R3 R1&20 = (ve((RUS)UT)) <= ((ve (RUS)V (weT)
R4 R2&R3 = (we(RUS)UT)) << (weR)V(weS)V(weT))
R5 R1&20 = (ve(SUT)) < (veS)VweT))

R6 R1&20 = (ve(RU(SUT))) < (weR)V(ve(SUT))
R7 R5&R6 = (ve(RU(SUT))) — (WeR)V(weS V(veT))
R8 R4&R7T = (we(RUS)UT)) < (ve(RU(SUT)))

R9 RS = (RUS)UT =RU(SUT)

Definition 22 (Union of sequence of sets) If S1,S2,...5%,...S, is a collection of sets then, by defini-
tion,
S1US,U...USL,U...US, = U Si.
k=1
Also, if S is a set, then

UF(S)

seS
returns the set that contains all and only those objects that are members of one or more of the sets F (s)

where s only takes any value such that s € S and where F (s) is some function of s that returns a set.

Definition 23 (Set intersection) If S and T are two sets then the intersection of S and T', denoted SNT,

is the set that only contains every object s that is a member of S and a member of T':

(se(SNT)) < ((seS)A(seT))
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Theorem 24 The intersection operation on sets is associative. That is, if R, S and T are sets then
RN(SNT)=(RNnS)NT
The expressions RN (SNT) and (RNS)NT can therefore both be written

RNSNT
Proof

R1 Let R, S and T be sets.

R2 R1&23 = (ve(RNS)) < (veR)A(wES))

R3 R1&23 = (we(RNS)NT)) < (we(RNS)A(weT))
R4 R2&R3 = (ve((RNS)NT)) « ((ve R)A(weS)A(veT))
R5 R1&23 = (e(SNT)) > (veS)AwEeT))

R6 R1&23 = (we(RN(SNT))) < (weR)A(ve(SNT)))
R7 R5&R6 = (ve(RN(SNT))) — (WeR)AWWES)A(veET))

R8 R4&R7T = (We((RNS)NT))=@we(RN(SNT)))

Definition 25 If Sy, S59,...S5k,...S, is a collection of sets then, by definition,
$1NSeN...N8S,N...NS, = ﬂ Si.
k=1

Definition 26 (Set partition) If S is a set then P (S) is a partition on S if and only if the following
conditions are satisfied:

1. P(S) is a set.

2. Usepsys=95-

3. (81,82 cP (S)) A (51 # 82) = (51 N sy = (Z))

4.2 Arithmetic

4.2.1 int

Definition 27 (int) The function int () takes any real number x as its argument and returns the largest
integer less than or equal to x. In other words, int (x) is defined as follows:

int(z) =y:(z—-1<y<z)AN(yeZ)

where Z is the universal set of integers.
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Theorem 28 For any pair of real numbers a and b,

int (a — int (b)) = int (a) — int (b)

Proof
R1 27 = a—int(b) —1 < int (a — int (b)) < a — int (b)
R2 27 = a—-1<int(a)<a
R3 R2 = a—1—int(b) <int(a)—int (b) < a —int(b)
R4 27 = int(a—int (b)) € Z and (int (a) — int (b)) € Z

R5 R1,R3& R4 = int(a—int(b)) =int(a)— int (b)

Theorem 29 For any pair of real numbers a and b,

int (a + int (b)) = int (a) + int (b)

Proof
R1 27 = a+int(d) —1<int(a+int (b)) < a+int (b)
R2 27 = a—-1<int(a)<a
R3 R2 = a—14+int(b) < int(a)+int (b) < a+ int (b)
R4 27 = int(a+int (b)) € Z and (int (a) + int (b)) € Z

R5 RI,R3& R4 = int(a+int (b)) = int (a) + int (b)

Theorem 30 For any pair of real numbers a and b,
int (a + b) = int (a) + int (b) + int (a + b — int (a) — int (b))
Proof
R1 29 = int(a)+ int (b) + int (a + b — int (a) — int (b))

= int (a) + int (b) + int (a + b — (int (a) + int (b)))
= int (a + int (b)) + int (a + b — int (a + int (b)))

R2 R1& 28 = int(a)+int(b)+int(a+ b — int(a) — int (b))

= int (a + int (b)) + int (a + b) — int (a + int (b))
= int (a +b)

Theorem 31 For any pair of real numbers a and b,

int (a — b) = int (a) — int (b) + int (a — b — int (a) + int (b))
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Proof

R1 28 = int(a)—int(b)+int(a —b— int(a) + int (b))
= int (a — int (b)) + int (a — b — int (a — int (b)))
= int (a — int (b)) + int (a — b) — int (a — int (b))
= int (a — b)

Theorem 32 Given any two real numbers, a and c; an integer, b; and a non-zero real number y then

int (a + b x int (¢)) = int (a) + b X int (¢)

Proof
R1 Let beZ
R2 27 = (a+bxint(c)—1<int(a+bxint(c)) <a+bxint(c)) A (int (a + b x int (c)) € Z)

R3 RI1&27T = (bxint(c) €z
R4 27 = (a—1<int(a)<a)A (int(a) € Z)
R5 R3&R4 = (a—1+bxint(c) <int(a)+bxint(c) <a+0bxint(c)) A ((int(a)+b x int(c)) € Z)

R6 R2&R5 = int(a+0bxint(c)) =int(a)+bx int(c)

4.2.2 mod

Definition 33 (mod) Given that x is a real number and y is a non-zero real number, then the binary

operation mod is defined as follows:

) x
rmody =z —y X int (—)
Y
Theorem 34 For any pair of real numbers a and b and any non-zero real number y,

(a +b) mod y = (a mod y + b mod y) mod y
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Proof
R1 33 = (a+b)m0dy:(a+b)—yxint(“7+b)
R2 33 = (amody+ bmod y) mod y
z(a—yxint(%)—i—b—yxint(%))
a—yXint( & —yxint( &
i e )
R3 R2 = (amody+ bmod y) mod y

—a+b-yx <int (2) +int (L) +int (azyint() +hoyxine(})) >
)

: a . a b : b _ a b _ al _; )
R4 30 = int (g—mt (5) —i-g—lnt (5)) = int (5""5) int (y) int (y)
R5 R3& R4 = (amody+bmody)mody

=a+b—yx (int (%) + int (3) + int (%+§) —int (%) —int (g))
=(a+0b) —yxint %-l—%)

o : a+b

=(a+0b) —yxint T)

R6 R1&R5 = (amody+bmody)mody=(a+b)mody

Theorem 35 For any real number a and any non-zero real number y,

(a mod y) mod y = a mod y

Proof

R1 33 = amody:a—yxint(%)

R2 33 = (amody)mody=a—y x int (%) —y x int (a—yxi;t(a/y))
R3 R2 = (amody)mody=a—y Xint (%)—yxint (%—int (%))

R4 R3&28 = (amody)mody
:a—yxint(%)—yx(int(%)—int(%))

:a—yxint(%)

R5 R1& R4 = (amody)mody=amody

Theorem 36 For any integer b and any non-zero real number y,

by mod y =0
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Proof
R1 33 = bymody:by—yxint(%y)
= by — y X int (b)
R2 Let beZ

R3 R2&27 = int(h)=b

R4 R1&R3 = bymody=by—yxb=0

Theorem 37 For any real number a, any integer b and any non-zero real number y,

(a 4+ by) mod y =a mod y

Proof
R1 34 = (a+by) mod y = (a mod y + by mod y) mod y
R2 36 = bymody=0

R3 R1I&R2 = (a+by) mody= (amody)mody

R4 R3&35 = (a+by)mody=amody

Theorem 38 For any pair of real numbers a and b and any non-zero real number y,

(a mod y 4+ b) mod y = (a + b) mod y

64
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Proof
R1 33 = (a+b)m0dy:(a+b)—yxint(“7+b)
R2 33 = (amody+b) mody
—(a—yxint(ﬁ)—i-b)_yxint(M)
y y
R3 R2 = (amody+b) mody

=a+b—yx (int + int —a_yXint(a/y)+b))

Y
: a : a b
+ int g—mt (5) +§))

: a : a b\ _ a b : a
R4 28 = int (g—mt (—) +§) =int (5"'5) — int (5)

Y

<le <

=a+b—yx (int

R5 R3&R4 = (amody+b)mody

) i) ()

:(a+b)—yxint(%+§)

R6 R1&R5 = (amody+b)mody=(a+0b)mody

Theorem 39 Given a real number b, a collection of real numbers a1, as,...ax and a non-zero real number

Y,

k k
Z((aij)mody) mod y = Zaj x b | mody

j=1 j=1
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Proof

R1 33 = (Z?:l ((a;b) mod y)) mod y
= (20 ((asb) —y x int (22)))
.y x int <z§1((ajb)—yxint(”;b))>

Y

= (S5 @) —v < (3 (e ()

R2 R1&28 = (Z’f:l ((a;b) mod y)) mod y

= (25:1 (ajb))

R3 R2&33 = (2’;:1 ((a;b) mod y)) mod y = (2’;:1 (ajb)) mod y

Theorem 40 Given any three real numbers a, b and ¢ and a non-zero real number y,

((a+b) mod y = (a + ¢) mod y) <~ (%bel>

where Z is the universal set of integers.
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

R11

33 =
33 =
Let

R1,R2,R3 & 27 =

R1 to R4 =
Let

R6 =
R7 =
R8 & 37 =
R6 to R9 =
R5 & R10 =

FORMAL SPECIFICATION OF MIPS

(a—l—b)mody:(a—i—b)—yxint(‘%b)

(a—|—c)mody:(a—kc)—yxint(“;c)

(a+b)mody = (a+c) mod y

(a+b)—yxint(“T'H7):(a+c)—y><int(

= b:c—yxint(““)—i—yxint(‘%b)

Y

= b=c—yx (int (a;rc) —int (aTer))

c=b _ atc) _ atb
= —mt(y) 1nt(y)

= cbeyg

((a 4+ b) mod y = (a + ¢) mod y)é(‘:;b
%b:nwhereneZ
c=nxy+b

(a+c)mody=(a+b+nxy)mody

(a+c¢)mody=(a+b)mody

a+tc
Yy

ez)

(%b c Z)é((a—&—b) mod y = (a + ¢) mod y)

((a+b)mody = (a+c)mody) < (

Theorem 41 Given any real number a and any non-zero real number y,

(y>0)=(y>amody>0)

c=b
Yy

ez)
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

Let

33

27

R1 & R3

R4

RS

R2 & R6

R1 to R7

=

=

=

Theorem 42 Given

Proof

R1

R2

R3

R4

R5

R6

R7

RS

Let

33

27

R1 & R3

R4

R5

R2 & R6

R1 to R7

y>0

amody:a—yxint( )

a
Y

y—a>—yxint(%)2—a

o

y>a—y><int(%)2
y>amody >0
(y>0)= (y>amody>0)

any real number a and any non-zero real number y,

(y<0)=(y <amody <0)

y <0

amody:a—yxint(%)

2) < —a
v) S

N——

y—a<—y><int(
y<a—y><int(%)§0
y<amody <0

(y<0)= (y <amody<0)

Theorem 43 If a, b, c and y are real numbers then

(y >a,b,c>0)A(a=(b—c)mody) = (b= (a+ c) mod y)
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

R11

R12

R13

R14

R15

R16

R17

R18

R19

Let

Let

R2 & 33

R1 & 27

R1 & 27

R3 & R4

R1 & R6

R3 & R5

R1 & R8

R9

R7

R6 & R10

R8 & R11

R12 & R13

Let

R15 & 33

R1 & 27

R1 & 27

R16 & R17

y>a,b,c>0
a=(b—c¢)mody
=b—c— i b—c
a=b—c y><1nt(y)
c>b:>int(%):_1

cgb:int(%):()

c>b=a=b—c+y=>a+c=b+y

c>b=a+c>y
c<b=a=b—c=a+c=b
c<b=a+c<y
at+c>y=cLb=>c>b
at+c<y=cFb=c<b
at+c>y=b=a+c—y
at+c<y=b=a+c

b— a+c—y if a+c>y
) a+ec if a+c<y

z=(a+c) mody

Z:a+c—yxint(“;rc)

1

a+02y:>int(a;w)

a+c<yéint(“;rc) =0

atc>y=z=a+c—y
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R20

R21

R22

R23

R24

R16 & R18 = atc<y=z=a-+c
—y if >
R19 & R20 = z_{a+c yonoate=zy
a+c if a+c<y
R14 & R21 = b=z
R15 & R22 = b=(a+c)mody
b,c>0
R1,R2 & R23 = y=ane= =b=(a+c)mody
a=(b—c¢)mody

Theorem 44 If a and y are real numbers then

Proof
R1 Let
R2 33 =
R3 R1&27 =
R4 R2&R3 =
R5 RltoR4 =

(y>a>0)= (amod y = a)

y>a>0
amody=a—yxint(a/y)
int (a/y) =0

amody =a

(y>a>0)= (amody=a)

Theorem 45 For any real number a, any integer b and any non-zero real number y

(a x (bmod y)) mod y = (ab) mod y
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Proof

R1 33 = (a x (bmod y)) mod y

=a x (bmod y) — y x int (7ax(bm0dy))

y
—ax(b—yxint(g))—yxint<ax(by—;mt(%)))
:ab—ayxint(%)—yxint(%b—axint(g))

R2 R1&32 = (ax(bmody))mody

:ab—ayxint(%)—yx (int(

<[s.

)—axint (9))
Yy

o . b . ab : b

—ab—ayxmt(g) —y><1nt(7) —l—ayxmt(g)

_ : ab

—ab—yxmt(?)

R3 R2&33 = (ax(bmody))mody = (ab) mody

Theorem 46 For any non-zero real number y and any real number a such that 0 < a <y,

a+ (—a)mody =y

Proof
R1 Let 0<a<y
R2 33 — (—a)mody = —a—y x int (—Ta)
R3 Rl = int (*7) -1

R4 R2&R3 = (—a)mody=-a—-yx(-1)=—-a+y=y—a
R5 R4 = (—a)mody=a+y—a=y
Theorem 47 For any non-zero real number y, any pair of real numbers x1 and x2, and any pair of integers

ny and na,

(1 —yn1 = 22 — yna) = (1 mod y = 22 mod y)
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Proof
R1 Let
R2 34 & R1
R3 36 & R2
R4 R3 & 35
R5 RI1to R4
4.2.3 div

=

=

=

=

Ty —Yyni = T2 —Yn

(21 — yna) mod y = (3 — ynz) mod y

(21 mod y — yny mod y) mod y = (22 mod y — yng mod y) mod y
(1 mod y — 0) mod y = (z2 mod y — 0) mod y

x1 mod y = x5 mod y

(21— yn1 = 22 — yna) = (@1 mod y = &2 mod y)

72

Definition 48 (div) If z is a real number and y is a non-zero real number then the binary operation div is

defined as follows:

x div y = int (E>
Y

Theorem 49 For any real number x and any non-zero real number y,

Proof
R1 33
R2 48

R3 R1&R2 =

x=zmody+y X (zdivy)

mmody:x—yxint(%)

x div y = int (5)

xmody—}—yx(,’EdiVy):m_yXint(%)+y><int(%):x

Theorem 50 For any real number a, any non-zero real number y and any integer b,

(a—by)divy=(adivy)—b
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Proof

R1

R2

R3

R4

R5

R6

R7

48

48

Let

R3

R2 & 31

R4 & RS

R6 & 28

=

=

=

R8 R1&R7 =

o divy—b=int (2) —b
(o= by) divy = e (2522) = iue (5~ )

bez

b= int (b)

(a—by) divy = int (%) —int (5) +int (2 —b—int (2) +int (b))
(a —by) div y

=it (§) —bine (5 -0t (5) +0)

= int () = o ine (5~ (5))

(a—by) divy

=it (5) =i (5) —m ()

=in(3) -

(a—by)divy=(adivy) —b

Theorem 51 For any pair of real numbers a and b and any non-zero real number y,

b
(a+b)divy+ ((a+b) mod y — a) divy = int (—)
Y
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Proof

Rl 33&48 = (a+b)divy+ ((a+b)mody—a)divy

a_er) 1 int ((a-l—b)—yxint(a;rb)—a)

Y

R2 R1&28 = (a+b)divy+ ((a+b)mody—a)divy
S —
zint()

Theorem 52 For any pair of real numbers a and b and any non-zero real number y,

< o

(adivy) + (b+amody) divy = (a+b)divy

Proof

Rl 48 = (adivy)+(b+amody)diVy:int(%)_Hnt(%)

R2 R1&33 = (adivy)+ (b+amody)divy

Y

: a : b a : a
int (5) + 1nt (5 + i int (5))

R3 R2& 28 = (adivy)+ (b+amody)divy
. a . b a . a
= 1nt (5) + 1nt (5 + 5) —1nt (5)

— b a) _j atb
—mt(y—i—y)—lnt( m )

R4 R3&48 = (adivy)+(b+amody)divy=(a+0b)divy

= int (%) + int (M)

Theorem 53 For any real number a and any non-zero real number y,

(amod y)divy =0
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Proof

Rl 33&48 = (amody)divy

—int (afyxint(a/y) )

Y

— int (g ~int (g))

R2 R1&28 = (amody)divy:int(%)—int(%):0

Theorem 54 Given a set of real numbers ay,as, ..., ar, a real number b and a non-zero real number y,

™M=

k k
((ajb) divy) | + Z ((a;b) mod y) | divy | = [ bx Z a; | divy
j=1

1 j=1

<.
Il
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Proof
RI 48 & 27 = S () divy) = Xy (int (42)) = ine (), (ine (%))

R2 33 & 48 = (Zk ((a;b) mod y)) div y

j=1

it <Z§‘1((ajb)—yxint((ajb)/y))>
Y

Y

- <z§1<a]-b>yxz§1<inc(<ajb>/y>>)

—iu (Z00 5 (e (1))

R3 RI,R2&28 = (Z’t ((a;b) mod y)) div y

=i (Z00) e (T (e (42)))
R4 Rl & R3 = (X5 (a0 divy)) + ()t () mod ) div y)

= int (Zf 1 (lnt ( ))) + int ( 1(a]b)> — int (Zle (int (‘%b)))
_int<z] 1<a1b>> <b><zj laj)
R5 48 = (bx Xhiay) divy = int (Lzzlaﬂ')

(351 (ayb) div ) AN
R6 R4 & R5 = <+((Z§_1((ajb) mody)) divy) —(bXijl J)dvy

Theorem 55 If a and b are any two real numbers and y is any non-zero real number then

(bdivy) — (adivy) + ((bmod y) — (amod y)) divy) = (b—a) divy
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Proof
R1 Let z=(bdivy) — (adivy) + (((b mod y) — (a mod y)) div y)
R2 R1& 33 = z=(bdivy)— (adivy) + (((b—y x int (b/y)) — (a —y x int (a/y))) div y)

R3 R2 & 48 =z =int (&) —int (L) + ing (Lt etnan(e/y) )
Y Yy Y

Ri R3G20
=i (5) i (152 i (3)

Ro RieEs =i (g) e (1) i )
=i (%52)

R6 48 = int (552) = (b—a) divy

R7 R1L,R5&R6 = (bdivy)—(adivy)+ (((bmody)— (amody))divy) = (b—a)divy

Theorem 56 If a is an integer and y is a positive, non-zero real number and b is a real number such that

0<b<y, then
a+ (—a x ((—b) mod y)) divy = (ba) div y
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

R11

R12

Let

Let

Let

R2 & 46

R3 & R4

R5 & 48

R1

R6 & R7

R8 & 28

R7 & R9

R10 & 48

R3 & R11
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a be an integer

b be a real number such that 0 < b <y

z=a+ (—ax ((—b) mod y)) div y

(=b)mody =y —b

z=a+ (—ax(y—">))divy=a+ (ba—ay) divy

z:a—i—int(ba_Tay) :a—|—int(b7a—a)

a = int (a)

z=a+int (%‘l —int (a))
z=a+int (%") —int (a)
z =int (2—“)

z = (ba) divy

a+ (—a x ((=b) mod y)) divy = (ba) divy

Theorem 57 If a is an integer, b is real and y is a non-zero integer then

(ab—a x (bmod y)) divy + (a x (bmod y)) divy = abdivy
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

Let

Let

R2, 48 & 33 =

R1 =

R3 & R4 =

R5 & 28 =

R6 & 48 =

R7 & R2 =

a be an integer, b be a real number and y be a non-zero integer

x = (ab—a x (bmod y)) divy + (a x (b mod y)) div y

= int (ab—ax(b—;}xint(b/y))) +int (ax(b—yxyim(b/y)))

(-2 x (b—yxint(2)))+int(2x (b-yxint(L)))
= int (2 — 2 4 axin (2)) +in (2 —axing (2))
o () 4 -0 (2)

) i (3 (v (1)
1)+ (2) - o (£)) =i (2)

r =int (a X int
x = (ab) divy

(ab—a x (bmod y)) div y + (a x (b mod y)) divy = ab div y

Theorem 58 If a and b are integers and y is a non-zero integer then

abdivy =a x (bdivy) + (a x (bmod y)) divy
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

4.2.4

Let

49

R1 & 48

R2 & R3

R2 & R4

48 & R5
R6

R7 & 57

log

=

=

=

=

=

a and b be integers and y be a non-zero integer
b=bmody+yx (bdivy)

=74 x (bmody) +ax (bdivy)
ax (bdivy) = %b — % x (bmod y)
a x (bdiv y) is an integer

ab

? — 2 x (bmod y) is an integer

ab a _ ab a

7—5><(bmody)—lnt(g—gx(bmody))
. _ ab a

ax(bdwy)-mt(;—a x(bmody))

ax (bdivy) = (ab—a x (bmod y)) div y

ax (bdivy) + (a x (b mod y)) divy = (ab—a x (bmod y)) divy + (a x (b mod y)) div y

ax (bdivy)+ (a x (bmod y)) divy =abdivy

Theorem 59 If a, b and c are any three positive real numbers then

Proof

R1

R2

R3

R4

R5

R6

Let

R1

R1

R1

R2 & R4

R3 & RH

=

=

log,b xlog,c=1log,c

c=a*=0bY

xr=ylog,b

x =log,c

y =log, ¢

x =log,cxlog,b

log,c=1log,bxlog,c
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4.2.5 abs

Definition 60 (abs) If x is a real number then

T if x>0
abs(x):{—x if z<0

4.3 MIPS objects

4.3.1 Pitch system and pitch: the primary MIPS concepts

Definition 61 (Pitch system) An object ¢ is a well-formed pitch system if and only if it is an ordered
quadruple

1/) = [IUJCa Hm, vapC.,O]

such that the following conditions are satisfied:
1. e is a natural number called the chromatic modulus;
2. Um 18 a natural number called the morphetic modulus;
3. e > fm;
4. fo is a positive real number called the standard frequency;

5. pe,o 15 an integer called the standard chromatic pitch.

Definition 62 (Pitch) An object p is a well-formed pitch in a pitch system if and only if it is an ordered
pair
P = [Pc; ]

that satisfies the following conditions:
1. pc is an integer called the chromatic pitch;

2. pm 1s an integer called the morphetic pitch.

4.3.2 Derived MIPS objects
Deriving objects from a MIPS pitch

Definition 63 (Chromatic pitch of a pitch) If p = [pc, pm]| is a pitch in a well-formed pitch system then
the following function returns the chromatic pitch of p:

Pe (P) = pe

Definition 64 (Morphetic pitch of a pitch) If p = [pc, pm] is a pitch in a well-formed pitch system then
the following function returns the morphetic pitch of p:

Pm (P) = Pm

Theorem 65 If 1 is a pitch system and p is a pitch in ¢ then

p = [pc (), Pm (P)]
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Proof

R1

R2

R3

R4

Let

R1 & 63 =
R1 & 64 =
R1,R2& R3 =

b= [pc7pm]
Pe (P) = Pe
Pm (P) = Pm

P = [Pc (P) ; Pm (P)]

Definition 66 (Frequency of a pitch) If p is a pitch in the pitch system

then the function

returns the frequency of p.

1/) = [,UJCa Hm, vapC,O]

f(p) = fo x 9(Pe(p)—pe,0)/ te

Theorem 67 If f is the frequency of a pitch p in a pitch system 1 then f can only take any value such that

feRrRt

where RY is the universal set of real numbers greater than zero.

Proof

R1

R2

R3

R4

R5

R6

Let

Let

66 & R2

61

R3, R4 & R5

=

p be any pitch in ¢ = [e, pim, fo, Pe,o]

f=1()

f = fo x 2c(P)=pc,0)/pe

fo can only take any positive real value.

2% can only take any positive real value when z is real.
f can only take any value such that f € R™

where R™ is the universal set of real numbers greater than zero.

Definition 68 (Chromatic octave of a pitch) If p is a pitch in the pitch system

1/) = [,u’Ca Hm, vapC,O]

then the following function returns the chromatic octave of p:

oc (p) = pe (p) div puc
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Definition 69 (Morphetic octave of a pitch) If p is a pitch in the pitch system
¥ = [pe, fim, fo, Pe,0]
then the following function returns the morphetic octave of p:
Om (p) = Pm (p) div fim
Theorem 70 (om (p) € Z) If p is a pitch in a pitch system 1 then
om (p) €Z

where 7 is the universal set of integers.

Proof
R1 69 = Om (p) = pm (p) div pim
R2 R1&48 = on(p)=int(pm(p)/tm)

R3 R2& 27 = ow(p) € Z where Z is the universal set of integers

Definition 71 (Chroma of a pitch) If p is a pitch in a pitch system

Y = [ic, pim; fo, Peo]
then the following function returns the chroma of p:

¢ (p) = pe (p) mod pic
Theorem 72 If ¢ is the chroma of a pitch p in a pitch system

¥ = [fic, pm; fo, Peo]
then c can only take any value such that

0<c<puc)N(ceZ)

where 7 is the universal set of integers.
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

R11

R12

R13

R14

Let

71

R1 & R2

61

R4 & 41

R3 & R5

63 & 62

R3 & 33

RS, R7, R4 & 27

R9 & R6

R7

45 & R3

R11 & R12

R13 & R10

Theorem 73 If

=

c=c(p)

¢(p) = pe (p) mod pic

¢ = pe (p) mod pic

te can only take any positive integer value.

fe > Pe (p) mod pe > 0

pe >c >0

P (p) can only take any integer value.

¢ = pe (p) — e x int (22

c is an integer

(0 < ¢ < pe) A (c € Z) where Z is the universal set of integers.
pc (p) can take any integer value such that pc > pc (p) > 0.
¢ = pc (p) for each value of p¢ (p) such that e > pc (p) > 0.
¢ can take any integer value such that pc > ¢ > 0.

¢ can only take any value such that (0 < ¢ < pc) A (¢ € Z).

w = [Mcv Hm, anpC,O]

18 a pitch system and c is a chroma in ¥ then

Proof

R1

R2 Rl1&44 =

Theorem 74 If

cmod pe =c¢

72 = (0<c<p)N(ceZ)

cmod pe =c¢

1/) = [,UJCa Hm, vapC,O]

is a pitch system and c is a chroma in ¢ then

cdiv puc =0
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Proof
R1 72 = (0<c<p)N(ceZ)
R2 48 = cdiv pyc = int (M—CC)

R3 R1&R2 = c¢divu.=0

Theorem 75 If 1) = [ic, tim, fo, Pe,0] s a pitch system and p is a pitch in ¢ then

Proof
R1 68 =
R2 71 =

R3 49,63 & 61 =

R4 RI,R2&R3 =

Pe (p) = ¢ (p) +0c (p) X pc

0c (p) = Pe (p) div pic
¢ (p) = pe (p) mod pic
Pe (P) = Pe (p) mod pe + pie X (pe (p) div puec)

Pe (p) = ¢ (p) +0c (p) X pc

Definition 76 (Morph of a pitch) If p is a pitch in the pitch system

¥ = [He, fim;, fo, Pe,0)

then the following function returns the morph of p:

m (p) = pm (p) mod fim

Theorem 77 If m is the morph of a pitch p in a pitch system

¥ = [He, fim, fo, Pe,0)

then m can only take any value such that

(0<m < pm)A(m€eZ)

where 7 is the universal set of integers.
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Proof
Rl  Let m =m (p)
R2 76 = m(p) = pm (p) mod pim
R3 Rl & R2 =  m = pm (p) mod pm
R4 61 = um can only take any positive integer value.
R5 R4 & 41 =  Um > Pm (p) mod pm >0
R6 R3 & R5 = fm>m=>0
R7 64 & 62 =  pm (p) can only take any integer value.
RS R3 & 33 = M =Dpm(p) — pm X int (pl‘:‘—ip))

R9 R&, R7, R4 & 27 = mis an integer

R10 R9 & R6 = (0<m < pm) A (m € Z) where Z is the universal set of integers.
R11 R7 =  pm (p) can take any integer value such that pm > pm (p) > 0.
R12 45 & R3 = m = pm (p) for each value of py (p) such that pm > pm (p) > 0.
R13 RI11 & R12 = m can take any integer value such that pym, > m > 0.

R14 RI13 & R10 = m can only take any value such that (0 <m < pm) A (m € Z).

Theorem 78 If
¥ = [e; pim; fo, Pe,o]

18 a pitch system and m is a morph in 1 then

mmod pum =m

Proof

R1 77 = 0<m<pm)A(meZ)

R2 R1&44 = mmodpm=m

Theorem 79 If
1/) = [:u’Ca Hm, vapC,O]

is a pitch system and m is a morph in 1 then

m div pm =0
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Proof
R1 77 = 0<m<pum)AN(meZ)
R2 48 = mdiv gy, = int (ﬁ)

R3 R1&R2 = mdivu,=0

Definition 80 (Chromamorph of a pitch) Ifp is a pitch in a well-formed pitch system, then the following

function returns the chromamorph of p:

Definition 81 (Octave difference of a pitch) If p is a pitch in a well-formed pitch system, then the fol-

lowing function returns the octave difference of p:

do (p) = 0c (p) — om (p)
Definition 82 (Chromatic genus of a pitch) If p is a pitch in a well-formed pitch system
1/) = [IUJCa Hm, vapC,O]

then the following function returns the chromatic genus of p:

gc (P) = Pe (P) — fe X Om (p)

Theorem 83 If p is any pitch in a pitch system 1 then go (p) can only take any integer value.

Proof
R1 Let p be any pitch in .
R2 82 = g (p) =DPc (P) — pe X om (p)
R3 62 & 63 =  pc(p) can only take any integer value.
R4 61 = uc can only take any positive integer value.
R5 70 = o (p) is an integer.

R6 63,69 & 61 = g, pc (p) and om (p) are mutually independent values.

R7 R2to R6 = g (p) can only take any integer value.

Definition 84 (Genus of a pitch) Ifp is a pitch in a well-formed pitch system then the following function

returns the genus of p:

g(p) = [gc (p) ,m (p)]
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Theorem 85 If p; and ps are two pitches in a pitch system 1) then

Proof

R1

R2

R3

R4

(do (p1) = do (p2)) A (¢ (p1) = ¢ (p2)) A (m(p1) = m(p2)) = (&(p1) = & (p2))

81

R1 & 75

R2 & 82

R3 & 84

=

=

=

=

(do (p1) = do (p2)) = (0c (P1) = Om (p1) = 0c (P2) — Om (P2))

(o (p1) = do (p2)) = (2L — o, (py) = 2elrllrz) —o, () ) )

((do (p1) = do (p2)) = (Pe (1) — ¢ (P1) = pe X Om (P1) = Pe (P2) — ¢ (P2) — pie X Om (p2)))
((do (p1) = do (p2) Ac(p1) = ¢(p2)) = (Pe (1) — fie X Om (p1) = Pe (p2) — fie X Om (p2)))
((do (p1) = do (p2) Ac(p1) = ¢(p2)) = (8c (P1) = 8 (P2)))

((do (p1) = do (p2) Ac(p1) = ¢ (p2) Am(p1) =m(p2)) = (8(p1) = & (p2)))

Theorem 86 If p; and ps are two pitches in a pitch system 1) then

Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

84

R1

R1

R3 & 82

R4 & 47

R5 & 71

R4 & R6

R7 & 75

R8 & 81

R2, R6 & R9

g(p1) =8(p2) = do (p1) = do (p2) Ac(p1) =c(p2) Am(p1) = m(p2)

= (8(p1) =8(p2) = [8c (p1) ,m (p1)] = [ge (p2) ,m (p2)])

= (8(p1) =8(p2) = m(p1) = m(p2))

= (8(p1) =8(p2) = 8c (p1) = gc (p2))

= (8(p1) =8(p2) = pe (p1) — e X 0m (p1) = Pe (P2) — ke X Om (p2))

= (8(p1) =8(p2) = pec (p1) mod pc = pe (p2) mod pic)

= (8(p1) =8(p2) = c(p1) = c(p2))

= (8(p1) =8(p2) = Pe (p1) = ¢(p1) = e X 0m (P1) = Pe (P2) = ¢ (P2) — e X Om (p2))

N (g (p1) =& (p2) = pc(plzL:C(pl) —om (p1) = pc(pQL:C(pz) — o (pz))

= (8(p1) =8(p2) = 0c (P1) — Om (P1) = 0c (P2) — Om (P2))
= (8(p1) =8(p2) = do (p1) = do (p2))

= (8(p1) = 8(p2) = do (p1) = do (p2) Ac(p1) = c(p2) Am(p1) = m (p2))
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Theorem 87 If p1 and ps are two pitches in a pitch system 1 then

g(p1) =8(p2) <= do(p1) =do (p2) Ac(p1) =c(p2) Am(p1) =m(p2)

Proof
R1 85 = (do (1) =do (p2) Ac(p1) =c(p2) Am(p1) =m(p2) = & (p1) =& (p2))
R2 86 = (8(p1) =8(p2) = do (p1) = do (p2) Ac(p1) = c(p2) Am(p1) = m(p2))

R3 R1I&R2 = (8(p1) =8(p2) < do(p1) =do(p2) Ac(p1) =c(p2) Am(p1) =m(p2))

Deriving MIPS objects from a chromatic pitch

Definition 88 (Definition of f (p.)) If pc is the chromatic pitch of a pitch p in a pitch system 1 then the

function f (pc) must return the frequency of p. In other words, by definition, it must be true that

(Pc = pe (p)) = (£ (pc) = £ (p))

Theorem 89 (Formula for f(p.)) If pc is the chromatic pitch of a pitch in

w = [Mcv Hm, anpC,O]

then
f(pC) = fo X 2(pc_pc,0)/ﬂzc
Proof
Rl Let Pc = Pec (p)
R2 66 = f(p) = fox 9(Pe(p)—pe,0)/ e
R3 R1 & R2 = f(p) = fo x 2PePe0)/be

R4 RI,R3&88 = f(pc) = fox 2ereo)/ne

Definition 90 (Definition of o (pc)) If pc is the chromatic pitch of a pitch p in a pitch system 1 then the

function oc (pc) must return the chromatic octave of p. In other words, by definition, it must be true that
(Pc = pe (P)) = (0c (pe) = 0c (p))
Theorem 91 (Formula for oc (pc)) If pc is the chromatic pitch of a pitch in

1/) = [:u’Ca Hm, vapC,O]

then
0c (pe) = pe div pic
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Proof
R1  Let Pe = pe (p)
R2 68 = 0c(p) =pc(p) div pec
R3 R1 & R2 = oc(p) = pc div e

R4 R1L,R3& 90 = o0c(pc) =pc div pic
Definition 92 (Definition of ¢ (p.)) If pc is the chromatic pitch of a pitch p in a pitch system 1) then the
function ¢ (pc) must return the chroma of p. In other words, by definition, it must be true that

(Pe = pe (p)) = (c(pe) = ¢ (p))

Theorem 93 (Formula for c(p.)) If pe is the chromatic pitch of a pitch in the pitch system

w = [MCv Hm, anpC,O]

then:
¢ (pc) = pe mod pic
Proof
R1 Let Pe = pe (p)
R2 711 = c¢(p) = pc(p) mod pc
R3 RI1 & R2 = c¢(p) = pc mod pc

R4 R1,R3& 92 = c¢(pc)=pc mod puc

Deriving MIPS objects from a morphetic pitch

Definition 94 (Definition of oy, (pm)) If pm is the morphetic pitch of a pitch p in a pitch system v then
the function om (pm) must return the morphetic octave of p. In other words, by definition, it must be true
that

(Pm = Pm (p)) = (0m (Pm) = om ()
Theorem 95 (Formula for oy, (pm)) If pm is the morphetic pitch of a pitch in

U) = [,UJCa Hm, vapC,O]

then
Om (Pm) = pm div fim
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Proof
R1 Let Pm = Pm (p)
R2 69 = Om (p) = pPm (p) div ptim
R3 R1 & R2 = Oom (P) = pm div m

R4 RIL,R3& 94 = o0m(Pm)=pmdiv um
Definition 96 (Definition of m (pm)) If pm is the morphetic pitch of a pitch p in a pitch system 1 then
the function m (pm) must return the morph of p. In other words, by definition, it must be true that

(Pm = pm (p)) = (m (pm) = m(p))

Theorem 97 (Formula for m (pn)) If pm is the morphetic pitch of a pitch in the pitch system

w = [MCv Hm, anpC,O]

then:
m (Pm) = Pm mod fim
Proof
R1 Let Pm = Pm (D)
R2 76 = m(p) = pm (p) mod pm
R3 RI1 & R2 = m(p) = pm mod pim

R4 R1,R3& 96 = m(pm)=pm mod tn

Deriving MIPS objects from a frequency

Definition 98 (Definition of p. (f)) If f is the frequency of a pitch p in a pitch system ¢ then the function
pe (f) must return the chromatic pitch of p. In other words, by definition, it must be true that

(f =£®) = (pc (f) = pe (p))

Theorem 99 (Formula for pc (f)) If f is the frequency of a pitch in the pitch system

Y = [He, fim;, fo, Pe,0]

then
In (f/fo)
1

Pe (f) = pe X 5

+ Pec,o

)



CHAPTER 4. FORMAL SPECIFICATION OF MIPS

Proof

R1 Let

R2 66

R3 R2& 59

R4 R3 & R1

R5 R4, R1 & 98

=

=

=

f=£f®)

f(p) = f() X 2(pc(p)*Pc,o)/,uc
= log, (f (p)) = log, fo + %

= DPe (p) = pe x logy (f (p) /fo) + Peo

Pec (p) = He X W =+ Dc,0

P (p) = pro x UL 4y,

pc(f):,ucx%‘i‘pc,o

Theorem 100 (Second formula for pc (f)) If f is the frequency of a pitch in the pitch system

then

Proof

R1 Let

R2 66

1/) = [IUJCa Hm, vapC,O]

Pe (f) = pe x logo (f/ fo) + Pe,o

f=1f(p)
£ (p) = fo x 2@c®)=pe0)/pe
= log, (f (p)) = log, fo + %

= DPe (p) = pe x logy (f (p) /fo) + Peo

R3 R2,R1& 98 = pc(f)=pcxlogsy(f/fo)+ Peo

92

Definition 101 (Definition of o (f)) If f is the frequency of a pitch p in a pitch system ¢ then the function

oc (f) must return the chromatic octave of p. In other words, by definition, it must be true that

(f =) = (oc (f) = oc (p))

Theorem 102 (Formula for o (f)) If f is the frequency of a pitch in the pitch system

then

w = [Mcv Hm, anpC,O]

oc (f) = pe (f) div pie
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Proof
RI Let f=£)
R2 68 = 0c(p) =pc(p) div pec
R3 R1& 98 = 0c(p) =pe (f) div pic

R4 RI,R3& 101 = oc(f) = pe(f) div e

Definition 103 (Definition of ¢ (f)) If f is the frequency of a pitch p in a pitch system v then the function

¢ (f) must return the chroma of p. In other words, by definition, it must be true that

Theorem 104 (Formula for c (f)) If f is the frequency of a pitch in the pitch system

w = [MCv Hm, anpC,O]

then
¢ (f) = pe (f) mod pe
Proof
R1  Let F=£)
R2 71 = c¢(p) = pc (p) mod pc
R3 R1 & 98 = c¢(p) =pe (f) mod pic

R4 R1,R3& 103 = c(f)=pc(f) mod pec

Deriving MIPS objects from a chromamorph

Definition 105 (Definition of c(q)) If ¢ is the chromamorph of a pitch p in a pitch system i then the

function ¢ (q) must return the chroma of p. In other words, by definition, it must be true that

Theorem 106 (Formula for c(q)) If ¢ = [¢,m] is the chromamorph of a pitch in a pitch system 1p =
[luca Hm, vapC,O] then
clg)=c
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Proof
R1 Let q=4a(p)
R2 Let q = [c,m]
R3 80 = d(p)=[c(p), m(p)]

R4 RI,R2&R3 = c(p)=c

R5 R1,R4& 105 = c(¢)=c

Definition 107 (Definition of m (q)) If q is the chromamorph of a pitch p in a pitch system ¢ then the

function m (q) must return the morph of p. In other words, by definition, it must be true that

m(q) =m
Proof
R1 Let q=4a(p)
R2 Let q = [c,m]
R3 80 = d(p)=[c(p), m(p)]

R4 RL,R2&R3 = m(p)=m

R5 R1,R4& 107 = m(q)=m

Theorem 109 (¢ = [c(q),m(q)]) If q is a chromamorph in 1 then

q=1[c(q),m(q)]
Proof
Rl Let q = [c,m]
R2 RI & 106 = c(g)=c
R3 RI1 & 108 = m(qg)=m

R4 RI,R2&R3 = g¢=]c(q),m(q)]
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Deriving MIPS objects from a chromatic genus

Definition 110 (Definition of ¢ (gc)) If gc is the chromatic genus of a pitch p in a pitch system 1p then

the function ¢ (go) must return the chroma of p. In other words, by definition, it must be true that

(9 = g (p)) = (¢ (gc) = c(p))

Theorem 111 (Formula for c(gc)) If gc is the chromatic genus of a pitch in the pitch system

¥ = [He, fim; fo, Pe,0)

then
¢ (ge) = gc mod pc
Proof
R1 Let Je = 8c (p)
R2 82 = g (p) =pe (p) — pe X om (p)
R3 R1 & R2 = gC:pC(p)_McXOm(p)
R4 71 = c¢(p) =pc(p) mod pc

R5 R1,R4& 110 = c(gc) = pc(p) mod pc

R6 70 = om (p) is an integer

R7 R6 & 37 = (Pe () = pe X om (p)) mod fie = pe (p) mod fic
R8 R7 & R3 = go mod pic = pc (p) mod pc

R9 R5 & RS = c¢(gc) = gc mod pc

Definition 112 (Definition of d, (gc)) If gc is the chromatic genus of a pitch p in a pitch system v then

the function do (gc) must return the octave differenc of p. In other words, by definition, it must be true that

(9e = 8c (P)) = (do (9c) = do (p))
Theorem 113 (Formula for d, (gc)) If gc is the chromatic genus of a pitch in the pitch system

1/) = [,UJCa Hm, vapC,O]

then
do (90) = gc div pre
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Proof
R1  Let
R2 82
R3 R1 & R2
R4 81

R5 RI, R4 & 112

R6 68
R7 R6&R5
R8 70
R9 R8& 50

R10 R9, R3 & R7

do (9e) = (e (p) div pie) — om (p)
om (p) is an integer
(Pe (p) div pic) — om (p) = (Pe (P) — e X Om (p)) div pe

do (96) = ge div fic

Deriving MIPS objects from a genus

Definition 114 (Chromatic genus of a genus) If g is the genus of a pitch p in a pitch system 1 then

the function gc (g) must return the chromatic genus of p. In other words, by definition, it must be true that

(9 =8(p)) = (8¢ (9) = ge (p))

Theorem 115 (Chromatic genus of a genus) If g = [gc, m] is the genus of a pitch in the pitch system

1 then

Proof

R1 Let

R2 Let

R3 84

R4 R2 & R3

R5 R4 & R1

R6 R5, R2 & 114

=

=

=

g (9) = ge
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Definition 116 (Morph of a genus) If g is the genus of a pitch p in a pitch system 1 then the function
m (g) must return the morph of p. In other words, by definition, it must be true that

m (g) =m
Proof
Rl Let 9 = [ge,m]
R2 Let g=28(p)
R3 84 = 8(p) =g (p), m(p)]
R4 R2 & R3 = g=[g.(p), m(p)]
R5 R4 & RI = m=m(p)

R6 R5, R2& 116 = m(g)=m

Theorem 118 If g is a genus in a pitch system 1 then

g =[gc(9),m(g)]

Proof
R1 Let 9= [ge,m]
R2 R1 & 117 = m(g)=m
R3 RI & 115 = gc(9) =gc

R4 R1,R2&R3 = g=|g(9),m(g)]

Definition 119 (Chroma of a genus) If g is the genus of a pitch p in a pitch system i then the function

c(g) must return the chroma of p. In other words, by definition, it must be true that

Theorem 120 (Chroma of a genus) If g is the genus of a pitch in the pitch system

¥ = [He, fim;, fo, Pe,0]

then
c(9) = gc (9) mod puc
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

R11

Let

84

R1 & R2

71

R1 & 119

82

R6, R1 & 114

70

R8 & 37

R9 & R5

R10 & R7

¢(p) = pe (p) mod pic

c(g9) = pe (p) mod pe

gc (P) = Pe () — pte X om (p)

gc (9) = Pe (P) — e X om (p)

om (p) is an integer

(Pe () = #e X Om (p)) mod pe = pe (p) mod pe

¢(g) = (pe (p) — e X 0m (p)) mod pic

c(g) = gc (g9) mod g

98

Definition 121 (Chromamorph of a genus) If g is the genus of a pitch p in a pitch system i then the

function 4 (g) must return the chromamorph of p. In other words, by definition, it must be true that

Proof

R1

R2

R3

R4

R5

R6

Let

R1 & 121

80

R2 & R3

R4, R1 & 119

R5, R1 & 116

=

=

=

=
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Definition 123 (Definition of d, (g)) If g is the genus of a pitch p in a pitch system 1 then the function
do (g) must return the octave difference of p. In other words, by definition, it must be true that

Theorem 124 (Formula for d, (g)) If g is the genus of a pitch in the pitch system

1/) = [,UJCa Hm, vapC,O]

then
do (9) = ge (9) div e
Proof
Rl  Let g=28(p)
R2 81 = do (p) =0c (p) — om (p)

R3 RILR2&123 = do(g) = o0c(p) — om (p)

R4 68 = 0c¢(p) =pc(p) div pe

R5 R3 & R4 = do (9) = (pc (p) div pic) — om (p)

R6 82 = 8c(p) =Dpe (P) — He X Om (p)

R7 70 = om (p) is an integer

R8  RT7 & 50 = (pe (p) div pic) = om (p) = (Pe (P) — e X om (p)) div pic
R9  R8 & R6 = (e (p) div pc) — om (p) = ge (p) div pic

R10 R9 & R5 = do (9) = gc (p) div pic

R11 RI10,R1 & 114 = do(9) = gc (g9) div pc

4.3.3 Equivalence relations between MIPS objects
Equivalence relations between pitches

Definition 125 (Chromatic pitch equivalence of pitches) Two pitches p1 and ps in a well-formed pitch

system are chromatic pitch equivalent if and only if
Pe (p1) = pe (p2)
The fact that two pitches are chromatic pitch equivalent will be denoted

P1 =p. P2
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Definition 126 (Morphetic pitch equivalence of pitches) Two pitches p1 and ps in a well-formed pitch
system are morphetic pitch equivalent if and only if

Pm (P1) = Pm (p2)
The fact that two pitches are morphetic pitch equivalent will be denoted
P1 Epm D2

Definition 127 (Frequency equivalence of pitches) Two pitches p1 and pa in a well-formed pitch sys-

tem are frequency equivalent if and only if
f(p1) = f(p2)
The fact that two pitches are frequency equivalent will be denoted
b1 =¢ P2

Definition 128 (Chromatic octave equivalence of pitches) Two pitches p1 and py in a well-formed

pitch system are chromatic octave equivalent if and only if

oc (p1) = oc (p2)

The fact that two pitches are chromatic octave equivalent will be denoted

P1 =o. P2

Definition 129 (Morphetic octave equivalence of pitches) Two pitches p1 and p2 in a well-formed

pitch system are morphetic octave equivalent if and only if

Om (p1) = Om (p2)

The fact that two pitches are morphetic octave equivalent will be denoted

P1 =om P2

Definition 130 (Chroma equivalence of pitches) Two pitches p1 and pa in a well-formed pitch system

are chroma equivalent if and only if
¢(p1) = c(p2)

The fact that two pitches are chroma equivalent will be denoted

P1 =c P2

Definition 131 (Morph equivalence of pitches) Two pitches p1 and ps in a well-formed pitch system

are morph equivalent if and only if

m (p1) = m (pz2)

The fact that two pitches are morph equivalent will be denoted

P1 =m P2
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Definition 132 (Chromamorph equivalence of pitches) Two pitches p; and ps in a well-formed pitch

system are chromamorph equivalent if and only if
4(p1) =4 (p2)
The fact that two pitches are chromamorph equivalent will be denoted
P1 =q P2

Definition 133 (Octave difference equivalence of pitches) Two pitches p1 and py in a well-formed

pitch system are octave difference equivalent if and only if

do (pl) - do (p2)

The fact that two pitches are octave difference equivalent will be denoted

P1 =d, P2
Definition 134 (Chromatic genus equivalence of pitches) Two pitches p1 and py in a well-formed pitch
system are chromatic genus equivalent if and only if
gc (p1) = e (p2)

The fact that two pitches are chromatic genus equivalent will be denoted

P1 =g. P2

Definition 135 (Genus equivalence of pitches) Two pitches p1 and ps in a well-formed pitch system are

genus equivalent if and only if
g(p1) =8(p2)

The fact that two pitches are genus equivalent will be denoted

P1 =g P2

Equivalence relations between chromatic pitches

Definition 136 (pc,1 =¢ pc,2) Two chromatic pitches pe1 and pea in a well-formed pitch system are fre-

quency equivalent if and only if
f (Pe,1) = £ (pe.2)
The fact that two chromatic pitches are frequency equivalent will be denoted
Pc,1 =f Pe,2

Definition 137 (pc1 =o, Pc,2) Two chromatic pitches pe1 and pe2 in a well-formed pitch system are chro-
matic octave equivalent if and only if
Oc (pc.,l) = Oc (pc.,Z)

The fact that two chromatic pitches are chromatic octave equivalent will be denoted

Pc,1 =oc Pc,2

Definition 138 (pc,1 =c pe,2) Two chromatic pitches pe1 and pe 2 in a well-formed pitch system are chroma

equivalent if and only if
¢ (pe,1) = ¢ (pe,2)

The fact that two chromatic pitches are chroma equivalent will be denoted

Pec,1 =c Pc,2
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Equivalence relations between morphetic pitches

Definition 139 (pm,1 =o,, Pm,2) Two morphetic pitches pm1 and pmy2 in a well-formed pitch system are

morphetic octave equivalent if and only if

Om (Pm,1) = Om (Pm,2)

The fact that two morphetic pitches are morphetic octave equivalent will be denoted

Pm,1 =o,, Pm,2

Definition 140 (pm,1 =m Pm,2) Two morphetic pitches pm1 and pm2 in a well-formed pitch system are
morph equivalent if and only if

m (Pm,1) = m (Pm,2)

The fact that two morphetic pitches are morph equivalent will be denoted
Pm,1 =m Pm,2

Equivalence relations between frequencies

Definition 141 (f1 =,. f2) Two frequencies fi and fa in a well-formed pitch system are chromatic pitch

equivalent if and only if
Pe (f1) = pe (f2)

The fact that two frequencies are chromatic pitch equivalent will be denoted

fl =pe f2

Definition 142 (f1 =, f2) Two frequencies f1 and fo in a well-formed pitch system are chromatic octave

equivalent if and only if

oc (f1) = oc (f2)

The fact that two frequencies are chromatic octave equivalent will be denoted

J1 =0, f2

Definition 143 (f1 =c f2) Two frequencies f1 and fo in a well-formed pitch system are chroma equivalent
if and only if
¢(f1) =c(f2)

The fact that two frequencies are chroma equivalent will be denoted
J1=c fo

Equivalence relations between chromamorphs

Definition 144 (¢1 =c q2) Two chromamorphs q1 and g2 in a well-formed pitch system are chroma equiva-
lent if and only if

c(q1) = c(q2)

The fact that two chromamorphs are chroma equivalent will be denoted

q1 =c 42
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Definition 145 (¢1 =m q2) Two chromamorphs ¢1 and g2 in a well-formed pitch system are morph equiva-
lent if and only if

m (g1) = m(qz2)

The fact that two chromamorphs are morph equivalent will be denoted
d1 =m g2

Equivalence relations between chromatic genera

Definition 146 (gc1 =c gc,2) Two chromatic genera ge1 and gec 2 in a well-formed pitch system are chroma
equivalent if and only if

¢ (ge,1) = ¢ (ge,2)

The fact that two chromatic genera are chroma equivalent will be denoted

gc,1 =c Jc,2

Definition 147 (gc1 =d, ge,2) Two chromatic genera ge,1 and ge 2 in a well-formed pitch system are octave
difference equivalent if and only if

do (gc,l) =d, (gc,Q)

The fact that two chromatic genera are octave difference equivalent will be denoted
9e,1 =d, Gc,2

Equivalence relations between genera

Definition 148 (g1 =, g2) Two genera g1 and g2 in a well-formed pitch system are chromatic genus equiv-
alent if and only if

gc (91) = g (92)

The fact that two genera are chromatic genus equivalent will be denoted

g1 =g 92

Definition 149 (g1 =m g2) Two genera g1 and g2 in a well-formed pitch system are morph equivalent if
and only if

m (g1) = m (g2)

The fact that two genera are morph equivalent will be denoted

91 =m g2

Definition 150 (g1 =c g2) Two genera g1 and g2 in a well-formed pitch system are chroma equivalent if
and only if

c(g1) = c(g2)

The fact that two genera are chroma equivalent will be denoted

g1 =c 92
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Definition 151 (g1 =q g2) Two genera g1 and g2 in a well-formed pitch system are chromamorph equivalent
if and only if
4(g1) = d(g2)

The fact that two genera are chromamorph equivalent will be denoted

g1 =q 92

Definition 152 (g1 =4, g2) Two genera g1 and g2 in a well-formed pitch system are octave difference equiv-
alent if and only if

do (91) =d, (92)

The fact that two genera are octave difference equivalent will be denoted

91 =d, 92

4.3.4 Inequalities between MIPS objects
Inequalities between two pitches

Definition 153 If p; and p2 are any two pitches in a pitch system 1 then p; is chromatic pitch less than
p2, denoted

D1 <p. P2
if and only if
Pe (P1) < Pe (p2)
Definition 154 If p1 and p2 are any two pitches in a pitch system 1 then p1 is chromatic pitch less than
or equal to ps, denoted
D1 <p, D2
if and only if
pe (p1) < pe (p2)
Definition 155 If p; and ps are any two pitches in a pitch system 1 then py1 is chromatic pitch greater than
p2, denoted
D1 >p. P2
if and only if
Pe (P1) > Pe (p2)
Definition 156 If p; and ps are any two pitches in a pitch system 1 then p1 is chromatic pitch greater than
or equal to p2, denoted
D1 Zp, D2
if and only if
Pe (1) > pe (p2)
Definition 157 If p; and p2 are any two pitches in a pitch system 1 then p; is morphetic pitch less than
p2, denoted
D1 <pwm P2
if and only if
Pm (1) < Pm (p2)
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Definition 158 If p1 and p2 are any two pitches in a pitch system 1 then py is morphetic pitch less than
or equal to ps, denoted

D1 <p., P2
if and only if
Pm (P1) < Pm (p2)
Definition 159 If p1 and p2 are any two pitches in a pitch system 1 then p; is morphetic pitch greater than
p2, denoted
D1 Zpm P2
if and only if
Pm (P1) > Pm (p2)
Definition 160 If p; and p2 are any two pitches in a pitch system 1 then p; is morphetic pitch greater than
or equal to ps, denoted
D1 Zpw P2
if and only if
Pm (P1) = Pm (p2)
Definition 161 If p; and p2 are any two pitches in a pitch system 1 then p; is frequency less than po,
denoted
D1 <g p2
if and only if
f(p1) <f(p2)

Definition 162 If p; and p2 are any two pitches in a pitch system 1 then py is frequency less than or equal
to pa, denoted

P1 <f P2
if and only if
f(p1) < f(p2)
Definition 163 If p1 and p2 are any two pitches in a pitch system i then p1 is frequency greater than po,
denoted
DP1 >t D2
if and only if
f(p1) > f (p2)

Definition 164 If p; and py are any two pitches in a pitch system ¥ then p1 is frequency greater than or
equal to ps, denoted

P1 =>f P2
if and only if
f(p1) > f(p2)

Definition 165 If p; and p2 are any two pitches in a pitch system 1 then py is chroma less than ps, denoted

p1 <c P2

if and only if
c¢(p1) <c(p2)
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Definition 166 If p;
to p2, denoted

if and only if

Definition 167 If p;
denoted

if and only if

Definition 168 If p;
equal to ps, denoted

if and only if

Definition 169 If p;

if and only if

Definition 170 If p;
p2, denoted

if and only if

Definition 171 If p;
denoted

if and only if

Definition 172 If p;
to p2, denoted

if and only if

Definition 173 If p;
p2, denoted

if and only if

and ps are any two pitches in a pitch system 1 then p1 is chroma less than or equal

p1 <c P2

c(p1) <c(p2)

and ps are any two pitches in a pitch system 1 then p; is chroma greater than po,

P1 >c P2

c(p1) > c(p2)

and ps are any two pitches in a pitch system v then p1 is chroma greater than or

P1 Zc P2

c(p1) > c(p2)

and ps are any two pitches in a pitch system 1 then py is morph less than ps, denoted

P1 <m P2

m (p1) < m(p2)

and po are any two pitches in a pitch system i then py is morph less than or equal to

P1 <m P2

m (p1) < m(p2)

and ps are any two pitches in a pitch system 1 then py is morph greater than ps,

P1 >m P2

m (p1) > m (pz2)

and ps are any two pitches in a pitch system 1 then p1 is morph greater than or equal

P1 Zm P2

m (p1) > m (pz)

and pa are any two pitches in a pitch system 1 then py is chromatic genus less than

p1 <g. P2

ge (P1) < g (p2)
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Definition 174 If p1 and py are any two pitches in a pitch system 1y then py is chromatic genus less than
or equal to ps, denoted

p1 <g. D2
if and only if
ge (1) < ge (p2)

Definition 175 If p1 and p2 are any two pitches in a pitch system 1 then p1 is chromatic genus greater
than po, denoted

P1 >g. D2
if and only if
g (p1) > gc (p2)

Definition 176 If p1 and p2 are any two pitches in a pitch system 1 then p; is chromatic genus greater
than or equal to ps, denoted

D1 Zg. D2
if and only if
ge (p1) > ge (p2)

Inequalities between two chromatic pitches

Definition 177 If pc1 and pc2 are any two chromatic pitches in a pitch system 1 then pc 1 is chroma less
than pc 2, denoted

De,1 <c Pe,2
if and only if
¢ (Pe,1) < € (pe,2)

Definition 178 If pc1 and pc2 are any two chromatic pitches in a pitch system 1 then pc 1 is chroma less
than or equal to pc 2, denoted

Pe,1 <e Dc,2
if and only if
¢ (pe,1) < ¢ (pe,2)

Definition 179 Ifpc1 and pc 2 are any two chromatic pitches in a pitch system ¢ then pc 1 is chroma greater
than pc 2, denoted

Pec,1 >c Pe,2
if and only if
¢ (pe,1) > ¢ (pe,2)

Definition 180 Ifpc1 and pc 2 are any two chromatic pitches in a pitch system 1 then pc 1 is chroma greater
than or equal to pc 2, denoted

Pe1 Zc Pe,2
if and only if
C (pc,l) >c (pc,Q)
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Definition 181 Ifp.1 and pc2 are any two chromatic pitches in a pitch system 1 then pc 1 is frequency less
than pc 2, denoted

De,1 <g Pc,2
if and only if
f (pea) < f(pe2)

Definition 182 Ifp.1 and pc2 are any two chromatic pitches in a pitch system 1 then pc 1 is frequency less
than or equal to pc 2, denoted

Pe,1 <t Pc,2
if and only if
f (pe,1) < f(pe2)

Definition 183 If p.1 and pc2 are any two chromatic pitches in a pitch system 1 then pc 1 is frequency
greater than pc 2, denoted

Pc,1 >¢ Pe,2
if and only if
f (pc,l) > f(pc,2)

Definition 184 If p.1 and pc2 are any two chromatic pitches in a pitch system 1 then pc1 is frequency
greater than or equal to pc 2, denoted

Pe,1 ¢ Pe,2
if and only if
f (pc,l) > f(pC,2)

Inequalities between two morphetic pitches

Definition 185 If pi 1 and pm 2 are any two morphetic pitches in a pitch system v then pm 1 s morph less
than pm 2, denoted

Pm,1 <m Pm,2
if and only if
m (pm,1) < m (pm,2)

Definition 186 If pi, 1 and pm 2 are any two morphetic pitches in a pitch system v then pm 1 s morph less
than or equal to pm 2, denoted

Pm,1 Sm Pm,2
if and only if
m (Pm,1) < m (Pm,2)

Definition 187 If pm,1 and pm2 are any two morphetic pitches in a pitch system 1 then pm; is morph
greater than pn 2, denoted

Pm,1 >m Pm,2
if and only if
m (pm,1) > M (Pm,2)
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Definition 188 If pm,1 and pm2 are any two morphetic pitches in a pitch system 1 then pm,; is morph
greater than or equal to pm 2, denoted

Pm,1 Zm Pm,2
if and only if
m (pm,l) > m (pm,2)

Inequalities between two frequencies

Definition 189 If fi and fa are any two frequencies in a pitch system v then f1 is chromatic pitch less
than f2, denoted

fl <pe f2
if and only if
Pe (f1) < pe (f2)

Definition 190 If fi and fa are any two frequencies in a pitch system v then f1 is chromatic pitch less
than or equal to f3, denoted

fl Spc f2
if and only if
Pc (fl) < Pc (fQ)

Definition 191 If f1 and fo are any two frequencies in a pitch system 1 then f1 is chromatic pitch greater
than fs, denoted

J1>pe f2
if and only if
Pe (f1) > pe (f2)

Definition 192 If fi and f2 are any two frequencies in a pitch system 1 then f1 is chromatic pitch greater
than or equal to fa, denoted

fi Zpe I2
if and only if
Pc (fl) 2 Pe (fQ)

Definition 193 If fi1 and fa2 are any two frequencies in a pitch system 1 then f1 is chroma less than fa,
denoted

f1<c f2
if and only if
c¢(f1) <c(f2)

Definition 194 If fi1 and fo are any two frequencies in a pitch system 1 then f1 is chroma less than or
equal to fa, denoted

J1 <c fo
if and only if
c(fi) c(fo)
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Definition 195 If fi1 and fo are any two frequencies in a pitch system 1 then f1 is chroma greater than fs,
denoted

J1>c fo
if and only if
c(fi) >c(f2)

Definition 196 If f1 and fo are any two frequencies in a pitch system 1 then f1 is chroma greater than or
equal to fa, denoted
f12c f2

if and only if
c¢(f1) z c(f2)

Inequalities between two chromatic genera

Definition 197 If g.1 and gc 2 are any two chromatic genera in a pitch system 1 then gc1 is chroma less
than gc 2, denoted
ge,1 <c ge,2

if and only if
¢ (ge,1) < ¢(ge,2)

Definition 198 If gc.1 and gc2 are any two chromatic genera in a pitch system 1 then gc1 is chroma less
than or equal to gc 2, denoted

gc,1 <c gc,2

if and only if
¢ (ge,1) < ¢(ge2)

Definition 199 If gc1 and gc 2 are any two chromatic genera in a pitch system 1 then gc 1 is chroma greater
than gc 2, denoted
ge,1 >c ge,2
if and only if
¢(ge.1) > € (ge2)

Definition 200 If gc1 and gc 2 are any two chromatic genera in a pitch system 1 then gc 1 is chroma greater
than or equal to gc 2, denoted
9Ge,1 >e gc,2

if and only if
¢(ge,1) = ¢(ge,2)

Inequalities between two genera

Definition 201 If g1 and g2 are any two genera in a pitch system v then gy is chromatic genus less than
g2, denoted
91 <g. 92
if and only if
8 (91) < gc (92)
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Definition 202 If g1 and g2 are any two gemera in a pitch system v then gy is chromatic genus less than
or equal to gs, denoted

91 Zg. 92
if and only if
g (g1) < 8c (92)
Definition 203 If g1 and g2 are any two genera in a pitch system 1) then g1 is chromatic genus greater than
g2, denoted
91 >g. 92
if and only if
ge (91) > ge (92)
Definition 204 If g1 and g2 are any two genera in a pitch system 1) then g1 is chromatic genus greater than
or equal to gs, denoted
g1 Zg. g2
if and only if
ge (91) = ge (92)

Definition 205 If g1 and g2 are any two genera in a pitch system v then gy is morph less than go, denoted

91 <m g2

if and only if
m (g1) < m(gz)
Definition 206 If g1 and g2 are any two genera in a pitch system 1 then g1 is morph less than or equal to
g2, denoted
91 <m 92
if and only if
m (g1) < m(gz)
Definition 207 If g1 and g2 are any two genera in a pitch system 1 then g1 4s morph greater than go,
denoted
91 >m g2
if and only if
m (g1) > m (g2)
Definition 208 If g1 and g are any two genera in a pitch system 1 then g is morph greater than or equal
to go, denoted
91 Zm 92
if and only if
m (g1) > m(g2)

Definition 209 If g1 and g2 are any two genera in a pitch system i then g1 is chroma less than go, denoted
91 <c 92

if and only if
c¢(g1) <c(g2)
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Definition 210 If g1 and g are any two genera in a pitch system 1 then gy is chroma less than or equal to
g2, denoted

91 <c 92
if and only if
c(g1) < c(g2)

Definition 211 If g1 and g2 are any two genera in a pitch system v then g, is chroma greater than gs,
denoted

g1 >c g2
if and only if
¢(g1) > c(g2)

Definition 212 If g1 and g2 are any two genera in a pitch system 1 then g1 is chroma greater than or equal
to g2, denoted

91 Zc 92
if and only if
¢(g1) = c(g2)

4.4 MIPS intervals

4.4.1 Intervals between two MIPS objects

Intervals between two chromae

Definition 213 (Ac(c1,¢2)) If ¢1 and ¢co are two chromae in a well-formed pitch system
¥ = [ke, fm, fo, Pe,o]
then the chroma interval from c; to cg is given by the following equation:
Ac(cr,e) = (ca —c1) mod e
Theorem 214 If Ac = Ac(c1,c2) where ¢1 and co are any two chromae in a pitch system
¥ = [ke, fm, fo, Pe,o]
then Ac can only take any value such that
(0<Ac< pe) N(Ac e Z)

where Z is the universal set of integers.
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Proof
R1  Let Ac = Ac(ey,c) where ¢ and ¢ are any two chromae in .
R2 72 = ¢ and cp can only take any value such that (0 < ¢1,c0 < pc) A (1,0 € Z)
R3 R1& 213 = Ac=(c2—c1) mod pc
R4 R3 = Ac = co mod p. when ¢; = 0.
R5 61 = pc can only take any positive integer value.
R6 R5, 44 & R4 = Ac=cy when ¢; =0.
R7 R6 & R2 = Ac can take any value such that (0 < Ac < pc) A (Ac € Z).
R8 R3& 33 = Ac=(c2—c1)— e X int (‘22“;;1)

R9 RS, 27,R5 & R2 = Acis an integer.
R10 41, R3 & R5 = 0< Ac< pe

R11 R7,R9 & R10 = Ac can only take any value such that (0 < Ac < pc) A (Ac € Z)

Theorem 215 If
1/) = [IUJCa Hm, vapC,O]

18 a pitch system and Ac is a chroma interval in i then:

Ac mod pe = Ac

Proof
R1 33 = Acmod pc = Ac — pc X int (%)
R2 214 = it (2¢) =0

R3 R1&R2 = Acmod puc=Ac—pcx0=Ac

Theorem 216 If
1/) = [IUJCa Hm, vapC,O]

is a pitch system and Ac is a chroma interval in 1 then:

Acdiv e =0
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Proof
R1 48 = Acdiv yic = int (ﬁ—)
R2 214 = int (ﬁ—) —0

R3 R1&R2 = Acdivu.=0

Intervals between two morphs

Definition 217 (Morph interval) If m; and ms are two morphs in a well-formed pitch system
Y = [He, fim, fo, Pe,o]
then the morph interval from my to mo is given by the following equation:
Am (mq,ms) = (mg —my) mod fim
Theorem 218 If Am = Am (mq,ms) where m1 and me are any two morphs in a pitch system

¥ = [He, fim;, fo, Pe,0)

then Am can only take any value such that

(0 < Am < pm) A (Am € Z)

where Z is the universal set of integers.

114
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Proof
R1 Let Am = Am (mq,mz) where my and ms are any two morphs in .
R2 77 = mj and ms can only take any value such that (0 < mi,ma < pm) A (m1,me € Z)
R3 Rl & 217 = Am = (ma—m1) mod pm
R4 R3 = Am = ms mod py, when my = 0.
R5 61 = pm can only take any positive integer value.
R6 R5, 44 & R4 = Am = msy when m; = 0.
R7 R6 & R2 = Am can take any value such that (0 < Am < pm) A (Am € Z).
R8 R3& 33 = Am=(ma—m1) — lm X int (%)

R9 RS, 27,R5 & R2 = Am is an integer.
R10 41, R3 & R5 = 0<Am< pm

R11 R7,R9 & R10 = Am can only take any value such that (0 < Am < um) A (Am € Z)

Theorem 219 If
1/) = [IUJCa Hm, vapC,O]

is a pitch system and Am is a morph interval in 1 then:

Am mod py = Am

Proof
R1 33 = Ammod jim = Am — i X int (ﬁ—m)
R2 218 = int (ﬁ—:) -0

R3 R1&R2 = Ammodpm=Am—pm x0=Am

Theorem 220 If
1/) = [IUJCa Hm, vapC,O]

is a pitch system and Am is a morph interval in 1 then:

Am div pm =0
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Proof
R1 48 = Amdiv i = int (ﬁ—j)
R2 218 = int (ﬁ—:) —0

R3 R1&R2 = Amdiv puy=0

Intervals between two chromamorphs

Definition 221 (Definition of Ac(q1,¢2)) If g1 and g2 are two chromamorphs in a pitch system i then

the chroma interval from ¢; to g2 is defined and denoted as follows:

Ac(q1,q2) = Ac(c(q1),c(q2))

Definition 222 (Definition of Am (¢1,¢2)) If 1 and g2 are two chromamorphs in a pitch system ¢ then

the morph interval from ¢ to g2 is defined and denoted as follows:

Am (g1, ¢2) = Am(m(q1),m(g2))

Definition 223 (Definition of Ad(q1,q2)) If ¢1 and g2 are two chromamorphs in a pitch system i then

the chromamorph interval from g1 to ¢o is defined and denoted as follows:
Aq(q17q2) = [AC(QIJD) ) Am(‘]la‘h)]

Intervals between two chromatic genera

Definition 224 (Definition of Ac(gc1,9¢2)) If geq and geo are two chromatic genera in a pitch system

1 then the chroma interval from g 1 to gc 2 is defined and denoted as follows:
Ac(gea;ge2) =Ac(c(gen)C(ge2))
Theorem 225 (Formula for Ac(gc1,9c2)) If go1 and geo are two chromatic genera in a pitch system

¥ = [He, fim;, fo, Pe,0]

then the chroma interval from gc1 to ge2 is given by the following expression:

Ac(ge,1,9c,2) = (ge,2 — ge,1) mod fie
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224 = Ac(gen,ge2) =Ac(c(ge,1),¢(ge2))
111 = ¢(ge1) = ge,1 mod pic
111 = ¢(ge2) = ge,2 mod pic
213 = Ac(c(ge,1),¢(ge2)) = (¢(ge,2) = ¢ (ge,1)) mod pic
R2,R3& R4 = Ac(c(ge1),c(ge2)) = (ge,2 mod fic — ge,1 mod pic) mod pc
R5 & 38 = Ac(c(ge1),¢(ge2)) = (ge,2 — ge, mod pc) mod pie
R6 & 38 = Ac(c(ge1),¢(9e,2)) = (ge,2 — ge,1) mod pic
R7 & 224 = Ac(ge1,9c2) = (ge,2 — ge,1) mod fic

Intervals between two genera

Definition 226 (Ac(g1,92)) If g1 and g2 are two genera in a pitch system 1) then the chroma interval from

g1 to go is defined and denoted as follows:

Ac(g1,92) = Ac(c(g1),c(g2))

Theorem 227 (Formula for Ac(g1,92)) If g1 and g2 are two genera in a pitch system

Y = [He, fim; fo, Pe,0]

then the chroma interval from g1 to go is given by the following expression:

Ac(g1,92) = (g (92) — 8c (91)) mod pe
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Proof
Rl 226 = Ac(g1,92) = Ac(c(g1),c(g2))
R2 120 = ¢(g1) = ge (g1) mod pie
R3 120 = ¢(92) = g (92) mod pic
R4 213 = Ac(c(g1),c(g2)) = (c(g2) — ¢ (g1)) mod pc

R5 R2,R3& R4 = Ac(c(g1),c(g92)) = (gc (92) mod pc — gc (g1) mod pe) mod pc

R6 R5 & 38 = Ac(c(g1),c(g2)) = (8 (92) — 8 (91) mod pc) mod pic
R7 R6 & 38 = Ac(c(g1),c(92) = (gc (92) — gc (91)) mod pc
R8 RI1 & R7 = Ac(ge1,9c2) = (8 (92) — gc (91)) mod pic

Definition 228 (Morph interval between two genera) If g1 and go are two genera in a pitch system

then the morph interval from g1 to g2 is defined and denoted as follows:

Am(g1,92) = Am(m(g1),m(g2))

Definition 229 (Ad (g1, 92)) If g1 and g2 are two genera in a pitch system 1 then the chromamorph interval

from g1 to g2 is defined and denoted as follows:

Ad(g1,92) = Ad(d(g1),9(g2))

Definition 230 (Chromatic genus interval between two genera) If g and g2 are two genera in a

pitch system
1/) = [IUJCa Hm, vapC.,O]

then the chromatic genus interval from g1 to go is defined and denoted as follows:

Age(g1,92) = gc (92) — gc (91) — pre X ((m(g92) —m (g1)) div pm)

Definition 231 (Genus interval between two genera) If g1 and g2 are two genera in a pitch system

then the genus interval from g1 to go is defined and denoted as follows:
Ag(g1,92) = [Age(91,92) , Am (g1, g2)]

Intervals between two chromatic pitches

Definition 232 (Definition of Ac (pc1,pc2)) If pe1 and pea are two chromatic pitches in a pitch system

1 then the chroma interval from pc 1 to pc2 is defined and denoted as follows:

Ac(pe,pe2) = Ac(c(pe,),c(pe2))
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Theorem 233 (Formula for Ac(pc1,pc2)) If pe1 and pea are two chromatic pitches in a pitch system
¥ = [pie, tim; fo, Pe,o]

then the chroma interval from pe1 to pec 2 is given by:

Ac(pe;pe2) = (P2 — pe,1) mod pue

Proof
R1 232 = Ac(pe,pe2) = Ac(c(pe),c(pe2))
R2 RI1 & 213 = Ac(pe1,pe2) = (€(pe2) — ¢ (pe1)) mod pe
R3 93 = ¢(Pe,1) = Pe,1 mod fic
R4 93 = ¢ (pe2) = Pe,2 mod fic

R5 R2,R3& R4 = Ac(pei,pc2)= (Pe2 mod fic — pe,1 mod pic) mod g
R6 R5 & 38 =  Ac(pe1,Pe2) = (De2 — pe mod i) mod pic

R7 R6 & 38 =  Ac(pe1,pe,2) = (Pe2 — Pe,1) mod pie

Definition 234 (Definition of Af (pe1,pc2)) If pe1 and pe2 are two chromatic pitches in a pitch system

1 then the frequency interval from pc 1 to pc2 is defined and denoted as follows:
Af (pespe2) = A (f(pe1),f (pe2))
The function Af (f1, f2) is defined in Definition 242 below.
Theorem 235 (Formula for Af (pc1,pc2)) If pe1 and pe o are two chromatic pitches in a pitch system
¥ = [Hc, fim, fo, Pe,o]
then the frequency interval from pc1 to pe 2 is given by the following formula:

Af (pe1spen) = 2Pez—Pen)/ne
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R2 242
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R5 R2,R3 & R4
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Af(pe,pe2) =Af(f(pe1),f (pe2))
A (F(pen) £ (pe,2)) = 1o
f (pC,Q) — fO X 2(;00,2717(‘,,0)/‘“’0

f (pe1) = fo x 2Pea—peo)/pe

(Pe,2=Pc,0)/pe
AF(f (per) £ (pos)) = fox2lezreo)ie

fo «2(Pc,1=pc,0)/ e

_ o(pc,2=pe,0)/pe
" o(Pe,1-Pc,0)/ ne

(Pc,2=Pc,0)  (Pc,1—Pc,0)
= Hc He

_ 2(pc,2—pc,1)/uc

Definition 236 (Chromatic pitch interval) If p.1 and pca are two chromatic pitches in a well-formed

pitch system 1, then the chromatic pitch interval from pc 1 to pec 2 s defined and denoted as follows:

Ape (Pc,17pc,2) = Pc,2 = Pe,1

Theorem 237 If Ap. is a chromatic pitch interval in a pitch system v then Apc can only take any integer

value.

Proof

R1

R2

R3

R4

R5

R6

Let

R1 & 236

62

62

R2, R3 & R4

R5 & R1

=

=

=

Ape = Apc (Pe,1, Pe,2) where pe 1 and pe 2 are any two chromatic pitches in .
Apc (Pe,1,Pc,2) = Pe,2 = Pe,i

Pec,1 can only take any integer value.

Pc,2 can only take any integer value.

Ape (Pe,1,De,2) can only take any integer value.

Apc can only take any integer value.

Intervals between two morphetic pitches

Definition 238 (Definition of Am (pm1,Pm,2)) If Pm,1 and pm,2 are two morphetic pitches in a pitch sys-

tem 1 then the morph interval from pn 1 to pm 2 is defined and denoted as follows:

Am (Pm,1,Pm,2) = Am (M (Pm,1) , M (Pm,2))
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Theorem 239 (Formula for Am (pm 1,Pm,2)) If pm,1 and pm 2 are two morphetic pitches in a pitch system

w = [MCv Hm, anpC,O]

then the morph interval from pm 1 to pm 2 s given by:

Am (pm,lapm,2) = (pm,2 - pm,l) mod fim

Proof
R1 238 = Am(pmi;Pm2) = Am(m (pm1) ,m (Pm,2))
R2  RI1 & 217 = Am(pm1,pm2) = (0 (Pm,2) — M (pm,1)) mod fim
R3 97 = M (Pm,31) = Pm,1 mod tm
R4 97 = M (Pm,2) = Pm,2 mod pm

R5 R2,R3& R4 = Am(Pm1,Pmz2)= (Pmz2 mod tim — pm,1 mod tm) mod fim
R6 R5 & 38 = Am(®m1,Pmz2) = Pm2 — Pm,1 mod pim) mod fim

R7 R6 & 38 = Am (pm,lupm,2) = (pm,2 - pm,l) mod fim
Definition 240 (Morphetic pitch interval) If pm 1 and pm o are two morphetic pitches in a well-formed
pitch system 1, then the morphetic pitch interval from pm 1 to pm 2 @s defined and denoted as follows:

A Pm (pm,lupm,Z) = Pm,2 — Pm,1

Theorem 241 If Apy, is a morphetic pitch interval in a pitch system ¢ then Apy can only take any integer

value.
Proof
R1 Let Apm = Apm (Pm,1,Pm,2) where py 1 and pm 2 are any two morphetic pitches in .
R2 R1 & 240 =  Apm (Pm,1,Pm,2) = Pm,2 — Pm,1
R3 62 = Pm,1 can only take any integer value.
R4 62 = pm,2 can only take any integer value.

R5 R2,R3& R4 = Apm (Pm.1,Pmz2) can only take any integer value.

R6 Rb5 & R1 = Apm can only take any integer value.
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Intervals between two frequencies

Definition 242 (Af(f1, f2)) If f1 and fa are two frequencies within a pitch system i then the frequency

interval from f; to fo is defined and denoted as follows:

At(fi ) =2

Theorem 243 If fi and fao are any two frequencies in a pitch system 1 and
Af=Af(f1, f2)

then Af can only take any real value greater than zero.
Proof

R1 Let Af = Af(f1, f2) where f; and fy are any two frequencies in .
R2 R1&242 = Af=£
R3 67 = f1 and f2 can only take any real values greater than zero.

R4 R2& R3 = Af can only take any real value greater than zero.

Definition 244 (Definition of Ap. (f1, f2)) If f1 and fa are two frequencies within a pitch system v then

the chromatic pitch interval from f1 to fs is defined and denoted as follows:

Ape (f1, f2) = Ape (pe (f1), pe (f2))
Theorem 245 (Formula for Apc (f1, f2)) If f1 and f2 are two frequencies within a pitch system

1/) = [IUJCa Hm, vapC.,O]

then the chromatic pitch interval from f1 to fo can be calculated using the following formula:

B (fi, fo) = pe x LD
Proof
R1 244 = Apc(fi, f2) = Apc (pe (f1), Pe (f2))
R2 99 = pe(fi) = pe x 2ULL 4 pes
R3 99 = pelfo) = pe x 2L 4y g
R4 236 = Ape(pe (f1):pe (f2)) = pe (f2) = pe (f1)

R5 R2R3&R4 = Ape(pe(fi)ope(f2)) = e LD b pe— (pue > AR 4 e )

=15 x (In(f2/fo) —In(f1/fo))

_ M f fo) — In(f2/f1)
= i xIn (42 x ) = pre o g
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Definition 246 (Definition of Ac(f1, f2)) If f1 and fo are two frequencies within a pitch system 1 then
the chroma interval from fi to fao is defined and denoted as follows:

Ac(fi, f2) =Ac(c(f1),c(f2))

Theorem 247 (Formula for Ac(f1, f2)) If f1 and f2 are two frequencies within a pitch system

1/) = [,UJCa Hm, vapC,O]

then the chroma interval from f1 to fo is given by the following formula:

Ac(fi, f2) = (uc X %) mod fic
Proof
R1 246 = Ac(fi, fa) =Ac(c(fr),c(f2))
R2 104 = c(f1) =pc (f1) mod pe
R3 104 = c(f2) = pe (f2) mod puc
R4 213 = Ac(c(fi),c(f2)) = (c(f2) —c(f1)) mod pe
R5  R2,R3 & R4 = Ac(c(f1),c(f2)) = (pe (f2) mod pic — pe (f1) mod pic) mod pic
R6  R5 & 38 = Ac(c(f1),c(f2)) = (Pe (f2) = pe (1) mod pic) mod pue
R7  RG6 & 38 = Ac(c(fi),c(f2)) = (P (f2) = pe (f1)) mod pe
R8 236 & 98 = e (f2) = Pe (f1) = Ape (Pe (f1),pe (f2))
RO 244 = Apc(f1, f2) = Ape (pe (f1) e (f2))
R10 245 = Apc(fi, f2) = pe x 220

R11 RI10,R9, RS, RT& Rl = Ac(fi,fo) = (uc x %) mod e

Theorem 248 (Second formula for Ac(f1, f2)) If f1 and fo are two frequencies within a pitch system

w = [MCv Hm, anpC,O]

then the chroma interval from f1 to fo is given by the following formula:

B/ (R4/10))

Ac(fi, fa) = pe % (
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Proof

R1 247 = Ac(f1,f2) = (uc X %) mod ¢

R2 R1&33 = Ac(fi,fo)= (,Uc % 1n(f2/f1)) — e X int (#cxln(h/fl))

In2 e X1In 2

= e X (ln({zéfl) —int (ln({rzl/Qfl)))

Intervals between two pitches

Definition 249 (Definition of Ac(p1,p2)) If p1 and ps are two pitches in a pitch system 1 then the

chroma interval from p; to po is defined and denoted as follows:

Ac(pi;p2) = Ac(e(pr),c(p2))

Theorem 250 (Formula for Ac(p1,p2)) Ifp1 and pa are two pitches in a pitch system ¥ = [fic, im, fo, Pe,0]

then the chroma interval from p1 to ps is given by the following expression:

Ac(p1,p2) = (Pc (P2) — Pe (p1)) mod puc
Proof

R1 249 = Ac(p,p2) =Ac(c(p),c(p2))
R2 R1&213 = Ac(py,p2) = (c(p2) —c(p1)) mod pe
R3 R2& 71 = Ac(pi,p2) = (pc(p2) mod pe — pe (p1) mod pie) mod pc

R4 R3&38 = Ac(p,p2) = (pc(p2) — pe(p1)) mod pec

Definition 251 (Definition of Am (p1,p2)) If p1 and p2 are two pitches in a pitch system i then the

morph interval from p; to ps is defined and denoted as follows:

Am (p1,p2) = Am(m(p1),m(p2))

Theorem 252 (Formula for Am (p1,p2)) Ifp1 and pa are two pitches in a pitch system ¥ = [fic, im, fo, Pe,0]

then the morph interval from py to ps is given by the following expression:

Am (p1,p2) = (Pm (P2) — Pm (p1)) mod fim
Proof

R1 251 = Am(p,p2) =Am(m(p;),m(p2))
R2 R1&217 = Am(pi,p2)=(m(p2)—m(p1)) mod pm
R3 R2& 76 = Am(p1,p2) = (pm (p2) mod tim — pm (p1) mod pim) mod fim

R4 R3&38 = Am(p,p2) = (Pm (p2) — Pm (p1)) mod fim
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Definition 253 If p1 and ps are two pitches in a pitch system 1 then the chromamorph interval from p; to
p2 is defined and denoted as follows:

Ad(p1,p2) =Ad(d(p1),4d(p2))

Definition 254 If p1 and p2 are two pitches in a pitch system v then the chromatic genus interval from p;

to ps is defined and denoted as follows:

Age(p1,p2) = Age (8(p1),8(p2))

Theorem 255 If p1 and py are two pitches in a pitch system

1/) = [IUJCa Hm, vapC,O]

then the chromatic genus interval from p1 to pa is given by the following expression:

Age (p1,p2) = gc (p2) — ge (p1) — pre X (M (p2) — m (p1)) div pim)
Proof

R1 254 = Agc(p1,p2) = Age(8(p1),8(p2))
R2 230 & Rl = Agc(p1,p2) =gc(8(p2)) — gc (8(p1)) — pre X ((m (8 (p2)) —m (8 (p1))) div fim)
R3 114 & R2 = Agc(p1,p2) =8 (p2) — g (P1) — fre X (M (8 (p2)) —m (8 (p1))) div pim)

R4 116 & R3 = Age(p1,p2) = 8 (p2) — e (p1) — e X ((m (p2) — m (p1)) div pim)
Theorem 256 If Agc = Agc (p1,p2) where p1 and pa are any two pitches in

1/) = [IUJCa Hm, vapC,O]

then Agc can only take any integer value.

Proof

R1 Let Age = Age (p1,p2) where p; and ps are
any two pitches in a pitch system 9 = [tic, im, fo, Pe,0]-

R2 RI & 255 = Age = ge (p2) = ge (P1) — pre X ((m (p2) —m (p1)) div pum)

R3 61 = uc can only take any positive integer value.

R4 61 = um can only take any positive integer value.

R5 77 = m(p;) and m (p2) can each only take any value such that
(0 <m(p1),m(p2) < pm) A (m(p1),m(p2) € Z).

R6 83 = g (p2) and gc (p1) can each only take any integer value.

R7 R2,48,R3, R4, R5 & R6 = Ag. can only take any integer value.
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Definition 257 (Definition of Ag(p1,p2)) If p1 and p2 are two pitches in a pitch system 1 then the genus
interval from p; to pa is defined and denoted as follows:

Ag(p1,p2) = Ag(8(p1),8 (p2))

Theorem 258 (Formula for A g (p1,p2)) If p1 and pa are two pitches in a pitch system 1 then the genus

interval from p1 to pa is given by the following expression:

Ag(p1,p2) = [Age (p1,p2), Am (p1, p2)]
Proof

R1 257 = Ag(p1,p2) = A8(8(p1),8(p2))

R2 R1&231 = Ag(pi,p2) =[Ag (8(p1),8(p2)), Am(8(p1),8 (p2))]
R3 R2& 254 = Ag(pr,p2) =[Age(p1,p2), Am(8(p1),8(p2))]

R4 R3&228 = Ag(pi,p2) =[Age(p1,p2), Am(m(8(p1)), m (g (p2)))]
R5 R4 & 116 =  Ag(p1,p2) = [Age(p1,p2), Am(m(pr), m (p2))]

R6 Rb5 & 251 = Ag(p1,p2) =[Ag (p1,p2), Am (p1,p2)]

Definition 259 (Definition of Ap. (p1,p2)) If p1 and p2 are two pitches in a pitch system 1) then the
chromatic pitch interval from p; to ps is defined and denoted as follows:

Apc (p1,p2) = Ape (pe (1) 5 Pe (P2))

Theorem 260 (Formula for Apc (p1,p2)) If p1 and pa are two pitches in a pitch system 1 then the chro-

matic pitch interval from py to ps is given by

Ape (p1,p2) = Pe (p2) — Pe (P1)
Proof

R1 259 = Apc(p1,p2) = Ape (pe (p1), Pe (p2))

R2 R1&236 = Apc(p1,p2)=pec(p2) — pe (p1)

Definition 261 (Definition of A py, (p1,p2)) If p1 and pa are two pitches in a pitch system ¥ then the

morphetic pitch interval from p; to ps is defined and denoted as follows:

Apm (p1,p2) = ApPm (Pm (P1) ; Pm (p2))

Theorem 262 (Formula for Apy, (p1,p2)) If p1 and p2 are two pitches in a pitch system 1 then the mor-
phetic pitch interval from p1 to ps is given by

Apm (p17p2) = Pm (pz) — Pm (pl)
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Proof
R1 261 = Apm (p1,p2) = ADPm (Pm (P1),Pm (p2))

R2 R1&240 = Apm(p1,02) =DPm (p2) — Pm (P1)

Definition 263 (Definition of Af (p1,p2)) If p1 and p2 are two pitches in a pitch system 1) then the fre-
quency interval from p; to ps is defined and denoted as follows:

At (p1,p2) = Af(f(p1), £ (p2))
Theorem 264 (Formula for Af (p1,p2)) If p1 and pa are two pitches in a pitch system
Y = [fic, i, fo, Peo]
then the frequency interval from p1 to po is given by the following formula:

Af(p1,p2) = 9(Pc(P2)—Pe(p1))/ e
Proof

R1 263 =  Af(p1,p2) = Af(f(p1),f(p2))

R2 R1& 242 = Af(plap2):1tc'g;§

 f «2(Pc(P2)=pc,0)/ ke

R3 R2&66 = Af(p1,p2)

- fo «2(Pc(P1)=Pc,0)/ ke

o(Pe(p2)=pc,0)/ e

= e o0l e

pc(P2)—Pc,0  Pc(P1)—Pc,0
= 2 Hc Hc

— 9(Pe(p2)—Ppe(p1))/ He

Definition 265 (Pitch interval) If p1 and py are two pitches in a pitch system ¢ then the pitch interval
from py to po is defined and denoted as follows:

Ap(plaPQ) = [A Pc (p15p2) aApm (pl;pQ)]

4.4.2 Derived MIPS intervals
Deriving MIPS intervals from a pitch interval

Definition 266 (Chromatic pitch interval of a pitch interval) If p; and pa are any two pitches in a
pitch system 1) then
Ap = AP (p1,p2) = Apc (Ap) = Ape (p1, p2)

Theorem 267 (Formula for Ap. (Ap)) If Ap = [Ape, Apm] in a pitch system ¢ then

Apc (Ap) = Ape
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Proof
R1  Let Ap = AP (p1,p2)
R2  Let Ap = [Ape, Apm]
R3  RI & 266 =  Apc(Ap) = Apc (p1,p2)
R4 259 = Apc(p1,p2) = Ape (pe (p1) , Pe (p2))
R5 265 = AP (p1,p2) = [Apc (p1,p2) s AP (1, p2)]

R6 R4 &261&R5 = ADP(p1,p2) = [Ape(Pe(P1),pec (2)), A Pm (Pm (P1),Pm (92))]

R7 Rl & R2 = AD(p1.p2) = [Apc, Apm]
R8 R6 & R7 = Apc(pc (p1),Pe (p2)) = Ape
R9 R8 & R4 = Apc (p1,p2) = Apc

R10 R9 & R3 = Apc(Ap) = Ap.

Definition 268 (Morphetic pitch interval of a pitch interval) If p; and ps are any two pitches in a
pitch system 1 then

Ap = AP (p1,p2) = Apm (Ap) = A pm (p1,p2)

Theorem 269 (Formula for Apy, (Ap)) If Ap = [Ape, Apm] in a pitch system 1 then

Apm (Ap) = Apm



CHAPTER 4. FORMAL SPECIFICATION OF MIPS 129

Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

Let

Let

R1 & 268

261

265

R4 & 261 & R5

R1 & R2

R6 & R7

R8 & R4

R9 & R3

Ap = AP (p1,p2)

Ap = [Ape, Apm]

= Apm (Ap) = Apm (p1,p2)

= Apwm (p1,p2) = ApPm (Pm (1) , P (p2))

= AP (p1,p2) = [Ape (p1,p2)  Apm (p1,p2)]

= AP (p1,p2) = [Ape (Pe (p1) , Pe (P2)) s A Pm (P (p1) P (P2))]
= Ap(p1,p2) = [Ape, Apu)]

= Apwm (Pm (1) Pm (p2)) = Apm

= Apm (p1,p2) = Apm

=  Apm (Ap) = Apm

Theorem 270 If ¢ is a pitch system and Ap is a pitch interval in ¢ then

Proof

R1

R2

R3

R4

R1 & 267

R1 & 269

Let

RI,R2& R3 =

=

=

Ap = [Apc (Ap) , Apm (Ap)]

Ap = [Apm Apm]
Apc (Ap) = Ape
Apm (Ap) = Apm

Ap = [Apc (Ap) , A pm (Ap)]

Definition 271 (Definition of Af (Ap)) If p1 and py are any two pitches in a pitch system 1 then

Ap = AP (p1,p2) = Af(Ap) = Af (p1,p2)

Theorem 272 (Formula for Af(Ap)) If Ap is a pitch interval in a pitch system v then

Af(Ap) = 9A P (Ap)/pe
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

Let

R1 & 271

264

R1 & 266

260

R5 & R4

R6 & R3

R7 & R2

=

=

=

=

=

Ap = AP (p1,p2)

Af(Ap) = Af(p1,p2)

At (p1, po) = 2Pe(p2)=pe(p1) /e
Apc (Ap) = Apc (p1, p2)

Ape (p1,p2) = Pe (P2) — Pe (P1)
Ape (Ap) = pe (p2) — Pe (P1)
Af(pr,p2) = 9A pe(Ap)/pec

Af (Ap) = 28P(Ap)/ e

Definition 273 (Definition of Ac(Ap)) If p1 and p2 are any two pitches in a pitch system 1 then

Ap = AP (p1,p2) = Ac(Ap) = Ac(p1,p2)

Theorem 274 (Formula for Ac(Ap)) If Ap is a pitch interval in a pitch system ¢ then

Proof

R1

R2

R3

R4

R5

R6

Let

R1 & 273

R2 & 250

R1 & 266

R4 & 260

R5 & R3

=

Ac(Ap) = Apc (Ap) mod puc

Ap = AP (p1,p2)

Ac(Ap) = Ac(pr,p2)

Ac(Ap) = (pe (p2) = pe (p1)) mod pc
Ape (Ap) = Ape (p1.p2)

Ape (Ap) = pe (p2) — Pe (p1)

Ac(Ap) = Apc (Ap) mod pe

Definition 275 (Definition of Am (Ap)) If p1 and p2 are any two pitches in a pitch system v then

Ap = AP (p1,p2) = Am(Ap) = Am (p1,p2)

Theorem 276 (Formula for Am (Ap)) If Ap is a pitch interval in a pitch system i then

Am (Ap) = ApmAp mod pim
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Proof
R1 Let Ap = AP (p1,p2)
R2 R1&275 = Am(Ap)=Am(py,p2)
R3 R2&252 = Am(Ap)= (pm(p2) — Pm (p1)) mod pim
R4 R1& 268 = Apm(Ap) = Apm (p1,p2)
R5 R4 & 262 = Apwm(Ap) =pm(p2) — pm (1)

R6 R5&R3 = Am(Ap)=Apm (Ap)mod pm

Definition 277 (Definition of Ad(Ap)) If p1 and p2 are any two pitches in a pitch system 1 then
Ap = AP (p1,p2) = Ad(Ap) = Ad(p1,p2)
Theorem 278 (Formula for Ad(Ap)) If Ap is a pitch interval in a pitch system 1 then

Aq(Ap) =[Ac(Ap),Am (Ap)]
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Proof
Rl  Let Ap = AP (p1,p2)
R2 Rl & 275 = Am(Ap) = Am (p1,p2)
R3 Rl & 273 = Ac(Ap) = Ac(pi,p2)
R4 RI1 & 277 = Adq(Ap) = Ad(p1,p2)
R5 R4 & 253 = Adq(Ap)=Ad(a(p1),q(p2))
R6  R5 & 223 = Adq(Ap) =[Ac(d(p1),q(p2)), Am(d(p1), 9 (p2))]
R7 221 = Ac(d(p),q(p2)) = Ac(c(d(p1)),c(d(p2)))
R8 105 & R7 = Ac(a(p1),q(p2)) = Ac(c(p1),c(p2))
R9 249 & R8 = Ac(d(p1),q4(p2)) = Ac(pi,p2)
R10 R9 & R3 = Ac(d(p1),q9(p2)) = Ac(Ap)
R11 222 = Am(d(p1),q(p2)) = Am(m(4(p1)),m (4(p2)))
R12 107 & R11 = Am(d(p1),d(p2)) = Am (m(p1),m (ps))
R13 251 & R12 = Am(d(p1),d(p2)) = Am (p1,p2)
R14 RI3 & R2 = Am(d(p1),d(p2)) = Am (Ap)

R15 R6,RI0& R4 = Ad(Ap)=[Ac(Ap),Am(Ap)]

Definition 279 (Chromatic genus interval of a pitch interval) If p1 and py are any two pitches in a
pitch system 1 then
Ap = AP (p1,p2) = Age (Ap) = Age (p1,p2)

Theorem 280 (Formula for Ag. (Ap)) If Ap is a pitch interval in

1/) = [,UJCa Hm, vapC,O]

then:
Age (Ap) = Ape (Ap) — pie X (A pm (Ap) div pim)
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

R11

R12

Let

R1 & 279

R2 & 255

R1 & 266

R4 & 260

R1 & 268

R6 & 262

R3 & 82

R5 & R8

R9, 69 & 76

R10 & 55

R11 & R7

=

=

=

=

=

Ap = AP (p1,p2)
Age(Ap) = Age (p1,p2)
Age (Ap) = ge (p2) — 8 (p1) — pe X (1 (p2) — m (p1)) div fim)
Ape (Ap) = Ape (p1.p2)
Ape (Ap) = pe (p2) — Pe (p1)
Apm (Ap) = Apm (p1,p2)
AP (Ap) = Pm (p2) — Pm (p1)
Age (Ap) = pe (p2) — fie X om (p2) = Pe (P1) + pe X Om (p1)
—pie x ((m(p2) —m (p1)) div pim)
= Pe (p2) = Pe (P1) = e X (0m (P2) = 0m (p1) + (m (p2) —m (p1)) div i)
Age (Ap) = Ape (Ap) — pie X (0m (p2) — 0m (p1) + (m (p2) — m (p1)) div pm)
Age (Ap) = Ape (Ap)
(Pm (p2) div fim)
—pe X | = (Pm (p1) div pim)
+ ((Pm (p2) mod ftm) — (Pm (p1) mod pim)) div pim
Age (Ap) = Apc (Ap) — pre X (Pm (p2) = Pm (p1)) div i)

Age (Ap) = Apc (Ap) — pic X (Apm (Ap) div fim)

Definition 281 (Definition of Ag(Ap)) If p1 and ps are any two pitches in a pitch system ¢ then

Ap = AP (p1,p2) = Ag(Ap) = Ag(p1,p2)

Theorem 282 (Formula for Ag(Ap)) If Ap is a pitch interval in 1 then:

Ag(Ap) = [Agc (Ap), Am (Ap)]
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Proof
R1 Let Ap = AP (p1,p2)
R2 RI & 281 = Ag(Ap)=Ag(p1,p2)
R3 R2 & 258 = Ag(Ap) = [Agc(p1,p2), Am (p1,p2)]
R4 RI & 279 =  Agc(p1,p2) = Agc (Ap)
R5 R1 & 275 =  Am(p;,p2) = Am(Ap)

R6 R3,R4&R5 = Ag(Ap) =[Ag.(Ap),Am(Ap)]

Deriving MIPS intervals from a chromatic pitch interval

Definition 283 (Definition of Af (Apc)) If pca and pe2 are any two chromatic pitches in a pitch system
1 then
Ape = Apc (pe,1,pe,2) = Af (Apc) = Af (pe,1, pe,2)

Theorem 284 (Formula for Af(Ap.)) If Apc is a chromatic pitch interval in the pitch system 1 then

Af(Ape) = 9Ape/be
Proof

R1 Let Apc = Apc (pe,1,Pe,2)

R2 R1&283 = Af(Apc) = Af(pe1,pe2)
R3 R2& 235 = Af(Ap) = 2Pe2—pe)/pe
R4 R1&236 = Apec=pe2—DPea

R5 R3& R4 = Af(Ap) = 28P/be

Theorem 285 (Af(Apc(Ap)) = Af(Ap)) If Ap is a pitch interval in 1) then

Af(Apc (Ap)) = Af (Ap)

Proof
R1 284 = Af(Ap:(Ap)) = 92A pe(Ap)/pc
R2 272 = Af(Ap) = 9A pe(Ap)/pc

R3 R1&R2 = Af(Apc(Ap))=Af(Ap)
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Definition 286 (Definition of Ac(Apc)) If pe1 and pea are any two chromatic pitches in a pitch system
1 then
Ape = Ape (pe,1,Pe2) = Ac(Ape) = Ac(pe,1,pe,2)

Theorem 287 (Formula for Ac(Ap.)) If Apc is a chromatic pitch interval in the pitch system

¥ = [He, fim;, fo, Pe,0]

then
Ac(Ape) = Ape mod pc
Proof
Rl Let Ape = Ape (pe,1,Pe,2)

R2 R1&286 = Ac(Ape)=Ac(per,pes)
R3 R2& 233 = Ac(Apc) = (pc2 — pe,1) mod pc
R4 R1&236 = Apc=pc2—Pc1

R5 R3&R4 = Ac(Apc)= Apc mod pc

Theorem 288 (Ac(Ap. (Ap)) = Ac(Ap)) If Ap is a pitch interval in ¢ then

Ac(Apc(Ap)) = Ac(Ap)

Proof
R1 287 =  Ac(Apc(Ap)) = Apc (Ap) mod pc
R2 274 = Ac(Ap) = Apc (Ap) mod pc

R3 R1I&R2 = Ac(Apc(Ap))=Ac(Ap)

Deriving MIPS intervals from a morphetic pitch interval

Definition 289 (Definition of Am (Apw)) If pm1 and pm2 are any two morphetic pitches in a pitch sys-
tem 1) then
Apm = Apm (Pm,1,Pm,2) = Am (Apm) = Am (pm,1, Pm,2)

Theorem 290 (Formula for Am (Apy)) If Apm is a morphetic pitch interval in the pitch system

¥ = [He, fim;, fo, Pe,0)

then
Am (Apm) = Apm mod fim
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Proof

R1 Let Apm = Apm (Pm,1,Pm,2)

R2 R1&289 = Am(Apwm)=AmDm1,Pmz2)

R3 R2&239 = Am(Apm)= (Pmz2—Pm,1) mod tm

R4 R1&240 = Apm =DpPm2—Pm1

R5 R3& R4 = Am(Apm)=Apm mod pm

Theorem 291 (Am (Apm (Ap)) = Am (Ap)) If Ap is a pitch interval in ¢ then

Am (Apm (Ap)) = Am (Ap)

Proof
R1 290 = Am(Apm(Ap)) = Apm (Ap) mod pim
R2 276 = Am(Ap) = Apm (Ap) mod pim

R3 R1I&R2 = Am(Apm(Ap))=Am(Ap)

Deriving MIPS intervals from a frequency interval

Definition 292 (Definition of Ap. (Af)) If fi and fo are any two frequencies in a pitch system 1 then
A.f = Af(flva) = ApC (Af) = APC (flva)
Theorem 293 (Formula for Ap. (Af)) If Af is a frequency interval in

¥ = [He, fim;, fo, Pe,0]

then
In(Af)

Apc(Af):Nc X
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Proof

R1 Let Af =Af(f1, f2)

R2 R1&292 = Apc(Af)=Apc(fi,f2)

R3 245 = Apc(fi, fo) = pe x LA

R4 242 = Af(fi,fo) = £

R5 RI&R4 = Af=4£

R6 R3&RS = Apc(fi,fa) = pe x HEL

o In(Af
R7 R2&R6 = Apc(Af)—ch—fnz)

Theorem 294 (Apc (Af(Ap)) = Apc (Ap)) If Ap is a pitch interval in 1) then

Apc (Af(Ap)) = Apc (Ap)

Proof
R1 293 = Apc(Af(Ap)) = pe x ln(Ahlj(QAp))
R2 272 =  Af(Ap) = 28p(Ap)/pe

ln(QA pc(Ap)/uc)
R3 RI&R2 = Apc(Af(Ap)) = pe X =3
R4 R3 & 59 = Apc (Af (Ap)) = e X 10g2 (QAPC(AP)/#c)

Apc(Ap)

= He X T

= Apc (Ap)

Definition 295 (Definition of Ac(Af)) If f1 and f2 are any two frequencies in a pitch system v then

Af =Af(f1, f2) = Ac(Af) = Ac(f1, f2)
Theorem 296 (Formula for Ac(Af)) If Af is a frequency interval in a pitch system 1 then

In(Af)
M@ﬁ=@w (4

) mod ¢



CHAPTER 4. FORMAL SPECIFICATION OF MIPS 138

Proof

R1 Let Af =Af(f1, f2)

R2 RI&295 = Ac(Af)=Ac(fi,fo)

R3 247 = Ac(fi,fo) = (MC x %) mod e
R4 R3&R2 = Ac(Af)= (uc x %) mod e

R5 242 =  Af(f1,f2) = f2/ h

R6 R5&RL = Af=fo/fs

In2

R7 R6& R4 = AC(Af):(ucx”‘(Af))mod,uC

Theorem 297 (Second formula for Ac(Af)) If Af is a frequency interval in a pitch system 1 then

Ac(Af) = pe X (% — int (%))

Proof

RI 296 = Ac(Af) = (s x 2L mod pi

R2 R1&33 = Ac(Af):%(QAf)_MCXint(ucln(Af))

fc In 2

e (M2 (327))

Theorem 298 (Ac(Af(Ap)) = Ac(Ap)) If Ap is a pitch interval in ) then

Ac(Af(Ap)) = Ac(Ap)
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Proof
R1 296 = Ac(Af(Ap)) = (uc X %) mod g
R2 272 =  Af(Ap) = 28p(Ap)/pe
R3 R1I&R2 = Ac(Af(Ap) = (uc X %) mod fi¢

R4 R3&59 = Ac(Af(Ap)) = (e x log, (22P=(AP)/ke)) mod puc
= (pe X (Apc (Ap) /pc)) mod puc
= Apc (Ap) mod pc

R5 274 = Ac(Ap) = Apc (Ap) mod pic

R6 RA4&R5 = Ac(Af(Ap)) =Ac(Ap)

Deriving MIPS intervals from a chromamorph interval

Definition 299 (Definition of Ac(Aq)) If 1 and g2 are any two chromamorphs in a pitch system 1 then
Ag=Ad(q,q2) = Ac(Ag) = Ac(qr, q2)
Theorem 300 (Formula for Ac(Aq)) If Aq is a chromamorph interval in a pitch system 1 then

Ag = [Ac,Am] = Ac(Ag) = Ac

Proof
R1 Let Ag=Ad(q1,q2)
R2 Let Aq = [Ac, Am]

R3 R1&299 = Ac(Ag)=Ac(q,q)

R4 223 = Ad(q,q2) =[Ac(q1,92), Am(q1,q2)]
R5 R3&R4 = Ad(q,q)=[Ac(Ag),Am(q,q)]
R6 R1&R5 = Ag=I[Ac(Aq),Am(q,q)]

R7 R2&R6 = Ac(Aq)=Ac

Theorem 301 (Ac(Aq(Ap)) =Ac(Ap)) If Ap is a pitch interval in a pitch system ) then

Ac(Ad(Ap)) = Ac(Ap)
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Proof
Rl 274 =  Ac(Ap) = Ape (Ap) mod puc
R2 278 = Adq(Ap) =[Ac(Ap),Am(Ap)]
R3 Let Ag = [Ac, Am)

R4 R3 & 300 = Ac(Aq) = Ac
R5 Let Ag = Adq(Ap)
R6 R4 & R5 = Ac(Aq(Ap)) = Ac
R7 R2,R3&R5 = Ac=Ac(Ap)

R8 R6 & R7 = Ac(Adq(Ap)) =Ac(Ap)

Definition 302 (Definition of Am (Aq)) If¢1 and g2 are any two chromamorphs in a pitch system 1 then
Agq=Ad(q,q2) = Am(Ag) = Am (qu, g2)
Theorem 303 (Formula for Am (Aq)) If Aq is a chromamorph interval in a pitch system i then

Aq = [Ac,Am] = Am (Aq) = Am

Proof
Rl Let Ag=Ad(q1,q2)
R2 Let Agq = [Ac, Am]

R3 R1&302 = Am(Ag) =Am(q,q)

R4 223 = Ad(q,q) =[Ac(q1,¢2),Am (g1, q2)]
R5 R3&R4 = Ad(q,q)=[Ac(q,q),Am(Aqg)]
R6 R1&R5 = Ag=I[Ac(q,q),Am(Aq)]

R7 R2&R6 = Am(Ag)=Am

Theorem 304 (Am (Ad(Ap)) = Am(Ap)) If Ap is a pitch interval in a pitch system v then

Am(Aq(Ap)) =Am(Ap)
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

276 = Am(Ap) = Apm (Ap) mod pim
278 = Aq(Ap) =[Ac(Ap),Am(Ap)]
Let Ag = [Ac, Am)

R3 & 303 = Am(Aq) =Am

Let Ag = Adq(Ap)

R4 & RS = Am(Aq(Ap) = Am
R2,R3& R5 = Am=Am(Ap)

R6 & R7 = Am(Adq(Ap)) = Am(Ap)

Theorem 305 (Aq = [Ac(Aq),Am(Aq)]) If Aq is a chromamorph interval in i then

Proof

R1

R2

R3

R4

Ag = [Ac(Ag),Am(Aq)]

Let Ag = [Ac, Am)]
R1 & 300 = Ac(Ag) =Ac
R1 & 303 = Am(Aq)=Am

RI,R2& R4 = Aq¢g=[Ac(Aqg),Am(Ag)]

Deriving MIPS intervals from a chromatic genus interval

Definition 306 (Definition of Ac(Ag.)) If g1 and g2 are two genera in a pitch system 1 then

Theorem 307 (Formula for Ac(Ag.)) If Age is a chromatic genus interval in a pitch system

then

Age = Age (g1, 92) = Ac(Age) = Ac(g1, g2)

¥ = [He, fim;, fo, Pe,0)

Ac(Age) = Age mod pc
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Proof

R1

R2

R3

R4

R5

R6

Let

R1 & 306

R2 & 227

R1 & 230

48

R5 & 37

Age = Age (91, 92)
= Ac(Age) = Ac(gr,92)
= Ac(Age) = (gc (92) — 8c (91)) mod puc
= Age =gc(92) — 8c(91) — pe x ((m(g2) —m (g1)) div i)
= ((m(g2) —m(g1)) div pum) is an integer
= (8c(92) —8c(91) — pte x ((m(g2) —m(g1)) div pm)) mod pc

= (8c (92) — gc (91)) mod pie

R7 R6,R4& R3 = Ac(Age)= Agc mod pc

Theorem 308 (Ac(Agc(Ap)) = Ac(Ap)) If Ap is a pitch interval in a pitch system 1 then

Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

274

307

280

Let

R4 & R2

R3 & RS

48

R7, R6 & 37

R1 & R8

Ac(Age(Ap)) = Ac(Ap)

= Ac(Ap) = Apc (Ap) mod pic
= Ac(Age) = Age mod pie
= Agc(Ap) = Apc (Ap) = pe X (Apm (Ap) div fim)
Age (Ap) = Age
= Ac(Age(Ap)) = Age (Ap) mod puc
= Ac(Age(Ap)) = (Apc (Ap) = pe X (Apm (Ap) div pim)) mod pic
= (Apm (Ap) div pm) is an integer
= Ac(Age(Ap)) = Apc (Ap) mod pic

= Ac(Agc(Ap)) =Ac(Ap)

Deriving MIPS intervals from a genus interval

Definition 309 (Chromatic genus interval of a genus interval) If g1 and g2 are two genera in a pitch

system 1 then

Ag=Ag(g1,92) = Agec(Ag) = Age (91, 92)
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Theorem 310 (Formula for chromatic genus interval of a genus interval) If Ag is a genus interval
in a pitch system 1 then
Ag = [Age, Am] = Agc (Ag) = Age

Proof

R1 Let Ag=Ag(g1,92)

R2 R1&309 = Ag.(Ag)=Ag (g1,92)

R3 R1&231 = Ag=[Age(g91,92),Am(g1,02)]
R4 Let Ag = [Age, Am]

R5 R3& R4 = Age=Ag(g1,92)

R6 RH&R2 = Ag.(Ag)=Ag.

Theorem 311 (Agc (Ag(Ap)) = Age (Ap)) If Ap is a pitch interval in a pitch system 1) then

Agc (Ag(Ap)) = Age (Ap)

Proof
R1 Let Ag = [Age, Am]
R2 RI1 & 310 = Ag.(Ag) = Ag.
R3 282 = Ag(Ap) =[Ag.(Ap),Am(Ap)]
R4 Let Ag=Ag(Ap)

R5 RI,R3& R4 = Age=Ag (Ap)
R6 R2& R4 = Ag.(Ag(Ap)) = Agec

R7 R5& R6 = Ag.(Ag(Ap)) = Ag. (Ap)

Definition 312 (Definition of Ac(Ag)) If g1 and g2 are two genera in a pitch system i then
Ag=Ag(g1,92) = Ac(Ag) = Ac(gr, 92)
Theorem 313 (Formula for Ac(Ag)) If Ag is a genus interval in a pitch system 1 then

Ac(Ag) = Agc(Ag) mod pe
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

Let

R1 & 312

R1 & 309

R2 & 227

R3 & 230

48

R6 & 37

R7 & RS

R4 & R8

=

=

=

Ag=Ag(g1,92)
Ac(Ag) = Ac(gr,92)
Age(Ag) = Age(91,92)
Ac(Ag) = (gc (92) — g (91)) mod pic
Age (Ag) = gc (92) — e (91) = pe x ((m (g2) —m (g1)) div i)
((m(g2) —m(g1)) div pm) is an integer
(8c (92) — 8c (91) — pe X ((m (g2) —m (g1)) div pm)) mod puc
= (8¢ (92) — 8c (91)) mod pic
Age (Ag) mod pe = (e (92) — e (91)) mod pic

Ac(Ag) = Age (Ag) mod pe

Theorem 314 (Ac(Ag(Ap)) = Ac(Ap)) If Ap is a pitch interval in a pitch system 1) then

Proof

R1

R2

R3

R4

R5

R6

R7

Let

R1 & 313

R2 & 311

Let

R4 & 307

R3 & RH

R6 & 308

Ac(Ag(Ap)) = Ac(Ap)

Ag=Ag(Ap)

Ac(Ag(Ap)) = Age (Ag(Ap)) mod pe
Ac(Ag(Ap)) = Age (Ap) mod pie

Age = Age (Ap)

Ac(Age (Ap)) = Age (Ap) mod pe
Ac(Ag(Ap)) = Ac(Ag (Ap))

Ac(Ag(Ap)) = Ac(Ap)

Definition 315 (Morph interval of a genus interval) If g1 and g2 are two genera in a pitch system

then

Ag=Ag(g1,92) = Am(Ag) = Am (g1, g2)
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Theorem 316 (Formula for morph interval of a genus interval) If Ag is a genus interval in a pitch

system ¢ then
Ag = [Age, Am] = Am(Ag) = Am

Proof

R1 Let Ag=Ag(g1,92)

R2 R1&315 = Am(Ag)=Am(g,g)

R3 R1&231 = Ag=[Age(g91,92),Am(g1,02)]
R4 Let Ag = [Age, Am]

R5 R3&R4 = Am=Am(g,g)

R6 R5&R2 = Am(Ag)=Am

Theorem 317 (Am (Ag(Ap)) = Am (Ap)) If Ap is a pitch interval in a pitch system ¢ then

Am(Ag(Ap)) = Am(Ap)

Proof
R1 Let Ag = [Age, Am]
R2 R1 & 316 = Am(Ag)=Am
R3 282 = Ag(Ap) =[Ag.(Ap),Am(Ap)]
R4 Let Ag = Ag(Ap)

R5 R1L,R3&R4 = Am=Am(Ap)
R6 R2& R4 = Am(Ag(Ap)) =Am

R7 R5 & R6 = Am(Ag(Ap)) =Am(Ap)

Theorem 318 If Ag is a genus interval in v then

Ag = [Agc (Ag),Am (Ag)]
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Proof
R1 Let Ag = [Age, Am]
R2 Rl & 310 = Age (Ag) = Age
R3 RI1 & 316 = Am (Ag) =Am

R4 RI,R2& R3= Ag=[Ag. (Ag),Am(Ag)]

Definition 319 (Definition of Ad(Ag)) If g1 and g2 are two genera in a pitch system 1) then
Ag =Ag(g1,92) = Ad(Ag) = Ad(g1, 92)
Theorem 320 (Formula for Adq(Ag)) If Ag is a genus interval in a pitch system 1 then

Aq(Ag) =[Ac(Ag),Am(Ag)]
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

R11

R12

R13

R14

R15

R16

R17

R18

Let

R1 & 319

R2 & 229

R3 & 223

R4, 221 & 222

Let

R5 & R6

R7 & 121

R8, 107 & 105

R1 & 312

R10 & 226

R11 & R6

R12 & 119

R1 & 315

R14 & 228

R15 & R6

R16 & 116

R9, R13 & R17

=

Ag=Ag(g1,92)

Aq(Ag) = Ad(g1,92)

Ad(Ag) =Aa(a(g1),9(g2))

Adq(Ag) =[Ac(a(g1),9(g2)), Am(d(g1),9(g2))]

Adq(Ag) =[Ac(c(a(g1)),c(d(g2))), Am (m(d(g1)),m(d(g2)))]
91 =8(p1) and g2 = & (p2)

Ad(Ag) =[Ac(c(a(8(p1))),c(A(8(p2)), Am (m(a(8(p1))),m (d(8(p2))))]
Adq(Ag) =[Ac(c(a(p1)),c(a(p2), Am (m(d(p1)),m(q(p2)))]
Ad(Ag) =[Ac(c(pr),c(p2)), Am(m(p1),m (p2))]

Ac(Ag) = Ac(gr,92)

Ac(Ag)=Ac(c(g1),c(g2))

Ac(Ag) = Ac(c(8(p1)),c(8(p2)))

Ac(Ag) =Ac(c(pr),c(p2))

Am(Ag) = Am(g1,92)

Am(Ag)=Am(m(g1),m(g2))

Am(Ag) = Am(m(g(p1)), m(8(p2)))

Am(Ag) = Am (m (p1),m (p2))

Adq(Ag) =[Ac(Ag), Am (Ag)]

Theorem 321 (Aq(Ag(Ap)) = Ad(Ap)) If Ap is a pitch interval in a pitch system ¢ then

Aq(Ag(Ap)) = Ad(Ap)
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Proof
R1 278 = Aq(Ap) =[Ac(Ap),Am(Ap)]
R2 320 = Adq(Ag) =[Ac(Ag),Am(Ag)]
R3  Let Ag(Ap) = Ag
R4 R2 & R3 = Ad(Ag(Ap) =[Ac(Ag(Ap), Am(Ag(Ap))]
R5 314 = Ac(Ag(Ap)) =Ac(Ap)
R6 317 = Am(Ag(Ap)) = Am(Ap)

R7 R4, R5& R6 = Adq(Ag(Ap)) =[Ac(Ap),Am(Ap)]

R8 R7 & Rl = Adq(Ag(Ap)) =Aaq(Ap)

4.4.3 Equivalence relations between MIPS intervals
Equivalence relations between pitch intervals

Definition 322 (Ap1 =ap. Ap2) Two pitch intervals Apy and Apse are chromatic pitch interval equivalent
if and only if
Ape (Apl) = Apc (Ap2)

The fact that two pitch intervals are chromatic pitch interval equivalent is denoted as follows:
Ap1 =ap. Ap2

Definition 323 (Ap1 =ap,, Ap2) Two pitch intervals Api and Aps are morphetic pitch interval equivalent
if and only if
A pm (Apl) = Apm (APZ)

The fact that two pitch intervals are morphetic pitch interval equivalent is denoted as follows:
Apl EApm Ap2

Definition 324 (Ap1 =a¢ Ap2) Two pitch intervals Ap; and Aps are frequency interval equivalent if and
only if
Af(Ap1) = Af(Ap2)

The fact that two pitch intervals are frequency interval equivalent is denoted as follows:
Ap1 =a¢ Aps

Definition 325 (Ap; =ac Apz) Two pitch intervals Ap; and Aps are chroma interval equivalent if and

only if
Ac (Apl) =Ac (APQ)

The fact that two pitch intervals are chroma interval equivalent is denoted as follows:

Apr =ac Apo
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Definition 326 (Ap; =am Ap2) Two pitch intervals Apy and Aps are morph interval equivalent if and

only if

The fact that two pitch intervals are morph interval equivalent is denoted as follows:
Ap1 =am Ap2

Definition 327 (Ap; =aq Ap2) Two pitch intervals Apy and Aps are chromamorph interval equivalent if

and only if
Adq(Apr) = Ad(Ap2)

The fact that two pitch intervals are chromamorph interval equivalent is denoted as follows:
Ap1 =aq Ap2

Definition 328 (Apy =a,. Ap2) Two pitch intervals Apy and Aps are chromatic genus interval equivalent
if and only if
Age (Ap1) = Age (Ap2)

The fact that two pitch intervals are chromatic genus interval equivalent is denoted as follows:
Ap1 =pg. Ap2
Definition 329 (Ap; =a¢ Ap2) Two pitch intervals Apy and Aps are genus interval equivalent if and only
if
Ag(Ap1) = Ag(Ap2)

The fact that two pitch intervals are genus interval equivalent is denoted as follows:
Ap1 =ag Ap2

Equivalence relations between chromatic pitch intervals

Definition 330 (Apc1 =a¢ Ape2) Two chromatic pitch intervals Ape1 and Apc o are frequency interval
equivalent if and only if
At (Apea) = Af (Apc,2)

The fact that two chromatic pitch intervals are frequency interval equivalent is denoted as follows:
Ape1 Eat Ape2

Definition 331 (Apc1 =ac Apc2) Two chromatic pitch intervals Apc1 and Apes are chroma interval

equivalent if and only if
A C (Apc,l) — A C (Apc,z)

The fact that two chromatic pitch intervals are chroma interval equivalent is denoted as follows:

Apc.,l =Ac APC,Q
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Equivalence relations between morphetic pitch intervals

Definition 332 (Apm,1 =am Apm,2) Two morphetic pitch intervals Apm1 and Apm 2 are morph interval
equivalent if and only if
Am (Apm,l) =Am (Apmg)

The fact that two morphetic pitch intervals are morph interval equivalent is denoted as follows:

Apm.,l =Am Apm,2

Equivalence relations between frequency intervals

Definition 333 (Af1 =ap. Afe) Two frequency intervals Afr and Afs are chromatic pitch interval equiv-
alent if and only if

Apc (Afi1) = Apc(Af2)
The fact that two frequency intervals are chromatic pitch interval equivalent is denoted as follows:

A,fl =Apc Afz

Definition 334 (Af; =ac Afs) Two frequency intervals Afy and Afy are chroma interval equivalent if
and only if
Ac (Afl) =Ac (Afg)

The fact that two frequency intervals are chroma interval equivalent is denoted as follows:
Afi=acAfe

Equivalence relations between chromamorph intervals

Definition 335 (Aqi =ac Ag2) Two chromamorph intervals Aq1 and Aqs are chroma interval equivalent
if and only if
Ac (Aql) =Ac (AQQ)

The fact that two chromamorph intervals are chroma interval equivalent is denoted as follows:
Ag1 =ac Age

Definition 336 (Aq1 =am Aq2) Two chromamorph intervals Agqy and Aga are morph interval equivalent
if and only if
Am (Aql) =Am (AQQ)

The fact that two chromamorph intervals are morph interval equivalent is denoted as follows:
Aqi =am Age

Equivalence relations between chromatic genus intervals

Definition 337 (Agc,1 =ac Age2) Two chromatic genus intervals Agen and Ageo are chroma interval
equivalent if and only if
AC (Agc_;) = AC (Agcﬂg)

The fact that two chromatic genus intervals are chroma interval equivalent is denoted as follows:

Agc,l =Ac Agc,2
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Equivalence relations between genus intervals

Definition 338 (Ag; =ac Age) Two genus intervals Agr and Ags are chroma interval equivalent if and

only if
Ac (Agl) =Ac (Agg)

The fact that two genus intervals are chroma interval equivalent is denoted as follows:
Agi =ac Ago

Definition 339 (Agi =am Age) Two genus intervals Agy and Ags are morph interval equivalent if and

only if
Am (Agl) =Am (Agg)

The fact that two genus intervals are morph interval equivalent is denoted as follows:
Ag1 =am Ag2

Theorem 340 Morph interval equivalence of genus intervals is transitive. In other words, if Agy, Ags and

Ags are any three genus intervals in a specified pitch system, then

(Ag1 =am Ag2) A (Aga =am Agz) = (Agi =am Ags)

Proof
R1 Let Agi =Am Ago
R2 Let Ags =am Ags

R3 R1&339 = Am(Ag)=Am(Ag)
R4 R2&339 = Am(Ag)=Am(Ags)
R5 R3&R4 = Am(Ag)=Am(Ags)
R6 R5&339 = Agi=amAgs

R7 Rl1toR6 = (Agi=am Ag)A(Ag2=aAm Ags) = (Agi =am Ag3)

Theorem 341 Morph interval equivalence of genus intervals is symmetric. In other words, if Ag1 and Ago

are any two genus intervals in a specified pitch system, then

(Agi =am Ag2) <= (Ag2 =am Ag1)
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Proof
R1 Let Agy and Ags be any two genus intervals in a pitch system.
R2 Let Agi =am Age

R3 R2&339 = Am(Ag))=Am(Ags)

R4 R3&339 = Aga=amAn

R5 RlItoR4 = (Agi=amAg)=(Ag=amAg1)
R6 RE&RI = (Ag2=amAg1)= (Agi =am Aga)

R7 R5&R6 = (Agi=amAg) < (Ags =am Aq1)

Theorem 342 Morph interval equivalence of genus intervals is reflexive. In other words, if Ag is any genus
interval in a specified pitch system, then

Ag=am Ag

Proof

R1 Am(Ag) = Am(Ag)

R2 R1&339 = Ag=amAg

Theorem 343 Morph interval equivalence of genus intervals is an equivalence relation.

Proof
R1 340 = Morph interval equivalence of genus intervals is transitive.
R2 341 = Morph interval equivalence of genus intervals is symmetric.
R3 342 = Morph interval equivalence of genus intervals is reflexive.

R4 R1,R2 R3 & = Morph interval equivalence of genus intervals is an equivalence relation.

Definition 344 (Ag1 =aq, Ag2) Two genus intervals Ag: and Ags are chromatic genus interval equivalent
if and only if
Age (Agr) = Age (Aga)

The fact that two genus intervals are chromatic genus interval equivalent is denoted as follows:

Ag1 =g Ago
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Definition 345 (Ag; =aq Aga) Two genus intervals Agy and Ags are chromamorph interval equivalent if
and only if
Ad(Ag1) = Ad(Ag2)

The fact that two genus intervals are chromamorph interval equivalent is denoted as follows:

Agi =aq Ago

4.4.4 Inequalities between MIPS intervals
Inequalities between two pitch intervals

Definition 346 If Apy and Aps are any two pitch intervals in a pitch system 1 then Apy is chromatic pitch
interval less than Aps, denoted
Ap1 <ap. Ap2
if and only if
Apc (Ap1) < Ape (Ap2)

Definition 347 If Apy and Aps are any two pitch intervals in a pitch system 1 then Apy is chromatic pitch

interval less than or equal to Aps, denoted
Apr <ap. Ap2

if and only if
Apec (Apl) < Ape (APQ)

Definition 348 If Apy and Aps are any two pitch intervals in a pitch system 1 then Apy is chromatic pitch
interval greater than Aps, denoted
Ap1 >Ap, Ap2
if and only if
Ape (Ap1) > Ape (Apa)
Definition 349 If Apy and Aps are any two pitch intervals in a pitch system 1 then Apy is chromatic pitch
interval greater than or equal to Aps, denoted
Ap1 Zap. Ap2
if and only if
Ape (Apl) > Ape (APQ)
Definition 350 If Apy and Aps are any two pitch intervals in a pitch system 1 then Ap;i is morphetic pitch
interval less than Aps, denoted
Apl <A Pm ApQ
if and only if
Apm (Apl) < Apm (APQ)
Definition 351 If Apy and Aps are any two pitch intervals in a pitch system 1) then Ap; is morphetic pitch

interval less than or equal to Aps, denoted

Ap1 Sap., Ap2

if and only if
Apm (Ap1) < Apm (Ap2)
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Definition 352 If Ap; and Aps are any two pitch intervals in a pitch system 1 then Ap; is morphetic pitch
interval greater than Aps, denoted

Apl >Apm Ap2
if and only if
Apm (Ap1) > Apm (Ap2)

Definition 353 If Apy and Aps are any two pitch intervals in a pitch system 1 then Ap; is morphetic pitch
interval greater than or equal to Aps, denoted

Ap1 > Ap,, Ap2

if and only if
Apm (Ap1) = Apm (Ap2)

.

Definition 354 If Ap; and Aps are any two pitch intervals in a pitch system 1 then Ap; is frequency
interval less than Aps, denoted

Apr <ar Ap2
if and only if
Af(Ap1) < Af(Apo)

Definition 355 If Apy and Aps are any two pitch intervals in a pitch system v them Apy is frequency
interval less than or equal to Aps, denoted

Apr <a¢ Apo

if and only if
Af(Ap1) < Af(Ap2)

.

Definition 356 If Ap; and Aps are any two pitch intervals in a pitch system 1 then Ap; is frequency
interval greater than Aps, denoted

Ap1 >a¢ Apo

if and only if
Af(Apr) > Af(Aps)

.

Definition 357 If Ap; and Aps are any two pitch intervals in a pitch system 1 then Ap; is frequency

interval greater than or equal to Aps, denoted
Apr >a¢ Apa

if and only if
Af(Ap1) > Af(Ap2)

Definition 358 If Apy and Aps are any two pitch intervals in a pitch system 1 then Ap; is chroma interval
less than Aps, denoted
Apr <ac Apz

if and only if
Ac(Apy) < Ac(Aps)
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Definition 359 If Apy and Aps are any two pitch intervals in a pitch system 1 then Ap; is chroma interval
less than or equal to Aps, denoted
Apr <ac Apz

if and only if
Ac (Apl) < Ac (Apg)

Definition 360 If Apy and Aps are any two pitch intervals in a pitch system 1 then Ap; is chroma interval
greater than Aps, denoted
Apr >ac Ap2

if and only if
Ac(Apr) > Ac(Aps)

Definition 361 If Apy and Aps are any two pitch intervals in a pitch system 1 then Ap; is chroma interval
greater than or equal to Aps, denoted
Ap1 >ac Aps

if and only if
Ac (Apl) Z Ac (APQ)

Definition 362 If Ap; and Aps are any two pitch intervals in a pitch system i then Ap; is morph interval
less than Aps, denoted
Ap1 <am Ap2

if and only if
Am (Ap;) < Am (Aps)

Definition 363 If Ap; and Aps are any two pitch intervals in a pitch system i then Ap; is morph interval
less than or equal to Aps, denoted
Ap1 <am Ap2

if and only if
Am (Apl) < Am (Apg)

Definition 364 If Ap; and Apy are any two pitch intervals in a pitch system 1 then Ap;y is morph interval
greater than Aps, denoted

Ap1 >Am Ap2
if and only if
Am (Apl) > Am (APQ)

Definition 365 If Ap; and Aps are any two pitch intervals in a pitch system 1 then Ap;y is morph interval
greater than or equal to Aps, denoted

Ap1 >am Ap2

if and only if
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Definition 366 If Apy and Aps are any two pitch intervals in a pitch system v then Apy is chromatic genus
interval less than Aps, denoted
Apr <ag, Ap2
if and only if
Age (Ap1) < Age (Ap2)

Definition 367 If Ap; and Aps are any two pitch intervals in a pitch system 1 then Apy is chromatic genus
interval less than or equal to Aps, denoted

Ap1 <ag, Ap2
if and only if
Age (Apl) <Age (Apz)

Definition 368 If Apy and Aps are any two pitch intervals in a pitch system v then Apy is chromatic genus
interval greater than Apy, denoted
Ap1 >ag. Ap2
if and only if
Age (Ap1) > Age (Ap2)

Definition 369 If Ap; and Apy are any two pitch intervals in a pitch system 1 then Apy is chromatic genus
interval greater than or equal to Apy, denoted

Ap1 >ag, Apo

if and only if
Age (Ap1) = Age (Ap2)

Inequalities between two chromatic pitch intervals

Definition 370 If Apc1 and Apco are any two chromatic pitch intervals in a pitch system 1 then Apc 1 is
chroma interval less than Apc 2, denoted

Apc.,l <Ac APC,Q

if and only if
Ac (Apc,l) < Ac (Apc)g)

Definition 371 If Apc1 and Apc o are any two chromatic pitch intervals in a pitch system 1 then Apc 1 is
chroma interval less than or equal to Apc 2, denoted

Apc,l <Ac APC,Q

if and only if
Ac (Apc,l) < Ac (Apc)g)

Definition 372 If Ap.1 and Apco are any two chromatic pitch intervals in a pitch system 1 then Apc is
chroma interval greater than Apc 2, denoted

Apc.,l >Ac APC,Q

if and only if
Ac (Apc,l) > Ac (Apc)g)
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Definition 373 If Ap.1 and Apco are any two chromatic pitch intervals in a pitch system 1 then Apc 1 is
chroma interval greater than or equal to Apc o, denoted

Apc,l ZAc APC,Z

if and only if
Ac (Apc,l) > Ac (Apc)g)

Definition 374 If Ap.1 and Apc o are any two chromatic pitch intervals in a pitch system 1 then Apc 1 is

frequency interval less than Apc o, denoted
Apc,l <Af APC,Q

if and only if
Af(Apeq) < Af(Ape2)

Definition 375 If Apc1 and Apco are any two chromatic pitch intervals in a pitch system 1 then Apc 1 is
frequency interval less than or equal to Apc 2, denoted

Apei1 <at Ape2

if and only if
Af(Ape1) < Af(Ape,2)

Definition 376 If Ap.1 and Apco are any two chromatic pitch intervals in a pitch system 1 then Apc 1 is

frequency interval greater than Ap. 2, denoted
Ape1 > Ape

if and only if
Af(Ape) > Af(Ape2)

Definition 377 If Apc1 and Apc o are any two chromatic pitch intervals in a pitch system v then Apc 1 is

frequency interval greater than or equal to Apc 2, denoted
Apc.,l ZAf APC,Q
if and only if

Af (Apc,1) > Af (APC,2)

Inequalities between two morphetic pitch intervals

Definition 378 If Apw,1 and Apm2 are any two morphetic pitch intervals in a pitch system ¢ then Apm

is morph interval less than Apy, 2, denoted
Apm,l <Am Apm,2

if and only if
Am (Apm,1) < Am (Apm2)
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Definition 379 If Apw,1 and Apm2 are any two morphetic pitch intervals in a pitch system ¢ then Apm

is morph interval less than or equal to Apy, 2, denoted
Apm,l <Am A]91(11,2

if and only if
Am (Apm,1) < Am (Apm2)

Definition 380 If Apw,1 and Apm2 are any two morphetic pitch intervals in a pitch system ¢ then Apma

is morph interval greater than Apy, o, denoted
Apm.,l >Am Apm,2

if and only if
Am (Apm,1) > Am (Apmo)

Definition 381 If Apw 1 and Apm o are any two morphetic pitch intervals in a pitch system ¢ then Apm

is morph interval greater than or equal to Apn 2, denoted
Apm.,l ZAm Apm,2

if and only if
Am (Apm,1) > Am (Apm 2)

Inequalities between two frequency intervals

Definition 382 If Af; and Afs are any two frequency intervals in a pitch system v then Afi1 is chromatic
pitch interval less than A fo, denoted
Af1 <ap. Af2
if and only if
Ape(Af1) < Ape(Afa)

Definition 383 If Af; and Afs are any two frequency intervals in a pitch system 1 then Afy is chromatic
pitch interval less than or equal to Afs, denoted

Afi <ap. Afa

if and only if
Apec (Afl) < Apc (AfQ)

Definition 384 If Af; and Afy are any two frequency intervals in a pitch system 1 then Afy is chromatic
pitch interval greater than A fs, denoted
Afi >ap. Afe
if and only if
Apc (Afi) > Apc(Af2)

Definition 385 If Af; and Afs are any two frequency intervals in a pitch system v then Af1 is chromatic

pitch interval greater than or equal to Afs, denoted
Afi >ap. Afa

if and only if
Apc (Afl) > Apc (AfQ)
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Definition 386 If Afi and Afs are any two frequency intervals in a pitch system v then Af1
interval less than A fs, denoted

Afi <acAfe
if and only if
Ac(Afi) < Ac(Afs)

Definition 387 If Afy and Afs are any two frequency intervals in a pitch system 1 then Af;
interval less than or equal to Afs, denoted

Afl SACAfQ
if and only if
Ac(Af1) S Ac(Af)

Definition 388 If Afi and Afs are any two frequency intervals in a pitch system v then Afq
interval greater than Afy, denoted

Afi >acAfo
if and only if
Ac(Afi) > Ac(Afs)

Definition 389 If Afy and Afs are any two frequency intervals in a pitch system 1 then Af;
interval greater than or equal to Afy, denoted

Afi >2ac Afo

if and only if
Ac(Af1) > Ac(Af)

Inequalities between two chromatic genus intervals

159

is chroma

is chroma

is chroma

is chroma

Definition 390 If Agc1 and Agec 2 are any two chromatic genus intervals in a pitch system ¢ then Age is

chroma interval less than Agc 2, denoted
Age1 <ac Age,2
if and only if
Ac(Age1) < Ac(Age2)

Definition 391 If Agc1 and Age o are any two chromatic genus intervals in a pitch system ¢ then Age is

chroma interval less than or equal to Agc 2, denoted

Agc.,l <Ac AQC,Q

if and only if
Ac (Agc,l) < Ac (Agc)g)

Definition 392 If Agc1 and Agec 2 are any two chromatic genus intervals in a pitch system ¢ then Age is

chroma interval greater than Agc 2, denoted

Agc.,l >Ac AQC,Q

if and only if
Ac (Agc,l) > Ac (Agc)g)
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Definition 393 If Agc1 and Agec 2 are any two chromatic genus intervals in a pitch system ¢ then Age is

chroma interval greater than or equal to Agc 2, denoted

Age1 >Aac Age,2

if and only if
Ac(Age1) > Ac(Age2)

Inequalities between two genus intervals

Definition 394 If Ag; and Ags are any two genus intervals in a pitch system v then Agy
genus interval less than Ags, denoted
Ag1 <ag, Ag2
if and only if
Age (Agr) < Age(Ags)

Definition 395 If Agy and Ags are any two genus intervals in a pitch system 1 then Agy
genus interval less than or equal to Ags, denoted

Agi <ag. Ag2

if and only if
Age(Agr) < Age(Aga)

Definition 396 If Ag; and Ags are any two genus intervals in a pitch system v then Agy
genus interval greater than Aga, denoted
Agi >ag. Ag2
if and only if
Age (Agr) > Age (Ags)

Definition 397 If Agy and Ags are any two genus intervals in a pitch system 1 then Agy
genus interval greater than or equal to Ags, denoted

Agi >ag. Ag2

if and only if
Age(Ag1) > Age (Aga)

is chromatic

1s chromatic

is chromatic

1s chromatic

Definition 398 If Ag: and Ags are any two genus intervals in a pitch system 1 then Agy is morph interval

less than Ags, denoted
Agr <am Aga
if and only if
Am(Agy) < Am(Ags)

Definition 399 If Ag; and Ags are any two genus intervals in a pitch system 1 then Ag; is morph interval

less than or equal to Ags, denoted
Agr <am Ag2
if and only if
Am(Ag1) < Am(Ago)
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Definition 400 If Ag: and Ags are any two genus intervals in a pitch system i then Agy is morph interval
greater than Ags, denoted

Agi >Am Ag2

if and only if
Am(Agy) > Am(Ags)

Definition 401 If Ag: and Ags are any two genus intervals in a pitch system i then Agy is morph interval
greater than or equal to Ags, denoted
Agi >am Aga

if and only if
Am (Agl) > Am (Agg)

Definition 402 If Agy and Ags are any two genus intervals in a pitch system v then Ag; is chroma interval
less than Ags, denoted
Ag1 <ac Age
if and only if
Ac(Agr) < Ac(Agr)

Definition 403 If Agy and Ags are any two genus intervals in a pitch system ¢ then Agy is chroma interval
less than or equal to Ags, denoted
Agi <ac Age
if and only if
Ac(Agr) < Ac(Aga)

Definition 404 If Agy and Ags are any two genus intervals in a pitch system ¢ then Agy is chroma interval
greater than Ags, denoted
Agi >ac Ago

if and only if
Ac(Agr) > Ac(Age)

Definition 405 If Agy and Ags are any two genus intervals in a pitch system v then Ag; is chroma interval
greater than or equal to Ags, denoted
Agi Zac Age

if and only if
Ac (Agl) > Ac (Agg)

4.5 Transposing MIPS objects

4.5.1 Transposing a chroma

Definition 406 (Definition of 7. (¢, Ac)) If v is a pitch system and c1 and cz are chromae in ¢ and Ac

18 a chroma interval in ¢ then the chroma transposition function is defined as follows:

Ac(c1,c2) = Ac= 7 (c1,Ac) = co
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Theorem 407 (Formula for 7 (¢, Ac)) If ¢ is a chroma and Ac is a chroma interval in a pitch system

then

Proof

R1

R2

R3

R4

R5

R6

R7

Let

R1 & 406

213

R1, R2 & R3

214

72 & 406

43, R4, R5 & R6

w = [Mcv Hm, anpC,O]

7o (¢, Ac) = (¢ + Ac) mod pic

Ac(c,co) = Ac
= Tc(c,Ac) =g
= Ac(ec2) = (c2 — ¢) mod pc
=  Ac= (7c(c,Ac) — ¢) mod pic
= pe>Ac>0
= e >Te(c,Ac),c>0

= T (¢, Ac) = (¢ + Ac) mod e

Theorem 408 If ) is a pitch system and c1 and ca are chromae in Y and Ac is a chroma interval in 1 then

Proof

R1

R2

R3

R4

R5

R6

R7

RS

Let

407

R1 & R2

213

R3 & R4

R5 & 38

R6, 214 & 44

R1 to R7

=

Te (c1,Ac¢) = ca = Ac(c1,c2) = Ac

Te (€1, Ac) = co
Te (€1, Ac) = (e1 + Ac) mod pc
co = (c1 + Ac) mod pe
Ac(er,c2) = (ea — 1) mod pc
Ac(cr,er) = ((c1 + Ac) mod pe — ¢1) mod pie
Ac(er,ee) = (1 + Ac—¢1) mod pc
= Ac mod .
Ac(ci,c2) = Ac

Te (€1, Ac) = ¢a = Ac(c,c2) = Ac
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Theorem 409 If) is a pitch system and c1 and co are chromae in ¥ and Ac is a chroma interval in v then

Ac(e,c2) = Ac <= 1o (c1,Ac) = ¢

Proof
R1 408 =  Tc(c1,Ac) =ca = Ac(er,c2) = Ac
R2 406 = Ac(er,0) = Ac= 1 (e1,Ac) = ¢

R3 R1I&R2 = Ac(c,c)=Ac < 7 (c1,Ac) =ca

Theorem 410 If v is a pitch system and Acy and Acy are chroma intervals in ¢ and ¢ is a chroma in
then
(Te (¢, Acy) = Te (¢, Aca)) = (Acy = Acz)

Proof
R1 407 = 7Tc(c,Aci) = (c+ Acy) mod pe
R2 407 = T (c,Aca) = (¢ + Acg) mod e
R3  Let Te (¢, Acy) = 7¢ (¢, Aca)
R4 R1,R2&R3 = (¢4 Ac1) mod pe = (¢ + Acz) mod pic
R5 214 = (At €Z)N(0< Ay < pe)
R6 214 = (Acx €Z)N(0< Aca < puc)
R7  Let fasfe —p
R8 R4, R7 & 40 = n is an integer
R9 R7 = Aci =n X e+ Acy

R10 R5 R6,RES&RY = n=0
R11 R9 & R10 = ACl = AC2

R12 RI1 to R11 = (7 (c,Act) = 7c (¢, Acg)) = (Acy = Acs)

4.5.2 Transposing a morph

Definition 411 (Morph transposition function) If ¢ is a pitch system and mi and mo are morphs in

¥ and Am is a morph interval in 1 then the morph transposition function is defined as follows:

Am(my,ma) = Am = T (M1, Am) = mgy
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Theorem 412 (Formula for morph transposition function) If m is a morph and Am is a morph in-

terval in a pitch system

then

Proof

R1

R2

R3

R4

R5

R6

R7

Let

R1 & 411

217

R1, R2 & R3

218

77 & 411

43, R4, R5 & R6

=

=

1/) = [IUJCa Hm, vapC,O]

Tm (m, Am) = (m 4+ Am) mod pim

Am(m,mz) = Am

Tm (M, Am) = mqy

A (m,mz) = (s —m) mod
Am = (Tm (m, Am) — m) mod fim
tm > Am >0

fm > Tm (M, Am),m >0

Tm (m, Am) = (m + Am) mod pim

Theorem 413 If ¢ is a pitch system and m1 and mo are morphs in ¥ and Am is a morph interval in

then

Proof

R1

R2

R3

R4

R5

R6

R7

RS

Let

412

R1 & R2

217

R3 & R4

R5 & 38

R6, 218 & 44

R1 to R7

=

Tm (M1, Am) = mg = Am (my,m2) = Am

Tm (M1, Am) = mo

Tm (M1, Am) = (m1 + Am) mod pim

mo = (m1 + Am) mod pim

Am (my,mg) = (mg —my) mod pim

Am(mq,ma) = ((m1 + Am) mod p, — mq) mod pim

Am (my,ma) = (m1 + Am — mq) mod pim

= Am mod pim

Am (my,mg) = Am

Tm (M1, Am) = mg = Am(my,m2) = Am
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Theorem 414 If vy is a pitch system and my and mo are morphs in ¥ and Am is a morph interval in
then

Am(my,ma) = Am <= Tm (M1, Am) = mgy

Proof
R1 413 = Tm(m1,Am) =mg = Am(mi,ma) = Am
R2 411 =  Am(my,ma) = Am = Tm (m1, Am) = my

R3 R1&R2 = Am(mi,me)=Am <= 7y (m1,Am) =my

Theorem 415 If ¢ is a pitch system and Amy and Ams are morph intervals in ¥ and m is a morph in
then
(Tm (M, Amy) = Ty (M, Amz)) = (Amq = Ams)

Proof
R1 412 =  Tm(m,Amq) = (m+ Amq) mod pm
R2 412 = Tm (m,Amg) = (m + Ams) mod pim
R3  Let Tm (M, Amq) = T (M, Ams)
R4 R1,R2&R3 = (m+ Ami) mod pm = (m + Ams) mod pm
R5 218 = (Ami1 €Z)N(0<Amy < lim)
R6 218 = (Am2 €Z)N(0< Amg < lim)
R7  Let Am—dmz — p
R8 R4, R7 & 40 = n is an integer
R9 R7 = Ami=n X tm + Ams

R10 R5 R6,R8&R9 = n=0
R11 R9 & R10 =  Amj = Amg

R12 RI1 to R11 = (Tm (M, Amy) = T (m, Ams)) = (Amy = Amy)

4.5.3 Transposing a chromamorph

Definition 416 (Definition of 74 (¢, Aq)) If is a pitch system and q1 and g2 are chromamorphs in 1 and

Aq is a chromamorph interval in 1 then the chromamorph transposition function is defined as follows:

Ad(q1,q2) = Aq = Tq (g1, Aq) = q2
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Theorem 417 (Formula for 7 (¢, Aq)) If q is a chromamorph and Aq is a chromamorph interval in a

pitch system 1) then
74 (¢, Aq) = [1e (¢ (q) ; Ac(Aqg)) , Tm (m (g) , Am (Ag))]
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

R11

R12

R13

R14

R15

R16

R17

R18

R19

R20

R21

R22

R23

R24

Let

416

223

221

222

213

217

R1 & 299

R4, R6 & RS

R1 & 302

R5, R7 & R10

72

214

R9, R12, R13 & 43

77

218

R11, R15, R16 & 43

R14 & 407

R17 & 412

Let

R20 & 106

R20 & 108

R20, R21 & R22

R2, R18 & R19

Ad(g,q2) = Ag

Ta (¢, Aq) = 2

Ad(g,q2) = [Ac(q,q2), Am (g, q2)]
Ac(q,q2) = Ac(c(q),c(q2))

Am (g, q2) = Am(m (), m (g2))
Ac(ce(q),c(g2)) = (c(g2) — c(qg)) mod pc
Am (m(q),m(gz)) = (m(g2) —m(g)) mod pim
Ac(Aq) = Ac(q, q2)

Ac(Ag) = (c(g2) — c(g)) mod pe
Am(Ag) = Am (g, q2)

Am (Ag) = (m(g2) —m (g)) mod zim
pe > c(q),¢(g2) =0

fie > Ac(Ag) >0

¢(g2) = (c(q) + Ac(Ag)) mod pc
fim > m(q) ,m (g2) > 0

fm > Am(Ag) >0

m (gz2) = (m(g) + Am (Ag)) mod pim
e (c(q), Ac(Ag)) = ¢ (q2)

Tm (m(g) , Am (Ag)) = m (g2)

G2 = [c2, 2]

¢(g2) = c2

m (gz) = my

72 = [c(g2) ,m (g2)]

7q (¢, Aq) = [Te (¢ (q) , Ac(Ag)) , Tm (m (q) , Am (Aq))]

167
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Theorem 418 If 1) is a pitch system and q1 and qo are chromamorphs in ¥ and Aq is a chromamorph

interval in Y then
Ta (q1,Aq) = @2 = Ad(q1,42) = Ag

Proof
Rl Let 7q (q1, Aq) = 2
R2 417 = Ta(q1,A9) = [re (c(q1), Ac(Ag)), T (M (g1) , Am (Ag))]
R3 223 = Ad(q, ) = [Ac(q,¢2), Am (g1, 92)]
R4 221 = Ac(q,q) =Ac(c(q),clq)
R5 222 = Am(gr,q2) = Am(m(q),m(gz))

R6 R3,R4 & R5 = Ad(q,q) =[Ac(c(q1),c(g2)),Am(m(q),m(g2))]
R7 109 = q2=[c(q2), m(q2)]

R8 RI,R2&R7 = 7(c(q),Ac(Aq)=c(q)

R9 RI,R2&R7 = mn(m(q),Am(Aq)=m/(q)

R10 R8 & 408 = Ac(c(q),clg)) =Ac(Ag)

R11 R9 & 413 = Am(m(q),m(q)) =Am(Aq)

R12 R6,RI0& R11 = Ad(q,q) = [Ac(Ag),Am(Aqg)]

R13 RI12 & 305 = Ad(q,q) =Aq

R14 Rl to R13 = Tq(q1,Aq9) = 2 = Ad(q1,q2) = Ag

Theorem 419 If ¢ is a pitch system and q1 and g2 are chromamorphs in ¢ and Aq is a chromamorph
interval in i then
Ta (q1,Aq) = g2 == Ad(q1,q2) = Ag

Proof
R1 418 = Tq(q1,Aq) = g2 = Ad(q1,q2) = Aq
R2 416 = Ad(q,q) =A¢=Tq(q1,Aq) = @2

R3 R1I&R2 = Ad(q,q)=A¢ < 7q(q1,Aq) = q2
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Theorem 420 If ¢ is a pitch system and Aqy and Aqgs are chromamorph intervals in Y and q is a chro-

mamorph in i then

(1a (¢, Aq1) = 74 (¢, Aq2)) = (Aq1 = Aqga)

Proof
Rl  Let Tq (¢, Aq1) = q1
R2 Let 7q (¢, Ag2) = q2
R3 Rl & 417 = q=[1(c(q),Ac(Aq)),Tm (m(q),Am(Aq))]
R4 R2 & 417 = q=[r(c(q),Ac(Ag)), ™m (m(q), Am (Ags))]
R5  Let 74 (¢, Aq1) = Tq (¢, Aga)
R6 R1,R2 & R5 = @ =q
R7 R3,R4 & R6 = 71e(c(q),Ac(Aq)) =7 (c(q),Ac(Ags))
R8 R3,R4 & R6 = Tm(m(q),Am(Ag)) =Tm (m(q),Am(Ag))
R9 R7 & 410 = Ac(Aq) =Ac(Ag)
R10 RS & 415 = Am(Agq)=Am(Ag)
R11 305 = Aq =[Ac(Aq), Am(Aq)]
R12 305 = Ag=[Ac(Ag),Am(Agy)]

R13 RY, RI0,R11 & RI2 = Aq =Ag

R14 Rl to R13 = (1a(q,Aq) = Tq(q,Aq2)) = (Aq1 = Agy)

4.5.4 Transposing a genus

Definition 421 (Genus transposition function) If ¢ is a pitch system and g1 and g2 are genera in

and Ag is a genus interval in 1 then the genus transposition function is defined as follows:
Ag(g1,92) = Ag = Tg (91, Ag) = g2
Theorem 422 (Formula for genus transposition function) If

w = [Mcv Hm, anpC,O]

is a pitch system and g is a genus in ¥ and Ag is a genus interval in i then

Te (9, A9) = [gc (9) + Age (Ag) — pe X ((m(g) + Am (Ag)) div pm) , Tm (m (g) , Am (Ag))]
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

R11

R12

R13

R14

R15

R16

R17

R18

Let

421 & R1

231

230

228

R1 & 309

R4 & R6

315 & R1

R5 & R8

R9 & 217

R10, 43, 77 & 218

R7 & R11

R12 & 51

218

R13 & R14

R12 & R15

R11 & 412

R2, R16, R17 & 118

Ag=Ag(g,92)
75 (9, Ag) = g2

Ag(g,92) = [Age(g,92), Am(g, g2)]

Age(g,92) = gc (92) — 8c (9) — pe x ((m (g2) —m(g)) div pm)

Am(g,g2) = Am (m(g),m(g2))

Age(Ag) = Age(9,92)

Age (Ag) = gc (92) — 8 (9) — pe X (M (g2) —m(g)) div pim)

Am(Ag) = Am(g,g2)
Am(Ag) = Am(m(g),m(gz))
Am(Ag) = (m(g2) —m (g)) mod pim
m (g2) = (m(g) + Am (Ag)) mod pim
g (92) = Age (Ag) + g (9)
+he x (((m(g9) + Am (Ag)) mod pim — m (g)) div pim)

((n(g) + Am(Ag)) mod pim — m(g)) div fim

= int (2289 — (m (g) + Am (Ag)) div pim)

Hm

int (4282)) — 0
o

m

((m(g) + Am(Ag)) mod pm — m (g)) div pim

= —((m(g) + Am(Ag)) div pim)

gc (92) = gc (9) + Age (Ag) — pre x ((m(g) + Am (Ag)) div pim)

m (g2) = 7m (m (9) , Am (Ag))

ge (9) + Age (Ag)
—pe x ((m () + Am (Ag)) div pim)
Tm (M (g) , Am (Ag))

7 (9, Ag) =

170
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Theorem 423 If ¢ is a pitch system and g1 and g2 are genera in ¥ and Ag is a genus interval in 1 then

Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

R11

R12

R13

R14

R15

R16

Let

R1 & 422

231

230

R2 & 115

R4 & R5

R2 & 117

R7 & 412

RS

R9 & 51

218

R10 & R11

R6 & R12

228

R14 & 217

R8 & R15

=

=

=

=

g (91, A9) = g2 = Ag(g1,92) = Ag

7z (91, Ag) = 92

ge (91) + Age (Ag) — pe X ((m(g1) + Am (Ag)) div pm)
Tm (M (1), Am (Ag))

go =
Ag(g1,92) = [Age(91,92) , Am (g1, 92)]
Age (91,92) = 8c (92) — 8c (91) — pe X (M (g2) — m (g1)) div i)
8c (92) = e (91) + Age (Ag) — pe x ((m(g1) + Am (Ag)) div i)
Age(91,92) = 8 (1) + Age (Ag) — pe X (m(g1) + Am (Ag)) div pim)

— g (91) = pre x (m (g2) —m (g1)) div pim)
= Age(Ag) — pe x ((m(g) + Am (Ag)) div pim + (m (g2) —m (1)) div )
m (g2) = Tm (0 (91) , Am (Ag))
m (g2) = (m(g1) + Am(Ag)) mod pim

(m (g2) —m (g1)) div pim = ((m (1) + Am (Ag)) mod pim — m (g1)) div pim

(1 (g2) = m (91)) div pm = int (229 ) — ((m (g1) + Am (Ag)) div fim)

Hm

int (4282) — 0

(m (g2) —m(g1)) div pm = — ((m (1) + Am (Ag)) div pim)

_ B (m(g) + Am(Ag)) div pim
Bl = B (Bo) e ( ~ ((m(g2) + Am (Ag)) div i) )

=Agc(Ag)
Am(g1,92) = Am(m(g1),m(g2))
Am (g1, g2) = (m(g2) — m(g1)) mod pim

Am(g1,92) = ((m(g1) + Am(Ag)) mod pim — m (g1)) mod fim
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R17 R16 & 38 = Am(g,92) = (m(g1) + Am(Ag) —m(g1)) mod pim
= Am (Ag) mod fim

R18 RI7,44& 218 = Am(gy,g2) =Am(Ag)

R19 R3,RIB& RIS = Ag(g1,92) = [Age(Ag), Am(Ag)]

R20 R19 & 318 = Ag(g1,92) = Ay

R21 R1 to R20 = Tg(91,A9) = g2 = Ag(g1,92) = Ag

Theorem 424 If 1) is a pitch system and g1 and g2 are genera in ¥ and Ag is a genus interval in 1 then

7z (91,A9) = g2 <= A8(91,92) = Ay

Proof
R1 423 = 75(91,A9) =92 = A8(91,92) = Ag
R2 421 = Ag(g91,92) = Ag = Tz (91,A9) = g2

R3 R1I&R2 = 15(91,A9) =92 < A8(g1,92) = Ag

Theorem 425 If 1) is a pitch system and Agr and Aga are genus intervals in ¢ and g is a genus in ¢ then

(75 (9, Ag1) = 75 (9, Ag2)) = (Ag1 = Aga)

Proof
R1 Let 75 (9, Ag1) = g2
R2 Let Te (9, Ag2) = go

R3 R1&423 = Ag(g,92) =Ag
R4 R2& 423 = Ag(g,92) =Ago
R5 R3& R4 = Agi=Ag

R6 Rl1toR5 = (72(9,A01)="7e(9,A92)) = (Ag1 = Ago)

4.5.5 Transposing a chromatic pitch

Definition 426 (Definition of 7,_ (pc, Apc)) If 9 is a pitch system and pe.1 and pe2 are chromatic pitches
n Y and Apc is a chromatic pitch interval in ¢ then

Ape = Ape (Pe,1sPe,2) = Tpe (Pe,1, ADe) = Pe,2
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Theorem 427 (Formula for 7, (pc, Apc)) If ¢ is a pitch system and pe is a chromatic pitch in 1 and Ape

is a chromatic pitch interval in i then

Tpe (Pes Apc) = pe + Apc
Proof

Rl Let Ape (pe; pe,2) = Ape
R2 R1& 426 = 75, (pc, Apc) = pe,2
R3 R1&236 = Apc=pe2—Dec

= Pe,2 = pe + Ape

R4 R2&R3 = 7, (pe; Apc) = pe + Ape

Theorem 428 If ¢ is a pitch system and pc1 and pc 2 are chromatic pitches in v and Apc is a chromatic
pitch interval in ¥ then

Tpe (pc,la Apc) = Pc2 = Ape = Ape (pc,lapc,2)
Proof

R1 Let Tpe (Pe,1, Ape) = Pe2
R2 R1&427 = pca=pc1+ Apc
= Apc = Pc,2 — De,1
R3 236 = Apc (Pe,1;Pe,2) = Pe,2 — Pe
R4 R2&R3 = Apc=Apc(pei,pes2)

R5 RltoR4 = 75, (Pc1,Apc) =pe2 = Ape = Ape (Pe,1,Pe,2)

Theorem 429 If ¢ is a pitch system and pc1 and pc o are chromatic pitches in v and Apc is a chromatic
pitch interval in 1 then
Tpe (Pe,1, Ape) = pe2 <= Ape = Ape (Pe,15De,2)

Proof
R1 426 = Apc = Apc (De,1,Pe2) = Tpe (Pe,15 ADc) = De2
R2 428 = Tp, (Pe,1, Ape) = pe2 = Ape = Ape (Pe,1,Pe,2)

R3 R1&R2 = 7, (Pe1,Apc) =pe2 <= Apc = Apc (Pe,1sPe,2)
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Theorem 430 If ¢ is a pitch system and Apc1 and Apca are chromatic pitch intervals in ¢ and pc is a
chromatic pitch in i then

(Tpe (Pes Ape,1) = Tp. (P, Ape2)) = (Ape, = Apc,2)

Proof
R1 427 = Tp (Pe; Ape,1) = pe + Ape,
R2 427 = Tpo (Pes Ape,2) = pe + Ape2

R3 R1&R2 = (Tpc (Pes Ape,1) = Tp. (Pe, APC,2)) = (pc + Ape2 = pec + APC,I)

= (Apc,z = Apc,l)

4.5.6 Transposing a morphetic pitch

Definition 431 (Definition of 7, (pm, Apm)) If ¢ is a pitch system and pm1 and pm2 are morphetic
pitches in ¢ and Apm is a morphetic pitch interval in 1) then

Apm = Apm (pm,lapm,2) = Tpm (pm,lu Apm) = Pm,2

Theorem 432 (Formula for 7, (pm, Apm)) If ¥ is a pitch system and pm is a morphetic pitch in ¢ and

Apm s a morphetic pitch interval in 1 then

Tom (Pm, APpm) = Pm + Apm
Proof

R1 Let Apm (Pm; Pm,2) = Apm
R2 R1&431 = 7, (Pm,ApPm) = Pma
R3 R1&240 = Apm=DpPm2—Pm

= Dm,2 = Pm + Apm

R4 R2&R3 = 7. (Pm;APm) = Pm + Apm

Theorem 433 If 1) is a pitch system and pm,1 and pm2 are morphetic pitches in 1 and Apy is a morphetic
pitch interval in v then

Tom (Pm,1, APm) = Pm,2 = Apm = APm (Pm,15Pm,2)
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Proof
R1 Let Tpm (Pm,15 APm) = Pm 2
R2 R1&432 = pum2=pm1+ Apm
= Apm = Pm2 = Pm,1
R3 240 =  Apm (Pm,1,Pm2) = Pm,2 — Pm,1
R4 R2&R3 = Apm=Apm (Pm1,Pms2)

R5 R1to R4 = Tpm (pm,la Apm) = Pm;2 = Apm = Apm (pm,lapm,2)

Theorem 434 If 1) is a pitch system and pm,1 and pm 2 are morphetic pitches in ¢ and Apm is a morphetic
pitch interval in 1 then

Tpm (Pm,1, APm) = Pm2 <= Apm = APm (Pm,1,Pm,2)

Proof
R1 431 =  Apm = Apm (pm,lapm,2) = Tpm (pm,lu Apm) = Pm,2
R2 433 = Tpnm (pm,lv Apm) = Pm,2 = Apy = Apm (pm,lvpm,2)

R3 R1I&R2 = 1, (Pm,1, APm) = Pm2 <= Apm = ApPm (Pm,1,Pm,2)

Theorem 435 If vy is a pitch system and Apm,1 and Apmo are morphetic pitch intervals in 1 and py, is a
morphetic pitch in 1 then

(Tpm (pm, Apm,l) = Tom (pnm Apm,2)) = (Apm,l = Apm,2)

Proof
R]‘ 432 = Tpm (pm)ApmJ) :pm+Apm71
R2 432 = Tpm (pm, Apm12) = pm + Apm,2

R3 R1&R2 = (7p, (Pm;APm1) = T (Pm, APm2)) = (Pm + APm,2 = Pm + APm1)

= (Apm,Q = Apm,l)

4.5.7 Transposing a frequency

Definition 436 (Definition of 7 (f, Af)) If ¢ is a pitch system and f1 and fo are frequencies in v and
Af is a frequency interval in ¢ then

Af = Af(f1, f2) = 76 (f1,Af) = f2
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Theorem 437 (Formula for 7 (f,Af)) If ¢ is a pitch system and f is a frequency in ¢ and Af is a
frequency interval in i then

([, Af) = xAf
Proof

R1 Let Af(f, f2) = Af
R2 R1&436 = 7 (f,Af)=f

R3 RI1&242 = Af=

<

= fo=fxAf
R4 R2&R3 = 7 (f,Af)=fxAf
Theorem 438 If v is a pitch system and fi1 and fa are frequencies in 1 and Af is a frequency interval in

1 then
7 (f1,Af) = fo = Af = At (f1, f2)

Proof

R1 Let T¢ (fl, Af) = f2
R2 R1&437 = fo=fi x Af

= Af =4+

R3 242 = Af(fi,fo) = £
R4 R2&R3 = Af=Af(f1,f2)

R5 RltoR4 = 7 (f1i,Af)=fo=Af=Af(f1,[2)

Theorem 439 If v is a pitch system and fi1 and fa are frequencies in 1 and Af is a frequency interval in
1 then
7 (f1,Af) = fo <= Af =Af(f1, f2)

Proof
R1 436 = Af=Aft(f1,f2) = (1, Af) = fo
R2 438 = 7 (fi,Af) = fa= Af = Af(f1, f2)

R3 RI&R2 = 7 (fi,Af)=fo <= Af=Af(f1,f2)
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Theorem 440 If 1) is a pitch system and Af1 and Afs are frequency intervals in v and f is a frequency in
1 then

(e (f; A1) =7 (f,Af2)) = (Afi = Af2)

Proof
R1 437 = 7T (f,AfH)=fxAf
R2 437 = 7 (f,Af2)=fxAfs

R3 R1&R2 = (r(f,Af1))=7(f,Afe)) = (f xAfso=fxAf1)

= (Afa=Af)

4.5.8 Transposing a pitch

Definition 441 (Definition of 7 (p, Ap)) If ¢ is a pitch system and p1 and ps are pitches in ¢ and Ap is
a pitch interval in i then

Ap = AP (p1,p2) = 7o (p1,Ap) = p2

Theorem 442 (Formula for 7 (p, Ap)) If ¥ is a pitch system and p is a pitch in ¢ and Ap is a pitch

interval in Y then

™ (p, Ap) = [Tp. (Pe (P) ; Ape (AD)) ;s Tpr, (Pm (P)  APm (Ap))]
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

R11

Let

R1 & 441

R1 & 265

R3 & 267

R3 & 269

R4 & 260

R6 & 427

R5 & 262

R8 & 432

R7, R9 & 65

R2 & R10

=

=

=

AP (p,p2) = Ap

> (p; Ap) = p2

Ap = [Ape (p,p2), APm (p; p2)]
Ape (Ap) = Ape (p,p2)

Apm (Ap) = Apm (p, p2)

Apc (Ap) = pe (p2) — pe (p)

= Pe (p2) = pe (p) + Ape (Ap)

Pe (p2) = Tp. (Pe (p) , A pe (Ap))
AP (Ap) = Pm (p2) — Pm (p)

= Pm (p2) = Pm (p) + Apm (Ap)
P (P2) = Tp,, (Pm (P) , AP (Ap))
p2 = [Tp. (Pc (P); APc (AP))  Tp (Pm (P) ; AP (Ap))]

7o (p, Ap) = [Tp. (Pe (P) ; APc (ADP)) ;s Tp (Pm (P) ; APm (Ap))]

178

Theorem 443 If ¢ is a pitch system and p1 and ps are pitches in ¥ and Ap is a pitch interval in i then

Tp (p1, Ap) = p2 = Ap = AP (p1,p2)
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

R11

R12

R13

R14

R15

Let

R1 & 442

265

270

427

432

R5 & 65

R2, R5 & R7

R8 & 236

R2, R6 & R7

R10 & 240

R4, R9 & R11

R12, 259 & 261

R3 & R13

R1 to R14

=

=

=
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T (p1, Ap) = p2

p2 = [Tp. (Pe (P1) , Ape (Ap)) , Ty, (Pm (P1) ; A pm (Ap))]
AP (p1,p2) = [Ape (p1,p2) , APm (p1,p2)]

Ap = [Ape (Apc) , Apm (Ap)]

Tpe (Pe (1), AP (Ap)) = pe (p1) + Ape (Ap)

Towm (Pm (1) ; AP (Ap)) = Pm (p1) + A pm (Ap)

p2 = [Pe (2) , Pm (p2)]

Pc (P2) = pe (p1) + Ape (Ap)

= Ape (Ap) = pe (p2) — Pe (P1)

Ape (pe (p1),Pe (p2)) = Ape (Ap)

Pm (P2) = Pm (p1) + Apm (Ap)

= Apm (Ap) = pm (p2) = Pm (p1)

APpm (Pm (1), Pm (p2)) = Apm (Ap)

Ap = [Apc (Pe (p1) Pe (P2)) ; APm (Pm (P1) ;P (P2))]
Ap = [Ape (p1,p2) , APm (p1,p2)]

Ap = AP (p1,p2)

T (p1, Ap) = p2 = Ap = AP (p1,p2)

Theorem 444 If ¢ is a pitch system and p1 and ps are pitches in ¥ and Ap is a pitch interval in i then

™ (p1,Ap) = p2 <= Ap= AP (p1,p2)
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Proof
R1 441 = Ap=AD(p1,p2) = ™ (p1, Ap) = po
R2 443 = 75 (p1,Ap) = p2 = Ap = AD (p1,p2)

R3 R1&R2 = 7 (p1,Ap)=ps < Ap=AD(p1,p2)

Theorem 445 If ¢ is a pitch system and Apy and Apy are pitch intervals in v and p is a pitch in 1 then

(7o (p, Ap1) = 7o (P, Ap2)) = (Ap1 = Apa)

Proof
R1 Let 7o (p, Ap1) = 1 (p, Apa)
R2 RI1 & 443 = Ap1 =AP(p, 7 (p, Ap2))
R3  R2 & 442 = Ap1 = AP (p,[1p, (Pe (P), Ape (Ap2)) , Tp (Pm (P) , AP (Ap2))])
R4 R3, 427 & 432 = Ap1 = AD(p, [pe (p) + Apc (Ap2) , Pm (p) + A pm (Ap2)))
Be R & 265 L gy | AP [pe (9) + Abe (Ap2) b () + A (Ap))

| Apm (P, [pe (p) + Ape (Ap2) , Pm (p) + A pm (Ap2)])

[ e (p) + Ape (Ap2) — pe (p),

R6 RS, 260, 262, 63 & 64 = Ap; =
| Pm () + Apm (Ap2) — pm (P)

= Ap1 = [Apc (Ap2) , A pm (Ap2)]

R7 270 = Ap2 = [Apc (Ap2) , Apm (Ap2)]
R8 R6 & R7 = Apl = Apz
R9 Rl to RS = (7p (p,Ap1) = T (p, Ap2)) = (Ap1 = Apo)

Theorem 446 If ¢ is a pitch system and p is a pitch in ¢ and Ap is a pitch interval in 1 then

™ (P, Ap) = [Pc (p) + Apc (Ap) , Pm (P) + A pm (Ap)]
Proof

R1 442 = 7p(p, Ap) = [T (Pc (P) , ADc (AD)) ; Ty (Pm () , A P (Ap))]

R2 RI1,427& 432 = 75 (p,Ap) = [pc (p) + Apc (Ap),Pm (p) + Apm (Ap)]
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4.6 Summation, inversion and exponentiation of MIPS intervals

4.6.1 Summation, inversion and exponentiation of chroma intervals
Summation of chroma intervals

Definition 447 (Definition of ¢ (Acy, Aca, ..., Acy)) If

1/) = [IUJCa Hm, vapC.,O]

18 a pitch system and
Acy,Acs, ..., Ac,

18 a collection of chroma intervals in v then

oc (Acy, Aca, ..., Acy) = (Z Ack> mod fic

k=1

Theorem 448 If 1) is a pitch system and
Acy,Acs, ..., Ac,
s a collection of chroma intervals in ¥ and c is a chroma in ¥ then

Te (e, 00 (Acy, Aca, ...y Acy)) =T (oo . Te (Te (€, Acy) , Aca) . .., Acy)
Proof

R1 407 = To(.Te (e (e, Act) , Aca) ..., Acy)
=T (... 7c ((c+ Acy) mod i, Aca) ..., Acy)
=(...((c+ Acy) mod pec + Acz) mod pc ... + Acy,) mod pe
R2 R1&38 = 7.(...7c(1c(c,Act),Aca)...,Acy)
=(c+ Acy + Acg + ...+ Acy) mod e
— (e+ X, Acy) mod e
R3 R2&38 = 7.(...7c(1c(c,Act),Aca) ..., Acy)
= (c+ (34— Ack) mod pic) mod pic
R4 R3&447 = 71.(...7c(1c(c,Act), Aca) ..., Acy)
= (c+ oc (Acy, Aca, ..., Acy)) mod pc
R5 R4 & 407 = 71.(...7c(7c(c,Act),Aca) ..., Acy)

=Tc(¢,0¢ (Acy, Aca, ..., Acy))
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Inversion of chroma intervals

Definition 449 (Definition of tc (Ac)) If 4 is a pitch system and Ac is a chroma interval in v and c is a

chroma in 1 then tc (Ac) is the chroma interval that satisfies the following equation
Te (e (¢, Ac) , te (Ac)) = ¢

Definition 450 (Inversional equivalence of chroma intervals) If 1 is a pitch system and Acy and Acy

are chroma intervals in 1 then Acy and Acy are inversionally equivalent if and only if
(te (Ac1) = Aco) V (Acy = Acs)
The fact that two chroma intervals are inversionally equivalent is denoted as follows:
Acy =, Acy

Theorem 451 If
w = [MCv Hm, anpC,O]

18 a pitch system and Ac is a chroma interval in ¢ and c is a chroma in 1 then

te (Ac) = (—=Ac) mod pc

Proof
R1 449 = T (T (¢, Ac), e (Ac)) =c¢
R2 407 = 7 (e (¢, Ac), (—Ac) mod pc)
= T¢ ((¢ + Ac) mod pc, (—Ac) mod pc)
= ((¢+ Ac) mod e + (—Ac) mod pic) mod fic
R3 R2 &34 = 7 (7 (¢, Ac), (—Ac) mod )
= (c+ Ac— Ac) mod pe
= cmod pc
R4 72 = (0<c<pu)N(ceZ

R5 R3,R4& 44 = 71 (7c(c,Ac),(—Ac)mod uc) =c

R6 R5 & RI1 = 7 (7 (¢, Ac), (—Ac) mod pe) = 7 (7c (¢, Ac) , te (Ac))

R7 R6 & 410 = 1 (Ac) = (—=Ac) mod e

Theorem 452 If ¢ is a pitch system and Ac, Aci and Acy are chroma intervals in v then

(Acy = te (Ac)) A (Ace = 16 (Ac)) = (Acy = Aco)
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Proof
R1 Let Acy = ic (Ac)
R2 Let Acy = tc (Ac)

R3 R1&449 = 7. (1c(c,Ac),Ac1) =c¢

R4 R2& 449 = 71.(7c(c,Ac),Acs) =c¢

R5 R3& R4 = 7c(1e(c,Ac),Acy) =7c (7c (¢, Ac), Acs)
R6 R5 & 410 = Acy = Acy

R7 Rl1toR6 = (Aci=1tc(Ac)) A (Acz=tc(Ac)) = (Acy = Aca)

Exponentiation of chroma intervals

Definition 453 (Definition of €., (Ac)) Given that:
1. 9 is a pitch system;
2. ¢ is a chroma in Y;
3. Ac is a chroma interval in );
4. m s an integer;
5. k is an integer and 1 < k < abs (n);
6. Acy = Ac for all k; and
7. Acar = tec (Ac) for all k;
then €. n (Ac) is any chroma interval that satisfies the following equation:

Tc (C, O¢ (Acl,h ACLQ, ce Acl,n))
Te (¢, €cn (AC)) =X ¢
Tec (C, Oc (ACQJ, AC2727 . ACQﬁfn))

Theorem 454 (Formula for e, (Ac)) If
1/) = [IUJCa Hm, vapC.,O]
18 a pitch system and Ac is a chroma interval in ¢ and n is an integer then

€cn (Ac) = (n x Ac) mod fic

if n>0
if n=0
if n<0

183
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

R11

R12

R13

R14

R15

R16

R17

R18

R19

Let

Let

Let

Let

R1 to R4 & 453

447

R3 & R6

R5 & R7

407

72

R, R10 & 44

R5 & R11

447

R4 & R13

R14 & 451

R15 & 45

R5 & R16

RS, R12 & R17

R18 & 410

=

=

=

nez
(1<k<abs(n)A(keZ)
Acy ) = Acfor all k
Aca, = tc (Ac) for all k
Te (¢, 00 (Aci a1, Act o, ... Acry))  if >0
Te (¢, €cn (Ac)) = ¢ if n=0
Te (¢, 00 (Ac21,Acaa, ... Aca, ) if n<0
oc(Aci1,Acr o, ... Actn) = (Xr_; Act k) mod pe
oc (Acip, Aci o, ... Act ) = (34— Ac) mod e = (n x Ac) mod pue
Te (€ €cn (A€)) = 7c (¢, (n x Ac) mod i) when n > 0
Te (¢, (0 x Ac) mod pc) = (¢ + 0) mod pe = ¢ mod pc
(0<c<pc)N(ceZ)
Te (¢, (n x Ac) mod pc) = ¢ when n =0
Te (€ €cn (Ac€)) = 7c (¢, (n x Ac) mod i) when n =0
oc (Aca1,Acan, ... Aca _y) = (Z;ﬁl Aclk) mod gc
e (Aca 1, Acaa, ... Aco_p) = (z,;jl e (Ac)) mod e
= (—n X tc (Ac)) mod e
oc(Aca1,Acza,...Aca _p) = (—n X ((—Ac) mod pc)) mod pe
0c (Acap, Acg2, ... Aca _p) = (—n X (—Ac)) mod pc
= (n x Ac) mod pc
Te (€ €cn (Ac€)) = 7c (¢, (n X Ac) mod pie) when n < 0
Te (¢, €c.n (AcC)) = T (¢, (n X Ac) mod pc) for all n € Z

€en (Ac) = (n x Ac) mod pe for all n € Z
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Theorem 455 If
1/) = [IUJCa Hm, vapC,O]

is a pitch system and Ac is any chroma interval in 1 then

te (Ac) = €c,—1 (Ac)

Proof
R1 454 =  €,_1(Ac)=(—1x Ac) mod pc
R2 451 = . (Ac) = (—Ac) mod pe

R3 R1&R2 = i (Ac)=c¢€_1(Ac)

Theorem 456 If
w = [MCv Hm, anpC,O]

s a pitch system, ni,na,...nk is a collection of integers and Ac is a chroma interval in v then

€cny, (- €y (Eomy (AC))...) = eIl s (Ac)

185
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Proof
R1 Hgl‘:l n; =ny
R2 Rl = €n (Ac) = €T, n, (Ac)
R3 R2 = €y (- €y (€ (AC))...) = €It (Ac) for k =1.
R4 453 =

€cny, (- €cmy (Ecmy (AC))...) = €e Tk, s (Ac)
,(20)

= 607"k+1 (ecﬂnk ( o EC-,nz (GC-,nl (Ac)) . )) = 6C7"k+1 (Ec,Hg?zl n;

€e,npta (667H§:1 n; (AC)>
R5 454 = = €cnen ((H;C:l n; X Ac) mod uc)

= (”kﬂ X ((Hle n; X Ac) mod ,uc)) mod fic

€conpin (EC,H§:1 n, (AC))

R6 R5&45 = = (mpr x I, ny Ac) mod jie
= Hfill n; X Ac) mod fic
R7 454 = C I, (Ac) = (Hf:ll n; X Ac) mod fic

RS RO&RT = ¢, (A) = (Cogp, n, (A0))

j=1 "

€y (- €cmy (€cny (AC))...) =€t .. (Ac
RO RA&LRS = < e (o €ena (€emy (AC)) ) = et (AC) >

= €enprr (€eny, (- €eony (€cny (AC))..0)) = €15 ng (Ac)
R1I00 R3&RI = €y (- €cmy (o (AC))...) = € i (Ac) for all k € Z, k > 0.
Llj= 3

Theorem 457 If
¥ = [pe; pim; fo, Pe,o]

s a pitch system, n is an integer and Ac is a chroma interval in 1 then

te (ein (A€)) = € (Ac)

Proof
R1 455 = (Ac) = €1 (Ac)
R2 R1 = e (€cn (AC)) = €c,—1 (€on (Ac))

R3 R2& 456 = ic(€cn (AC)) = €c(—1xn) (Ac) = €c,—n (Ac)

Theorem 458 If
w = [/’LCv Hm, anpC,O]
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18 a pitch system, ni,na,...nk is a collection of integers and Ac is a chroma interval in v then

Oc (€cny (AC), €cpny (AC), ... €cn, (Ac)) = €5, (Ac)

Proof
R1 Let Y = ¢ (€cny (AC), €cny (AC), ... €cn, (Ac))
R2 R1 & 447 = y= 2521 €cn, (Ac)) mod pc

(
R3 R2 & 454 = y= (23;1 ((n; x Ac) mod uc)) mod e
(

R4 R3 & 39 = y= (25:1 nj) X Ac) mod ¢
R5 454 = oy, n, (A0) = ((Zle nj) x Ac) mod e
R6 R1,R4& RS = o0c(ecn, (AC), €cm, (AC), ... €n, (Ac)) = €5, (Ac)

Exponentiation of the chroma tranposition function

Definition 459 (Definition of 7, (¢, Ac)) If ¥ is a pitch system and ¢ is a chroma in ¥ and Ac is a

chroma interval in i then
Te,n (C7 AC) = Tc (C, €c,n (AC))

Theorem 460 If
Y = [pe, fim, fo, Pe,0]
18 a pitch system, ni,na,...,ng is a collection of integers, ¢ is a chroma in ¢ and Ac is a chroma interval
in Y then
Temp (-« - Tens (Tem, (6, AC), Ac) ..., Ac) = oSk, my (¢, Ac)
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Proof
R1 Let 2 ="Ten (- Tens (Teny (¢,Ac),Ac) ..., Ac)
R2  Let Y= Tk n (¢, Ac)
R3  R1 & 459 = 2="Tc(...Tc (Tc (¢ €cpmy (AC)) s €cmy (AC)) ..., €, (Ac))
R4 R3 & 454 = z2=7c(...7c (Tc (¢, (n1 X Ac) mod pi¢), (n2 x Ac) mod pc) ..., (ng X Ac) mod pc)
R5 R4 & 407 I ( +(7(1(§:(AT) ;()Adc)ﬂinod tte) mod pe + (n2 X Ac) mod pe) mod g . . . ) mod fie
R6 R5 & 38 = z=(c+ni XxAc+nax Ac+ ...+ ng x Ac) mod pc
=(c+ (n1+na+...+nk) X Ac) mod pe
= (c+ (Z 1nJ) X Ac) mod fic
R7 R2 & 459 = Yy=1 (c, €52y ny (Ac))
R8  R7 & 407 = y=(c+ ey n (A0)) mod s
R9 RS & 454 = = (c (( = 1nj) X Ac) mod uc) mod ¢
R10 R9 & 38 = y=(c+ (X)) x Ac) mod pe
R11 R6 & R10 = y=2z

R12 R1,R2& R11 = 7T, (- Teny (Ten, (6, Ac),Ac)...,Ac) = Te sk, (¢, Ac)

4.6.2 Summation, inversion and exponentiation of morph intervals

Summation of morph intervals

Definition 461 (Definition of oy, (Amq, Ama,...,Am,,)) If

w = [MCv Hm, anpC,O]

18 a pitch system and

Amy, Ams, ..., Am,

is a collection of morph intervals in 1 then

Om (Amy, Ama, ..., Am,) = <Z Amk> mod fim
k=1
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Theorem 462 If ¢ is a pitch system and
Amy, Ams, ..., Am,
s a collection of morph intervals in ¢ and m is a morph in v then

Tm (M, 0m (Amy, Ama, ... ,Amy)) = Tm (.. Tm (T (M, Amy) , Ama) ..., Amy,)

Proof
R1 412 = Tm (. Tm (Tm (M, Amq), Amg) ..., Amy)
=Tm (... Tm (M 4+ Amq) mod pm, Ams) ..., Am,,)
=(...((m+ Amq) mod pm + Amsg) mod pim ... + Am,) mod pim
R2 R1&38 = 7m(...7Tm(Tm(m,Amq),Ams)..., Am,)
=(m+ Amy +Ams+ ...+ Amy) mod pim
— (m+ Xy A mod jim
R3 R2&38 = 7m(...Tm (Tm (m,Amy), Amsg)...,Am,)
= (m+ (3h=; Amy) mod pm) mod fim
R4 R3& 461 = 7 (...Tm (Tm (m,Amy),Amsa) ..., Am,)
= (m+ om (Amqy,Ams, ..., Am,)) mod pim
R5 R4 &412 = 75 (...Tm (Tm (m,Amy), Amsa) ..., Am,)

= Tm (M, om (Amy, Ama, ..., Amy))

Inversion of morph intervals

Definition 463 (Definition of iy, (Am)) If ¢ is a pitch system and Am is a morph interval in ¢ and m

is a morph in 1 then tm (Am) is the morph interval that satisfies the following equation
Tm (Tm (M, Am) ,tm (Am)) =m

Definition 464 (Inversional equivalence of morph intervals) If ¢ is a pitch system and Ami and

Amg are morph intervals in ¢ then Amy and Amg are inversionally equivalent if and only if
(tm (Amy) = Amg) V (Amy = Amg)
The fact that two morph intervals are inversionally equivalent is denoted as follows:

Aml =, Amg
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Theorem 465 If

1/) = [,UJCa Hm, vapC,O]

is a pitch system and Am is a morph interval in v and m is a morph in 1) then

Proof

R1

R2

R3

R4

R5

R6

R7

463

412

R2 &34

T

R3, R4 & 44

R5 & R1

R6 & 415

=

=

=

tm (Am) = (—Am) mod pim

T (Tm (m, Am) , tm (Am)) = m

T (Tm (m, Am) , (=Am) mod fi)

= T ((m + Am) mod pixm, (=Am) mod fun)

= ((m+ Am) mod pim + (=Am) mod pim) mod fim

T (Tm (m, Am) , (=Am) mod fin)

= (m + Am — Am) mod fim

= m mod fim

(0<m < pm) A (m € Z)

T (Tm (m, Am) , (=Am) mod i) = m

T (Tm (m, Am) , (=Am) mod i) = T (Tm (M, Am) , b (Am))

tm (Am) = (—Am) mod pm

Theorem 466 If i is a pitch system and Am, Amq and Ams are morph intervals in v then

(Amy = tm (Am)) A (Amg = tm (Am)) = (Amy = Amy)
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Proof
R1 Let Amy = iy (Am)
R2 Let Amg = Ly (Am)

R3 R1& 463 = 7m (7w (Mm,Am),Am;) =m

R4 R2& 463 = 7 (Tm (m,Am),Ams)=m

R5 R3& R4 = 7 (T (M, Am),Amy) = T (Tm (M, Am) , Ams)
R6 R5 & 415 = Amy=Ams

R7 Rl1toR6 = (Ami =tm(Am))A(Amg=1tm (Am)) = (Amy = Amsy)

Exponentiation of morph intervals

Definition 467 (Definition of ey , (Am)) Given that:
1. 9 is a pitch system;
2. m is a morph in ¥;
3. Am is a morph interval in ;
4. m s an integer;
5. k is an integer and 1 < k < abs (n);
6. Amy = Am for all k; and
7. Amg g = tm (Am) for all k;
then e€m n (Am) is any morph interval that satisfies the following equation.:

Tm (M, 0m (Amy 1, Amy g, ... Amyy)) i n>0
Tm (M, €mpn (AM)) =< m if n=0

Tm (M, 0m (Ama 1, Ama s, ... Amg _y)) if n<O0
Theorem 468 (Formula for e, , (Am)) If
¥ = [He, fim, fo, Pe,o]
18 a pitch system and Am is a morph interval in v and n is an integer then

€m,n (Am) = (n x Am) mod fim
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

R11

R12

R13

R14

R15

R16

R17

R18

R19

Let

Let

Let

Let

R1 to R4 & 467

461

R3 & R6

R5 & R7

412

77

R, R10 & 44

R5 & R11

461

R4 & R13

R14 & 465

R15 & 45

R5 & R16

RS, R12 & R17

R18 & 415

=

=

=

nez
(1<k<abs(n)A(keZ)
Amg , = Am for all k
Amg g = tm (Am) for all k
Tm (M, Om (Amy 1, Amy g, ... Amyy)) i n>0
T (M, €m.n (Am)) = ¢ m if n=0
Tm (M, Om (Amag 1, Ama g, ... Amg _y,)) if n <0
om (Amyi 1, Amaa, ... Amy ) = (300, Amy k) mod fim
Om (Ama 1, Ama g, ... Amy ) = (30— Am) mod pm = (n x Am) mod jim
Tm (M, €m pn (Am)) = T (M, (n X Am) mod pir) when n > 0
Tm (M, (0 X Am) mod pm) = (m + 0) mod pim = m mod fim
(0<m < pm) A (m € Z)
Tm (m, (n X Am) mod pir,) = m when n =0

Tm (M, €m pn (Am)) = T (M, (n X Am) mod pir) when n =0

Om (Ama1,Amas,...Amg _p) = (Z;ﬁl Amz)k) mod fim

Om (A, Amas, ... Ama. ) = (z,;jl . (Am)) mod fim

= (—n X tm (Am)) mod pim

om (Ama 1, Amaa,...Amy ) = (—n x ((—Am) mod pim)) mod fim
om (Amg 1, Amag,...Ame _p) = (—n X (—Am)) mod tim

= (n x Am) mod pim

Tm (M, €m pn (Am)) = T (M, (n X Am) mod pir) when n < 0

Tm (M, €m n (AM)) = Tm (M, (n X Am) mod ) for all n € Z

€m,n (Am) = (n x Am) mod pm for all n € Z
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Theorem 469 If
1/) = [IUJCa Hm, vapC,O]

is a pitch system and Am is any morph interval in 1 then

tm (Am) = €m,—1 (Am)

Proof
R1 468 = em_1(Am)=(-1x Am) mod pim
R2 465 = tm (Am) = (—Am) mod pm

R3 R1&R2 = im(Am)=en_1(Am)

Theorem 470 If
w = [Mcv Hm, anpC,O]

s a pitch system, ni,na,...nk is a collection of integers and Am is a morph interval in 1 then

€mny, (- - €mny (Emm, (AM))...) = €m,[T5_, n, (Am)

193



CHAPTER 4. FORMAL SPECIFICATION OF MIPS 194

Proof
R1 Hjl.:l n; =mn
R2 R1 = €mn, (Am) = €m,IT!_, n; (Am)
R3 R2 = €mmny (- €mmny (Emny (AM))...) = €m,IT5, ny (Am) for k = 1.
Ri 46T N ( €mny, (- €mny (Emmn, (AM))...) = € ¢, ny (Am) )
= s (Emans - €mns (mns (A1) ) = emness (€ pe o, (D))

€m,npiq (em,H;?:l n; (Am))
R5 468 = = €mmnen ( H;.C:l n; X Am) mod um)

= (nkﬂ X (H?Zl n; X Am) mod um)) mod fim

€m,npiq (em,H;?:l n; (Am))
R6 R5&45 = = (npp x [Ty my x Am) mod fim
= Hfill n; X Am) mod fim

R7 468 = it (Am) = (Hf:ll n; X Am) mod fim

RS RO&RT = e, (Am) = emny,, (em,H;;l y (Am))

€mny (- €mmy (€mn, (AM))..) =€y e, (Am
RO RAGRS — < o ( s ( (Am))...) T4, n, (Am) )

= €mnprs (€mny (- - €mong (€Empny (AM))...)) = € [T g (Am)
R1I00 R3&RI = empy (- €mpmny (€mpny (AM))..) = € e i, (Am) for all k € Z,k > 0.
= J

Theorem 471 If
¥ = [pe, pim; fo, Pe,o]

is a pitch system, n is an integer and Am is a morph interval in 1 then

tm (€m,n (AM)) = €m,—pn (Am)

Proof
R1 469 = im (Am) =€em_1(Am)
R2 RI1 = tm (€Emn (AM)) = €m,—1 (€m.n (Am))

R3 R2&470 = im (€mn (AM)) = €m (—1xn) (AM) = €m,—pn (Am)

Theorem 472 If
w = [Mcv Hm, anpC,O]
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18 a pitch system, ni,na,...nk 1s a collection of integers and Am is a morph interval in i then

Om (€mm, (AM) , €mp, (Am) ... émp, (Am)) =€, s~ (Am)

Proof
R1 Let Y = 0m (€Emn, (AM), €mn, (AM), ..., €mn, (Am))
R2 R1 & 461 = y= 2521 €m,n; (Am)) mod fim

(
R3 R2 & 468 = y= (Zle ((n; x Am) mod um)) mod fim
(

R4 R3 & 39 = y= (25:1 nj) X Am) mod fim

R5 468 = nt o, (Am) = (S5 ny) x Am) mod i

R6 RI,R4&R5 =  om(emm (AM),emm, (Am), ... €mp, (Am)) =y

=1""7

(Am)

Exponentiation of the morph tranposition function

Definition 473 (Definition of 7y, ., (m, Am)) If v is a pitch system and m is a morph in ¢ and Am is a
morph interval in v then

Tm,n (m7 Am) = Tm (m7 em,n (Am))

Theorem 474 If

w = [MCv Hm, anpC,O]
18 a pitch system, ni,na,...,nk i a collection of integers, m is a morph in ¢ and Am is a morph interval
in Y then

Tmng (-« - Tmong (Tmn, (M, Am) ,Am) ..., Am) = 3k, (m, Am)
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

R11

R12

Let

Let

R1 & 473

R3 & 468

R4 & 412

R5 & 38

R2 & 473

R7 & 412

R8 & 468

R9 & 38

R6 & R10

R1, R2 & R11

=

=

FORMAL SPECIFICATION OF MIPS

Z = Tm,n, ( -« Tm,ny (Tmﬂll (m7 Am) s Am) ey Am)
y = mezkzl 'n,j (m7 Am)
z2="Tm (- Tm (Tm (M, €m ny (AM)), €mny (AM)) ..., €m o, (Am))

. oo Tm (Tm (M, (1 X Am) mod pim,) , (ng X Am) mod piy,) .. .,
2 =Tm
(nr X Am) mod pim

( (m + (n1 x Am) mod i) mod fim ) mod fim ...

z= + (n2 x Am) mod pim mod fim
+ (nk x Am) mod pim

z=(m+n x Am+ny x Am+ ... +n, X Am) mod pm

=(m+ (1 +n2+...+ng) X Am) mod pm

= (m+ (Z?Zl nj) X Am) mod fim

y =T (M, ()

y = (m + 5k, (Am)) mod fim

Y= (m + ((Z;C:l nj) X Am) mod ,um) mod ftm

Y = (m + (25:1 nj) X Am) mod fim

y=2z

Tmng (- Tmong (Tmony (M, Am), Am) ... Am) = m, S5 g (m, Am)

4.6.3 Summation, inversion and exponentiation of chromamorph intervals

Summation of chromamorph intervals

Definition 475 (Definition of oq (Aq1, Aga, ..., Aqy)) If

is a pitch system and

1/) = [IUJCa Hm, vapC.,O]

AQ1,AQQ, .. 7AQn

196
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18 a collection of chromamorph intervals in v then
c(Ac(Aq),Ac(Ag),...Ac(Ag)),
oo (At Ao, .. Ag) = gc (Ac(Aq), Ac(Age) (Agn))
om (Am(Aq),Am(Ag),...Am(Ag,))
Theorem 476 If i is a pitch system and
Aqla AQ% ceey AQn
s a collection of chromamorph intervals in ¢ and q is a chromamorph in v then
Ta (q,0q (Ag1,Aqa, ..., Aqn)) =Tq (.. Tq (Tq (¢, Aq1) , Aqa) . . ., Agy)
Proof
R1 Let Tq (¢, 0q (Aq1, Aga, . .., Agy))
R2 Let y=7q( . .Tq(Tq (7q (¢, Aq1) , Aga) , Ag3) - .., Aqy)
R3 RI & 475 = a=na oc(Ac(Aq),Ac(Ag),...Ac(Agy)),
om (Am(Aq),Am(Ag),...Am(Ag,))
e (¢ (q),Ac(Aq)),
R4 R2 & 417 = y=Tq|...7q | T JAg | Ags ) ..., Agy
U < ‘ ( T (m(g), Am(Aqy)) |7 0) 7T
(] @ s, ‘
Tc Tm (m (q) ) Am (A(h)) ’ )
=Tq|---Tqa Ac(la) ; Ags - Agy
] 7etela), Acaa),
Tm T (m(q), Am (Aqr)) | )
L Am (Ags) |
R5 R4 106& 108 = y—rq.om (| @ AcBa)) AelBa)), A A
Tm (Tm (M (¢) , Am (Agy)) , Am (Agz))
[ NEGORNIEvE '
c AC(A(]Q) ’
e o [ T m(@), Am(Aq)), e
Am(Aqg)
Ac (A(B)
R6 R5 & 417 = y=r1q [ e(e(@). Ac(Aq)),
. “\ Ac(Ag) ’
in @) am@ag). ||
Am(AQQ)
L Am (Ags) |
Agn
TC AC(Aql))7AC(AQQ)),
A AQ3 ’
R7 R6,106 & 108 = y=r1q ), Am (Aq)), Am (Ag)),
Am AQ3
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| _( 7ele(@), Ac(Aq)), ]
| T\ Ac(ag) i
‘ Ac(Ags) )
RS R4 toR7, 106, 108 & 417 = y— Ac(Agn)
Tm (m (Q) 7Am (A‘h)) )
- Tm "\ Am(Ag) ’ .
" Am (Ags)
I Am (Agy) ]
[ elel@) oc(Ac(Aq) Ac(Ag) ..., Ac(Agy))),
R9 RS, 448 & 462 = y__Tm(m(q),O'm(Am(Aq1)7Am(Aq2)’_'_7Am(Aqn)))]
—Tc<c<q> Ac( oc(Ac(Aq), Ac(Ag), ... Ac(Ag)), ))
R10 R3 & 417 I 7 om (Am (Aq), Am (Agy) ... Am (Agy)) !

oc (Ac(Aq),Ac(Ag),...Ac(Ag,)),
om (Am(Aq),Am(Ag),...Am(Ag,))

Tm <m(q)7Am<

| @, oc(ac(an), Ac(Ag), .. Ac(Ag,))),
RIL R10, 300 & 303 ~ | (m(q) ,0m (Am (Aqr), Am (Ags) ... Am (Agy))) ]

R12 RI1, R2,R9 & R11 =  7q(q,0q (Aq1,Aq2,...,Aq)) =Tq (... Tq (Tq (¢, Aq1) , Aqa) . . ., Agy)

Inversion of chromamorph intervals

Definition 477 (Definition of tq (Aq)) If ¢ is a pitch system and Aq is a chromamorph interval in ¢ and

q s a chromamorph in 1 then iq (Aq) is the chromamorph interval that satisfies the following equation

7q (T4 (¢, Aq) , tq (Aq)) = q

Definition 478 (Inversional equivalence of chromamorph intervals) If ¢ is a pitch system and Aqy

and Aqo are chromamorph intervals in ¢ then Aqy and Ags are inversionally equivalent if and only if
(ta (Aq1) = Agz) V (Aq1 = Aga)
The fact that two chromamorph intervals are inversionally equivalent is denoted as follows:
Agq = Agp

Theorem 479 If
1/) = [IUJCa Hm, vapC.,O]

18 a pitch system and Aq is a chromamorph interval in 1 then

ta (Agq) = [te (Ac(Ag)), tm (Am (Ag))]
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

477

417 & R1

R2, 106 & 108

R3 & 106

R3 & 108

R4 & 449

R5 & 463

305

R6, R7 & RS

=

=

=

7q (T (¢, Aq) , tq (Aq)) = q
q="1q([Tc(c(q),Ac(Ag)),™m (m(q), Am (Ag))],tq (Aq))

_ [ 7e (¢ ([7e (c(q) , Ac(Aq)), Tm (m(q), Am (Ag))]) , Ac(ta (Ag))),
Tm (M ([7c (¢ (@), Ac(Ag)), Tm (m(g) , Am (Ag))]), Am (1q (Ag)))

q= [ Te (TC (C (q) ,Ac (AQ)) JAc (Lq (AQ))) )

T (Tm (m (q) , Am (Aq)) , Am (g (Ag)))
¢(q) =7 (7 (c(q),Ac(Ag)), Ac(wa (Ag)))

m (q) = Tm (Tm (m (¢) , Am (Aq)) , Am (q (Ag)))
Ac(ia(Ag) = e (Ac(Aqg))

Am (iq (Ag)) = tm (Am (Ag))

ta (Aq) = [Ac(q (Ag)), Am (1q (Ag))]

ta(Aq) = [tc (Ac(Ag)), tm (Am (Ag))]

Theorem 480 If ¢ is a pitch system and Aq, Aq1 and Ags are chromamorph intervals in 1) then

Proof

R1

R2

R3

R4

R5

R6

R7

Let

Let

R1& 477 =
R2 & 477 =
R3& R4 =
R5 & 420 =
R1toR6 =

(Aq1 = tq (Aq)) A (Age = 1q (Aq)) = (Aq1 = Aga)

Agy = tq (AQ)

Aga = 1q (Aq)

Tq (Tq (Qa AQ) ) AQ1) =q

74 (Tq (¢, Aq) , Aga) = ¢

74 (Tq (¢, Aq) , Aq1) = Tq (T4 (¢, Aq) , Aga)

Aqy = Ago

(Aq1 = tq (Aq)) A (A2 = tq (Aq)) = (Aq1 = Ago)

Exponentiation of chromamorph intervals

Definition 481 (Definition of eq, (Aq)) Given that:
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1. Y s a pitch system;

2. q s a chromamorph in ¥;

3. Aq is a chromamorph interval in ;
4. m is an integer;

5. k is an integer and 1 < k < abs (n);
6. Aqi = Aq for all k; and

7. Aqa = tq (Aq) for all k;

then €q,n (Aq) returns a chromamorph interval that satisfies the following equation:

7q (¢, 0q (Aqi1, Aqr 2, .- Aqip))  if n>0
Tq (¢, €q.n (AQ) = ¢ if n=0
Ta (¢, 0q (Ag2,1,Aq22, ... Aga,—y)) if n<O0

Theorem 482 (Formula for eq, (Aq)) If

¥ = [He, fim;, fo, Pe,0)

18 a pitch system and Aq is a chromamorph interval in v and n is an integer then

€an (Ag) = [een (Ac(Ag)), émn (Am (Ag))]
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

R11

R12

R13

Let

R1 & 454

R1 & 468

Let

Let

Let

R1, R4, R5, R6 & 481

475

447, 461 & RS

R9 & R5

R10, 454 & 468

R7 & R11

454 & 468

n ez
€en (Ac(Ag)) = (n x Ac(Ag)) mod pe
émn (Am(Ag)) = (n x Am (Ag)) mod fim
(I1<k<abs(n)A(keZ)
Agi = Ag for all k
Ao = tq(Aq) for all k
Ta(¢,0q (Ag1,1,Aq12,...Agq1 ) i n>0
74 (¢ €an (Aq)) = § ¢ if n=0
Tq (q,0q (Ag2,1, Agay2, ... Aga—p)) if n <0

Oq (Aih,l, Aqu, .- -Aan)

oc (Ac(Aqi1),Ac(Aqi2),...Ac(Agqn)),
om (Am (Ag11),Am(Aqi2),...Am(Agi,n))

where n > 0

0q (Ag1,1,Aq1,2,..-Aq1 )

= (k=1 Ac(Aqik)) mod pie, (35— Am (Agi k) mod pim] where n >0
0q (Ag1,1,Aq1,2,. .- Aq1 )

= [(n x Ac(Agq)) mod pie, (n x Am (Agq)) mod ] where n > 0

0q (Ag1,1,Aq1,2,..-Aq1 )

= [een (Ac(Ag)), émn (Am (Ag))] where n > 0

Ta (¢; €a,n (Aq)) = Ta (¢; €c,n (A€ (AQ)) , €m,n (Am (Ag))) where n > 0

7q (g, €c,0 (A€ (Aq)) , €m0 (Am (Ag)))

= 74 (¢, [(0 X Ac(Aq)) mod pic, (0 x Am (Ag)) mod i)

= 7q (¢, [0,0])
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R14 R13,300,303 & 417 = 74 (q,[€c0 (Ac(AQ)), €m0 (Am(Ag))])

= [TC (C (Q) 70) » Tm (m (Q) 70)]

R15 R14, 407 & 412 = Tq(q [€c0 (Ac(Aq)),emo(Am(Ag))]) = [c(¢) mod pc, m (q) mod fim]
R16 R15, 73 & 78 = Tq(q,[ec0 (Ac(Aq)),emo (Am(Ag))]) = [c(g),m(q)]
R17 R16 & 109 = Tq(q[ec0(Ac(Ag)),emo(Am(Ag))]) =¢
R18 RT7 & R17 = Ta(q,€an (AQ)) = 7 (¢, [ee,n (Ac(Ag)), émn (Am (Ag))]) where n =0
R19 475 =  0q(Ag21,Aq2,... A, y)
_ Oc¢ (AC(AQQJ) ,AC(A(]QQ) 5. ..AC(A(]nyn)) y where n < 0
Om (A m (AQQ,I) y Am (AQQQ) g Am (Aql,n))
R20 R19, 447 & 461 =  0q(Ag1,Aq2,...Ag )
Yol Ac (Aqg,k)) mod fic,
= . where n < 0
YoreiAm (AqZk)) mod fim
R21 R6 & R20 = 0q(Ag,1,Ap2,... Aga )
= (=nx Ac(ia(Ag))) mod pe, where n < 0
(=1 x Am (tq (Ag))) mod fim
R22 R21, 479,300 & 303 = o0q(Ag21,Aqea,...Aga_p)
= (=n Xt (Ac(Aqg))) mod pic, where n < 0
(—n X tm (Am (Agq))) mod pim
R23 R22, 455 & 469 = 0q(Ag21,Aq22,... A, )
= (=n x€c 1 (Ac(Aqg))) mod pie, where n < 0
(—m X €m,—1 (Am (Agq))) mod fim
R24 R23, 454 & 468 = 0q(Ag1,Aq2,...Ag _y)
— (=n x (=Ac(Ag) mod pe)) mod fic, where n < 0
(—n X (—Am (Aqg) mod pm)) mod pim

R25 R24 & 45 = 0q(Ag21,Aqp2,...Ag2,—r)
= [(=n x (=Ac(Aq))) mod pc, (—n x (=Am (Aq))) mod fim]

=[(n x Ac(Aq)) mod pic, (n x Am (Aq)) mod pm] where n < 0
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R26 R25,454 & 468 = 04 (Age1, Agaa, ... Ago—)

= [ec,n (Ac(Ag)), émm (Am (Ag))] where n <0
R27 R26 & R7 = Tq(q,€qn (AQ)) = Tq (¢, [en (A (AQ)), émn (Am (Ag))]) where n < 0
R28 RI12,RI8& R27 = 7q(q,€qn (AQ) =Tq(q, [ecn (Ac(AQ)),mn (Am(Ag))]) for all n € Z

R29 R28 & 420 = €qn (Ag) = [ec;n (Ac(Ag)), €mpn (Am (Ag))]

Theorem 483 If
1/) = [IUJCa Hm, vapC.,O]

18 a pitch system and Aq is any chromamorph interval in i then

tq (Agq) = €q,—1 (Aq)

Proof
R1 479 =  1q(Aq) =[tc (Ac(Aq)),im (Am(Ag))]
R2 482 = €q,-1(Aq) = [ec,—1 (Ac(Ag)) , €m,—1 (Am (Ag))]

R3 RI1,451 & 465 = 1q(Aq) =[(—Ac(Aq)) mod pc, (—Am (Aq)) mod pim]
R4 R2,454 & 468 = €q,—1(Aq) = [(—Ac(Aq)) mod pic, (—Am (Aq)) mod fim]

R5 R3 & R4 = 1q(Aq) = €q_1(Aq)

Theorem 484 If
1/) = [IUJCa Hm, vapC.,O]

is a pitch system, ni,na,...nk is a collection of integers and Aq is a chromamorph interval in v then

€q,np ( - €q,ny (EQ.,nl (Aq)) .. ) = 6‘171—[?:1 n; (AQ)

Proof
R1 H;:1 nj=m
R2 Rl = can (AQ) =¢qpq_ », (A9)

R3 R2 = eqn, (- -€qns (€qn, (Aq))...) = €4 IT5, n; (Aq) when k=1
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€a,ny (- - - €amy (€any (Ag =¢ Ag

R4 481 N any ( a,nz (€a,m, (AQ)) ... a[Th_, ( )
= qu"k+1 (eq-,mc ( - €q,ny (EQ-,nl (AQ)) . )) - eq-,nk+1 (Eq,l_[;?:1 n; (AQ))
€a,n, ( - €q,ny (601,111 (AQ)) - ) = Eq,H;?:l n; (AQ)

R5 R4 & 482 = €e Tk, n, (A (A9)),
= qunk+1 (eq-,nk ( - €a,ngy (Eq-,nl (Aq)) o )) = eq-,nk+1 < 71_[]:1 !

m Tt m, (A (D))

€q,n;, ( - €qny (601,711 (Aq)) . ) = Eq,H;.‘:l n; (Aq)
= qu"k+1 (eq-,nk ( - - €a,ny (Eq-,nl (AQ)) . ))

R6  R5 & 454 = [T} s x Ac(Ag)) mod pe.
= €q.n 1
AnE4 H?:l nj X Am(Aq)) mod fim

€any (- €any (€amy (AQ)). ) = €qqqe_ n; (AQ)
R7 R6. 482. 300 & 303 N = 601,"k+1 (6‘1,7% ( -+ €q,ny (E‘I,nl (Aq)) ))
) ) B [ €conpis ((Hle n;j x Ac(Aq)) mod uc) , ]

€m ny ((Hf:l n; x Am (AQ)) mod ,Um)

€a,ny, ( -+ €qny (601 ni (AQ)) ) = €q H (AQ)
= 601,"k+1 (6‘1,7% ( - €q,no (Eq ni (Aq))

RS R7, 454 & 468 = Nga1 X HlC n; x Ac(Ag) ) mod ,uc)) mod e,
Nga1 X Hf 115 X Am (Agq) ) mod um)) mod pim
€qny (- - €any (€any (AQ))...) = €CQTi, ng (Aq)
= €anpp (€any, (- €an, (€amy (AQ))...))
Nk X H?:l n; x Ac (Aq)) mod e,
R9 R8& 45 = =

Ngy1 X H;?:l nj X Am(Aq)) mod fim
H;Hll n; X Ac (Aq)) mod (i,
H;Hll n; X Am(Aq)) mod fim

€any (- €any (€amy (AQ))...) = €qqqe_ n; (AQ)
R10 Rg, 454 & 468 = = €q k41 (6‘1 Nk ( - €q,ny (Eq ni (Aq)) ))

_{6 T, (AC(A0) e e, (Am(Aq))}

€qny, (- €ang (€qng (AQ))...) =€qrre . (A
RI1 RI0 & 482 N any, ( anz (€ams (AQ)) .. .) SRy LY (Ag)
= €d,np11 (EQ,nk ( - €qny (601,711 (Aq)) .. )) = 6q7nfill nj (AQ)
R12 R3 & R11 = €qny (- -€qns (€an (AQ))...) = €a,1T5_, n, (Ag) for all k € Z, k > 0.

Theorem 485 If
1/) = [IUJCa Hm, vapC.,O]
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18 a pitch system, n is an integer and Aq is a chromamorph interval in i then

Lq (€q,n (Ag)) = €q,—n (Aq)

Proof
R1 483 = 1q(Aq) = €q—1(Aq)
R2 RI1 = lq(€q,n (Aq)) = €q,-1 (€a,n (Aq))

R3 R2& 484 = 1q(eqn(Ag)) = €d,(—1xn) (Aq) = €q,—n (Aq)

Theorem 486 If
1/) = [,UJCa Hm, vapC,O]
18 a pitch system, n is an integer and Aq is a chromamorph interval in ¢ then:
Ac(€qn (Ag)) = €en (Ac(Ag))
Proof

R1 482 = cqn (A) = [een (Ac(Ag)) s emyn (Am (Ag))]

R2 R1& 300 = Ac(eqn(Aq)) =c€cn(Ac(Aq))

Theorem 487 If
w = [MCv Hm, anpC,O]

is a pitch system, n is an integer and Aq is a chromamorph interval in i then:
Am (eqn (Ag)) = €mn (Am (Ag))

Proof
R1 482 = €qn (Ag) = [ecn (ACc(AQ)), emm (Am (Ag))]

R2 R1& 303 = Am(eqn(AQ)) =e€mn(Am(Ag))

Theorem 488 If
1/) = [IUJCa Hm, vapC.,O]

is a pitch system, ni,na,...ng is a collection of integers and Aq is a chromamorph interval in v then

Oq (601,711 (AQ) ; €d,mo (Aq) oo €qny, (Aq)) = eq,Z;‘zl n; (AQ)

J

205
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Proof
R1 Let Yy = 0q (€qn, (AQ), €qny (AQ),- .., €qn, (Ag))
R2 Rl & 475 = y — Oc (A C (6q7n1 (Aq)) 7A C (Gq)nz (Aq)) yrt AC (Eq;nk (Aq))) )
| Om (A m (EQ,m (AQ)) ;Am (EQ,nz (AQ)) oo, Am (EQ,nk (AQ)))

[ Oc (60-,711 (AC (Aq)) s €c,na (AC (Aq)) o €emny (AC (Aq))) ’

R3 R2,486 & 487 = y=
| O (€mny (AM(AQG)) s mny (AM(AG)) - s myny (Am(Ag)))

R4 R3, 4584472 = y= ey, (Ac(Ag). ey, (Am(Ag)

R5 R1,R4& 482 = oql(eqn, (AQ),€qn, (AQ),... €qn, (Aq)) = €455 n, (Aq)

Exponentiation of the chromamorph tranposition function
Definition 489 (Definition of 74, (¢,Aq)) If ¢ is a pitch system and q is a chromamorph in ¢ and Aq

18 a chromamorph interval in 1 then

T‘l,n ((J; Aq) = Tq ((J; Eq,n (Aq))

Theorem 490 If

w = [MCv Hm, anpC,O]
18 a pitch system, ni,na, ..., Nk 18 a collection of integers, q is a chromamorph in ¢ and Aq is a chromamorph
interval in Y then

Tan (- Tamy (Tan (4:89),8q) .., Aq) = T s, (9, A9)
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

R11

R12

R13

R14

R15

Let

Let

R1

R2

R3, R4 & R5

R1 & R2

R2

R8 & 489

476 & R9

488 & R10

R2, R11 & 489

R7 & R12

R13 & R6

R14, R1 & R2

FORMAL SPECIFICATION OF MIPS

Yk = Tang, (- Tans (Tam (¢,49),Aq) ..., Aq)
Th = Tq 55 n; (¢, Aq)
yl = Tq,’ﬂl (Q7 Aq)
T1 = Tq 551, (4,49)
1
Zj:l nj = N1
Y1 =T
(Yr = Tk = Yh1 = Tanpes (Th, AQ))

Ta,np41 (‘Tkv AQ) = Td,np41 (Tq,Z;?:l n; (‘L AQ) 7AQ)

Taimees (0, 80) = Tans (70 (06050, (B0)) . Aq)
=70 (7a (¢ €50, n, (20)) s €an,,, (A0))

Tq,nk+1 (‘T/W AQ) = Tq (Q7 Oq (6q72;?:1 n; (Aq) 76q,nk+1 (AQ)))
T (T A) = Ta (q, “a,(Shoy mg)tnae (AQ)) — T (q, a5 (Aq))
Tq,’ﬂk+1 (‘Tkﬁ AQ) = qufill nj (qJ Aq) = mk?"‘l

(Yk = Tk = Y1 = Thp1)

yr = xy, for all integer k greater than zero.

Ta,np ( - Tang (Tq,n1 (q; AQ) ) AQ) R Aq) =T,k n; (QJ AQ)

j=1

4.6.4 Summation, inversion and exponentiation of genus intervals

Summation of genus intervals

Definition 491 (Summation of genus intervals) If

is a pitch system and

¥ = [He, fim;, fo, Pe,0]

Aglu A927 s Agn

207
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18 a collection of genus intervals in i then

og (Ag1, Aga, ... Ag,) = [(Z Age (Agk)> — fhe X <<Z Am (Agk)> div ;Lm) , (Z Am (Agk)> mod um]
k=1

k=1 k=1

S

Theorem 492 If
1/) = [,UJCa Hm, vapC,O]

is a pitch system, g is a genus in ¥ and
Agi,Aga, ... Agy

18 a collection of genus intervals in i then

ge (9) + (pms Age (Agk)) — pe x ((Ch=y Am (Agk)) +m (g)) div pim) ,
Tg (gv Og (Aglv Ag?a s Agn)) =
(m (g) + (j—1 Am (Agr))) mod fim
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Proof

R1

R2

R3

R4

R5

491 & 422

52

R1 & R2

R3 & 412

R4 & 35

=

=

=

=

Tg (ga Og (Aglv Ag27 oo Agn))

=Tg (ga

[ g (9) + (k=1 Age (Agr))

(Xhe1 Age (Agr)) = pe X (Xg_y Am (Agy)) div pm) , D

(Or_, Am (Agy)) mod fim

—pte X ((Xh=y Am (Agy)) div pm)

e x ((m(g) + () Am (Agy)) mod pim) div )

L Tm (m (9) s (22:1 Am (Agk)) mod /Lm)
[ 8 (9) + (Croy Age (Agr))
( ((Cro; Am (Agy)) div im) )
—Me X )

+((m(g) + (2221 Am (Agy)) mod fim) div fim)

L 7w (m(9), (k=g Am (Agx)) mod fim)
(k=1 Am (Agr)) div ) + ((m(9) + (h—; Am (Agk)) mod pim) div fim)
= (ke Am (Agy)) +m(g)) div fim
76 (9,0 (Ag1, Aga, ... Agn))
g (9) + (k=1 A ge (Agr))
= | e x (Choy Am(Agk)) +m(g)) div pim) ,
T (m(9), (k=1 Am (Agx)) mod fim)
76 (9, 0% (Ag1, Aga, ... Agn))
[ ge(9) + (Xhz Age (Agy)

= | —He x (Ck=1 Am (Agk)) + m(g)) div pim) ,

| ((m(g) + (k= Am(Agg))) mod pim) mod pim) |
ge (9) + (XCpy Age (Agr))
Te (9,05 (Ag1, Aga, ... Agn)) = | —pe X (Xh—; Am (Agr)) +m(g)) div pim) ,

(m (g) + (35— Am (Ag))) mod pim
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Theorem 493 If ¢ is a pitch system and
Aglu A927 s Agn

s a collection of genus intervals in ¢ and g is a genus in ¢ then

75 (9,08 (Ag1,Aga, ... Agn)) = Tg (... 75 (T (9, Ag1) , Ag2) ..., Agn)



CHAPTER 4. FORMAL SPECIFICATION OF MIPS

Proof

R1

R2

R3

Let

Let

R1 & 492

=

R4 R2,412 & 422 =

R5

R6

R7

RS

R3 & R4

R1 & R2

R1 & 422

R7 & 412

=

=

xr = Tg (9,05 (Ag1, Aga, ... Agr))

yr =Tg (... Te (Tg (9, Ag1) , Ag2) ..., Agr)

r1 =75 (9,05 (Ag1))

g (9) + Y51 Age (Ag))
— | —nex ((Zio Am(Agy) +m(9)) div pm).

(m (9)+ >, Am (Agj)) mod fim

g (9) + Age (Agr)

= | —pcx (Am(Ag1) +m(g)) div pm),

y1 = 7¢ (9, Ag1)

= | —#e x (m(g) + Am (Agy)) div pim),

= | —pex ((m(g9)+Am(Agy)) div pum),

1 =Y

g (9) + Age (Agr)

Tm (m (g) , Am (Ag1))

g (9) + Agc (Agr)

(m (g) + Am (Agy)) mod i

(m(g) + Am (Ag1)) mod fim

(T = Yk = Ykt1 = Te (Ths Agrt1))

T (Tr, Agry1) =

g (Th, Agry1) =

8e (k) + A ge (Agr+1)

—pie X ((m (z) + Am (Agri1)) div pm)
T (m (z1) , Am (Agrt1))

8 (z) + Age (Agrt1)

—pe X ((m (z5) + Am (Aggs1)) div pim)

(m (1) + Am (Ages1)) mod pim

211
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[ ge(9) + 251 Age(Ag,))

R9  RI & 492 = ap=| —HeX ((ZL Am (Ag;) + m(g)) div um) ;

| (ml9)+ X5, Am(Ag,)) mod p,
RI0 RS, R9, 115 & 117 = 74 (24, Agii1)
[ ge(9) + 25, Age (Ag;)
e x ((Zjos Am(Agy) +m(g)) div jim)
— | +Agc (Agrtr)
e x (((m () + Loy Am (Ag)) mod pim + Am (Agis) ) div pim)
((m(9) + Ty Am(Agy)) mod pim + Am (Agis1) ) mod jim
() + D40 A (Ag))
(Ch) Am(ag) +m(g)) div jum

= _,Uc X
+ (Am (Agr41) + (In (9) + Z‘?:l Am (Agj)) mod um) div fim

i ((m (9)+ Z;?:l Am (Agj)) mod fim + Am (Agk+1)) mod fim
[ e (9) + X511 Ase(Agy) '

R11 R9 = g = | —He X ((Z?Ll Am (Ag;) +m(g)) div um) ;

| (m(0) + 55 Am(Ag))) mod
R12 Let wy, = (2521 Am(Ag;) +m (g)) div pim

+ (Am (Agr+1) + (m (9)+>5, Am (Agj)) mod um) div fim
R13 RI2 & 52 = wy= (Am(Agk+1) +F Am(Ag)) + In(g)) diV fim

- (Efill Am(Ag;) +m (g)) div fim

R14 Let 2 = ((m (9)+ 2521 Am (Agj)> mod pm + Am (Agk+1)> mod fim
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R15 R14 & 38 = zp= (Am (Agrt1) +m(g) + 2521 Am (Agj)) mod fim
= (m(9)+ X5 Am(Ag))) mod pm
R16 RI10,R12& R14 = 75 (2%, Agry1) = [gc (9)+ Zfill Age (Agj) — pe X wy, zk]

R17 RIL,RI3& RIS = a1 = [gc (@) + M Ag (Agy) — pie X wkzk}

j=1

R18 RI16 & R17 = Ty (g, AGrt+1) = Tht1
R19 R6 & R18 = (T = Yk = Tpp1 = Yrt1)
R20 R19 & R5 = x = yi for all integers k greater than zero.

R21 R20, R1 & R2 =  15(9,08 (Ag1,Ag2,...Agn)) =Tg (.. T (Te (9,A91) , Aga) ..., Agn)

Inverse of a genus interval

Definition 494 (Inverse of a genus interval) If ) is a pitch system and Ag is a genus interval in ¥ and
g s a genus in 1 then the inverse of Ag, denoted tg (Ag), is the genus interval that satisfies the following
equation

e (T (9,A9) , 15 (Ag)) = g

Definition 495 (Inversional equivalence of genus intervals) If ¢ is a pitch system and Agy and Ags

are genus intervals in ¥ then Ag; and Ags are inversionally equivalent if and only if
(ta (Ag1) = Aga) V (Ag1 = Ago)
The fact that two genus intervals are inversionally equivalent is denoted as follows:
Ag; =, Ago

Theorem 496 If
w = [MCv Hm, anpC,O]

is a pitch system and Ag is a genus interval in ¢ then

tg (Ag) = [ne — Age (Ag), (~Am (Ag)) mod pim]
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

Let

R1, 422,
115, 117,
310 & 316

R2 & 412

R3, 52 & 34

R4 & 46

77 & 61

77 & 44

R5, R6 & R7

R8 & 118

R1, R9 & 494

z =7y (1g(9,A9), [He — Age (Ag), (~Am (Ag)) mod pim])
ge (9) + Age (Ag) — pe x ((m(g) + Am (Ag)) div pim)
T=Tg Tm (m(g) , Am (Ag))
(e = Age (Ag) , (—Am (Ag)) mod fim]
gc (9) + Age (Ag) — pe x ((m(g) + Am (Ag)) div pim) + pe — Age (Ag)

= | —He X ((tm (m(9), Am (Ag)) + (-Am (Ag)) mod pim) div pim),

T (Tm (m (9), Am (Ag)), (~Am (Ag)) mod fim)
[ 8 (9) + Age (Ag) — e x (m(9) + Am (Ag)) div pim) + e — Age (Ag)

r=| —pex ((m(g) + Am(Ag)) mod pim + (~Am (Ag)) mod pim) div pim)

| (m(g) + Am(Ag)) mod pm + (~Am (Ag)) mod pim) mod fim
[ e (9) + pe

( (m(g) + Am (Ag)) div pim
e %

(1 (g) + Am (Ag)) mod n,
mod fim
+(~Am(Ag)) mod fim

{ ge (9) + e — pte x ((m(g) + Am (Ag) + (—Am (Ag)) mod fim) div fim),

(m(g) + Am(Ag) — Am (Ag)) mod fim
z = [ge (9) + pe — pe ¥ ((m(g) + pm) div pim) ,m (g) mod fim]
(m (g) + pm) div pim =1
m (g) mod fim = m (g)
= [ge (9) + e — pe X 1,m(g)]
= [gc (9),m(g)]
=g

tg (Ag) = [e — Age (Ag), (~Am (Ag)) mod pim]

+ ((m(g9) + Am (Ag)) mod pim + (=Am (Ag)) mod pim) div fim

|

|
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Theorem 497 If ¢ is a pitch system and Ag, Ag1 and Ags are genus intervals in i then

(Agr = 15 (Ag)) A (Ag2 = 15 (Ag)) = (Ag1 = Ago)

Proof
R1 Let Agi = tg (Ag)
R2 Let Ags = g (Ag)
R3 R1 & 494 = 715(15(9,Ag),Ag1) =g
R4 R2 & 494 = 715(12(9.Ag).Ag2) =y

R5 R3,RA4& 425 = Ag =Ag

R6 R1toR5 =  (Ag1 =tz (Ag)) AN (Aga = 1g (Ag)) = (Ag1 = Aga)

Theorem 498 If ¢ is a pitch system and Agy and Ags are two intervals in ¢ then

(Agr = 1g (Ag2)) <= (Ag2 = tg (Ag1))
Proof

Theorem 499 The inversional equivalence relation on genus intervals is transitive. That is, if Agy, Age

and Ags are any three genus intervals in a pitch system 1, then

(Agr =, Ag2) N (Aga =, Ags) = (Agi =, Ags)

Exponentiation of a genus interval

Definition 500 (Exponentiation of a genus interval) Given that:
1. Y s a pitch system;
2. g 18 a genus in P;

3. Ag is a genus interval in ;

B

. n 18 an integer;

5. k is an integer and 1 < k < abs (n);

D

. Agix = Ag for all k; and
7. Agar =g (Ag) for all k;
then €g n, (Ag) returns a genus interval that satisfies the following equation:

75 (9,08 (Ag1,1, 8912, - - - Agi,n)) if n>0
Tz (9, €e.n (Ag)) = g if n=0
Tg (9,05 (Ag21,Ag2,2,... Aga,—y)) if n<0
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Theorem 501 (Formula for g, (Ag)) If

¥ = [pe, pim; fo, Pe,o]
is a pitch system and Ag is a genus interval in ¥ and n is an integer then

n X Age(Ag) — pe X (n X Am(Ag)) div pim) ,
€g,n (Ag) =
(nx Am(Ag)) mod pm

216
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Proof
R1 Let n be any integer
R2  Let k be any integer such that 1 < k < abs(n)
R3  Let Agr,r = Ag for all k
R4 Let Aga = tg (Ag) for all k

Tg (g,Ug (Agl,laAgl,%'--Agl,n)) if n>0
R5 RI1 to R4 & 500 = Tg(g9,€en(Ag) =< g if n=0
Tg (g, Og (AggJ, Aggg, .. .Agz_n)) if n<o0
R6  Let ny be any integer greater than zero
R7 491 & R6 = 0g(Ag11, 8012, .- Agin,)
(10, Ao (Agi)) — pie x (S Am (Agi ) div jim).
( 21:1 Am (Agi ) mod pim
R& R3 & R7 = Og (Agl,la Aglﬁg, . Agl,nl)
n1 x Age (Ag) — pie X ((n1 x Am(Ag)) div pm)
(n1 x Am(Ag)) mod pim
R9 RI, R6 & R8 = Tg(9,0¢ (Ag11,A91.2,---Ag1,n))
0 x Age (Ag) — e x ((n x Am (Ag) div jim)
=Tz |9 when n > 0
(nx Am(Ag)) mod pm
R10 Let no =0
ns x Age (Ag) — pre X (n3 x Am (Ag)) div i)
R11 Let r=1g|g,
(ng x Am (Ag)) mod pim
RI2 RI10, R11, 422,310 & 316 = 2 =74(g,[0 — p1e x 0,0]) = 7z (g, [0,0])
= [8c (9) + 0 = pre X ((m(g) + 0) div pimm) , 7 (m (g) , 0)]
R13 RI11, R12 & 412 = x=[gc(g9) — pe X (m(g) div ptm), (m(g) + 0) mod fim|

R14 RI3 & 78 = z=[gc(9) — pe x (m(g) div pm), m (g)]

R15 R14 & 79 = = =[gc(9) — pe X 0,m(g)] = [gc (9),m(g)]
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R16

R17

R18

R19

R20

R21

R22

R23

R24

R25

R26

R27

R15 & 118

R1, R10, R11 & R16

Let

Let

R19 & 491

R4 & R20

R21, 310, 316 & 496

218 & 45

R22 & R23

56

R24 & R25

R1, R18, R19 & R26

nx Age (Ag) — pe x ((n x Am(Ag)) div pim)

Tg | 9 =g whenn =0

(nx Am(Ag)) mod pim
n3 be any integer less than zero

y=0g(Ag21,Ag22,...Ag2 ns)

] ( 8 Age (Agz,k)) — e X ((Z;ﬁf Am(Agng)) div um) ,
il (S Am (8g2)) mod
[ g x Age (g (Ag)) — e % ((—n3 x Am (1 (Ag))) div fim)
] o A (8 o
[~y % (e — Age (Ag)) — e x ((—=ng x (~Am (Ag)) mod ) div )
. | (=3 x ((—Am(Ag)) mod i) mod fim

ng X Age (Ag) — pie X (n3 + (—nz x ((-Am (Ag)) mod pm)) div pm)
(—ns x ((—Am (Ag)) mod pim)) mod fim
(—=n3 x ((—Am (Ag)) mod im)) mod fim
= (—ns x (~Am(Ag))) mod fim
= (n3 x Am(Ag)) mod fim
n3 X Age (Ag) — pie X (n3 + (—nz x ((-Am (Ag)) mod pm)) div pim) ,
(ns x Am (Ag)) mod fim
n3 + (—n3 X ((=Am(Ag)) mod pim)) div pum = (ng x Am (Ag)) div pim
ng X Age (Ag) — pe X ((n3 x Am (Ag)) div pim)
(n3 x Am (Ag)) mod pim
7e (9,05 (Aga1, Agaa, - - Aga, )
nx Age(Ag) — pe x ((n x Am (Ag)) div pm)

when n < 0
(nx Am(Ag)) mod pim
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R28 R5, R9,R17T & R27T = 75 (g, €en (Ag))

nx Age (Ag) = pe x ((nx Am (Ag)) div pim),
=Tg | 9, for all integer n
(nx Am(Ag)) mod pim

n X Age(Ag) — pe X (n x Am(Ag)) div pim) ,
R29 R28 & 425 = €an(Ag) =
(n x Am(Ag)) mod pm

Theorem 502 If
1/) = [,UJCa Hm, vapC,O]

18 a pitch system and Ag is any genus interval in i then

tg (Ag) = €g,—1 (Ag)

Proof
R1 496 = 1g(Ag) = [pe — Age (Ag), (~Am(Ag)) mod fim]
—1xAge (Ag) — pe x (=1 x Am (Ag)) div pum) ,
R2 501 = 1 (Ag) =
(-1 x Am(Ag)) mod pm
—Age (Ag) — pe X (—Am (Ag)) div pim)
(—Am(Ag)) mod fim
R3 218 = (-Am(Ag)) div pm = —1

—Age (Ag) — pe x (=1),
R4 R2&R3 = ¢_1(Ag) =
(~Am(Ag)) mod fim

= [pe — Age (Ag), (~Am(Ag)) mod fim]
R5 R4 & R1 = lg (Ag) = €g,—1 (Ag)
Theorem 503 If

1/) = [,UJCa Hm, vapC,O]

18 a pitch system, ni,na,...nk is a collection of integers and Ag is a genus interval in ¢ then

o (- Coms (e (A9)) ) = eqppe o, (A0)
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Proof
R1  Let
R2  Let
R3
R4 R3

R5 RI, R2 & R4

R6 Rl & R2

R7 501

R8 R2 & 501

R9 R2 & 501

R10 R7, RY, 310 & 316

=

=

Tk = €gny ( - €gngy (Eg,ﬂl (Ag)) . )
Yk = ngH?:1 n; (Ag)
1
Hj:l ng=m
€g,nq (Ag) = Eg,n}zl n; (Ag)
yr =« when k=1
(yk =Tk = Th41 = €gnpyg (yk))
€gnpy1 (yk) = |:

N1 X Age (Yr) — pe X (k41 x Am (yx)) div pim) ]

(nkt1 x Am (yp)) mod fim

(I ) x Ase(Ag) = e x (T2 my) x Am(Ag)) div ) ]

o (I ny) x Am(Ag)) mod jun

(TTjzi i) % Age(Ag) = pe x (((TTizims) x Am(Ag)) div jum)
L) amaa) ]
€g.nipr (Uk)

[ Npr X ((HL nj) x A ge (Ag) — pie X (((Hle nj) x Am(Ag)) div um)) T
| e (e () < 310w ) )
(e (T < 30 139) o)) s
[ i (T my) x A (Ag)

ngr % e x (((TTzymg) x Am(Ag)) div pm

— e X ((nk+1 X (((Hf:l nj) X Am(Ag)) mod ,um)) div ,um) ,

I (nkﬂ X (((Hle nj) X Am(Ag)) mod um>) mod fim
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(R10 cont.)

R11

R12

R13

R14

R15
R16

R17

58

R11 & R10

45

R13 & R12

R14 & R8

R15 & R6

R16 & R5

=

=

=

=

=

_(HﬁhﬂxA&@m

( Nga1 X (((H;C:l nj) X Am(Ag)) div um)
—fte X

(e () 5 m 30) o)) o
s % (T ) x Am(8g)) div )

( o () = 3 080) mot )

- (n,m x (Hle nj) x Am (Ag)) div fim

= (T2 ;) x Am(Ag)) div pn

Cisn ()

[ (I ) x Age (Ag)

| e (T 0y) % Am(Ag)) div ).

(e (1) » 380) o ) ot
_ (nkH x (H?:l nj) x Am(Ag)) mod fim
= (I ny) x Am(Ag)) mod jun

g ()

[ (I ) < A (Ag)

= | —pe x (((H;tll nj) X Am(Ag)) div ,um) 5

L ((Hfill nj) X Am(Ag)) mod fim
€gnpy1 (yk) = Yk+1
(yk =T = Tk4+1 = yk+1)

) = yg for all integer k

i (nk+1 X (((H?:] nj) X Am(Ag)) mod um)) mod fim |

221

+ (nk+1 X (((Hle nj) X Am (Ag)) mod um)) div fim

|

) |
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R18 Rl77 Rl & R2 = €g7nk ( .. €g1n2 (Engl (Ag)) .. ) = €g7l—[?:1 n; (Ag)

Theorem 504 If
1/) = [IUJCa Hm, vapC,O]

18 a pitch system, n is an integer and Ag is a genus interval in ¢ then

tg (€g,n (Ag)) = €g,—n (Ag)

Proof
R1 502 = g (egn (Ag)) = €g,—1 (65,0 (Ag))
R2 503 = €51 (en (Ag)) = € (—1xn) (Ag) = €g,—n (Ag)

R3 R1&R2 = ig(egn(Ag)) = ce,—n(Ag)

Theorem 505 If
1/) = [,UJCa Hm, vapC,O]

18 a pitch system, n is an integer and Ag is a genus interval in ¢ then:
Ac(egn (Ag)) = €cn (Ac(Ag))
Proof

n X Age(Ag) = pre x ((n x Am (Ag)) div fim),

R1 501 = en(Ag) =
(n x Am(Ag)) mod pim

R2 R1,313& 310 = Ac(egn(Ag))=(nxAge(Ag)— pic X (n x Am (Ag)) div pim)) mod pic

R3 313 = €on(Ac(Ag)) = eon (Age (Ag) mod pic)

R4 R3 & 454 = ton(Ac(Ag)) = (n X (Age (Ag) mod 1)) mod pie
R5 R4 & 45 = een(Ac(Ag)) = (nx Age (Ag)) mod e

R6 R2 & 37 = Ac(egn (Ag)) = (n x Age(Ag)) mod pec

R7 R5 & R6 = Ac(egn (Ag)) = €en (Ac(Ag))

Theorem 506 If
1/) = [IUJCa Hm, vapC,O]

18 a pitch system, n is an integer and Ag is a genus interval in ¢ then:

Am (egn (Ag)) = €mn (Am(Ag))

222
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Proof

n X Age (Ag) — pe X (n x Am(Ag)) div pim) ,
R1 501 = € (Ag) =

(nx Am(Ag)) mod pim
R2 R1& 316 = Am(ey,(Ag))=(nxAm(Ag)) mod tm

R3 468 = €mn (Am(Ag)) = (n x Am(Ag)) mod pim

R4 R2&R3 = Am(ey(Ag)) = €mn(Am(Ag))

Theorem 507 If
w = [MCv Hm, anpC,O]

18 a pitch system, n is an integer and Ag is a genus interval in ¢ then:

Ad(egn (Ag)) = €q,n (Ad(Ag))
Proof

nx Age (Ag) — pe X ((nx Am (Ag)) div pum)
R1 501 = egn(Ag) =
(n x Am (Ag)) mod i
R2 RI1& 320 = Ad(egn (Ag)) =[Ac(egn (Ag)), Am (egn (Ag))]
R3  R2 & 505 = Ad(egn (Ag)) = [een (Ac(Ag)), Am (egn (Ag))]
R4 R3 & 506 = Ad(egn (Ag)) = [een (Ac(Ag)), emn (Am (Ag))]
R5 320 = Adq(Ag)=[Ac(Ag),Am(Ag)]
R6 R5 & 300 = Ac(Ad(Ag)) =Ac(Ag)
R7 R5 & 303 = Am(Ad(Ag)) =Am(Ag)

R8 R4, R6 & R7 = Ad(egn(Ag)) =[ecn (Ac(AA(AG))),emn (Am(Ad(Ag)))]

R9 RS & 482 =  Ad(egn (Ag)) = €qn (Ad(Ag))

Theorem 508 If
¥ = [pe; pim; fo, Pe,o]

18 a pitch system, ni,na,...nk is a collection of integers and Ag is a genus interval in ¢ then

Og (Eg,nl (Ag) ) €8, (Ag) oo Eging (Ag)) = 63;2?:1 nj (Ag)

223
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

Let

Let

R1 & 491

R2 & 501

501

R5 & 310

R5 & 316

R6

R7

R3, RS & R9

T = Og (Egﬂll (Ag) ) €g,m2 (Ag) sy Egny (Ag))
Yk = 6g72?:1 n; (Ag)

Z;C:l Age (6g7nj (Ag)) = e X ((Zf:l Am (Eg,nj (Ag))) div Mm) )

o (S5 Am (can, (Ag)) mod jum
SN ng x Age (Ag) — e X (((Zle nj) x Am (Ag)) div Mm) ,
U] () « Am(a) mo
n; x Age(Ag) — pe x ((n; x Am (Ag)) div pm) ,
e, (Ag) —

(nj x Am (Ag)) mod fim
Age (egn,; (A9)) = nj x Age (Ag) — pe x ((n; x Am (Ag)) div i)
Am (egn; (Ag)) = (n; x Am (Ag)) mod fum
S Age (€, (Ag)) = 351 (ny x Age (Ag)) — pre x 5_1 ((nj x Am (Ag)) div fim)
= (o) X A (Bg) — pe x Sy (5 x Am (Ag)) div jim)
YE Am (g, (Ag)) = 5 ((nj x Am (Ag)) mod i)

(2221 nj) X Age (Ag) = pre x X5 ((ny x Am (Ag)) div pim) ]

T = | —fe X ((25:1 ((nj x Am(Ag)) mod Hm)) div Hm) )

(Zle ((nj x Am (Ag)) mod um)) mod i

(Zhoims) x Age(ag)

25:1 ((nj x Am(Ag)) div pim)
= | —pex |
+ (Zle ((nj x Am(Ag)) mod um)) div fim

(Zle ((nj x Am(Ag)) mod um)) mod fim
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R11 54 = Z?:l ((n; x Am(Ag)) div pum) + (Z?:l ((n; x Am(Ag)) mod ,um)) div fim
= (Am(Ag) X Z?:l nj) div fim

(2221 nj) x Age (Ag)

RI12 RI0&RI1 = a5 = | —pex ((Am(Ag) x nj) div um) ,

(ZL ((nj x Am(Ag)) mod um)) mod fim |

R13 39 = (Z?ﬂ ((nj x Am(Ag)) mod um)) mod pm = ((2521 nj) x Am (Ag)) mod fim

(2221 nj) x Age (Ag)

R4 RI2Z&RI3 = ap= | —pex ((Am(Ag) x Y, nj) div um) ,

((Z§:1 "J') X Am(Ag)) mod fim

R15 R4 & R14 = Tr =Yk

R16 R1,R2& R15 = og(egn, (AG),€any (AG),... €an, (Ag)) = €550k, (Ag)

Exponentiation of the genus tranposition function
Definition 509 (Definition of 7¢, (g9, Ag)) If ¢ is a pitch system and g is a genus in ¢ and Ag is a genus
interval in Y then

Ten (9, A9) = T3 (9, €g.n (Ag))

Theorem 510 If
¥ = [He, fim, fo, Pe,o]
18 a pitch system, ni,no,...,ng is a collection of integers, g is a genus in ¥ and Ag is a genus interval in
then
Teoe (-~ Tene (Ten (9,89),Ag) ..., Ag) = g,k n, (9,Ag)
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Proof
R1 Let T =Tem, (- Tens (Tem, (9,A9),Ag) ..., Ag)
R2 R1 & 509 = xp =75 (.. Tg (15 (9, €5m, (A9)),€ans (AG)) ..., € ny (Ag))
R3 R2 & 493 = ok =Tg (9,05 (€gny (AG) s €5.ny (A9),- -+, €gny, (Ag)))
R4 R3 & 508 = Tp=Tg (g, €55 n (Ag))

R5 R1,R4& 509 = 7gun, (- -Tgn, (Tgn (9,A9),A9)...,Ag) = 65k n (g,Ag)

4.6.5 Summation, inversion and exponentiation of chromatic pitch intervals
Summation of chromatic pitch intervals

Definition 511 If
1/) = [,UJCa Hm, vapC,O]

is a pitch system and

Apc,la Apc,% .- -Apc,n

18 a collection of chromatic pitch intervals in i then

n
Ope (Ape,1, Ape2, - - Ape,n) = Z Ape,k
k=1

Theorem 512 If ¢ is a pitch system and
Apc,la Apc,% .- -Apc,n
s a collection of chromatic pitch intervals in ¢ and pc is a chromatic pitch in ¥ then

Tpe (P, 0pe (Ape,1, Ape2, - Apen)) = Tp. (- - - Tpe (Tpe (Pes Ape,1) s Ape2) - - -, Apen)

226
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Proof
Rl Let Tr, = Tpe (- Tpo (Tpe (Pes APe,1) s Ape2) - - Ape.n)
R2  Let Yn = Tpe (Pes Ope (Ape,1, Ape2, .. Apen))
R3 RI1 & 427 = x1 = Tp, (pe, Ape,1) = pe + Ape
R4 R2 & 427 = Y1 =pe+ p, (Apc1)
R5 R4 & 511 = Y1 =pc+ Apc1
R6 R3 & R5 = z=y
R7 Rl = (k= Yr = Try1 = Tp. Yk, DDekt1))
RS  R2 & 427 = Yn = Pc + 0p, (Apc1, Apea, ... Ape.n)
R9 R8 & 511 = Yn =DPe+ Dopey Apek
R10 427 = Tpe (U, ADc,kt1) = Y + APe,kt1
RI11 RY & RI10 = Tpo (ks DPei1) = Pe + 25—t Apej + Ape st
=pc+ 25211 Ape,;
R12 R11 & R9 = Tpo. Yk, APck+1) = Y41
R13 RI2 & R7 = (Tk = Yk = Tht1 = Yrt1)
R14 R6 & R13 = 1 = y for all positive integers k

R15 R1,R2& R14 = 7 (pc,0p. (Ape1, Apc.2, ... Apen)) = Tp. (- Tpe (Tpe (Pes ADc,1) s APe2) - - . s APe,n)

Inversion of chromatic pitch intervals

Definition 513 (Definition of ¢, (Apc)) If ¢ is a pitch system and Apc is a chromatic pitch interval in
Y and pc is a chromatic pitch in ¢ then tp, (Apc) is the chromatic pitch interval that satisfies the following
equation

Tpe (Tpc (Pe, Ape), lpe (Ape)) = pe

Definition 514 (Inversional equivalence of chromatic pitch intervals) If is a pitch system and Apc 1

and Apc o are chromatic pitch intervals in v then Apc1 and Apc o are inversionally equivalent if and only if

(ch, (APC,I) = Apc.,z) \ (Apc,1 = Apc,z)
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The fact that two chromatic pitch intervals are inversionally equivalent is denoted as follows:

Theorem 515 If

Apr:,l =, Apc,2

1/) = [,UJCa Hm, vapC,O]

18 a pitch system and Apc is a chromatic pitch interval in 1 then

Proof

R1

R2

Theorem 516 If vy is a pitch system and Apc, Ape1 and Apc o are chromatic pitch intervals in v then

Proof

R1

R2

R3

R4

R5

513

R1 & 427

Let

R1 & 515

R1 & 515

R2 & R3

R1 to R4

=

=

=

=

=

ch (Apc) = _ApC

Tpe (Tpe (Pes Ape) , tp. (Apc)) = pe
Tpe (Pe + Ape, tp, (Ape)) = pe

Pe + Ape + tp. (Ape) = pe

Ape + tp, (Ape) =0

lpe (APC) = —Apc

(Ape,1 = tp, (Apc)) A (Apc2 = tp, (Apc)) = (Ape,1 = Ape,2)

(Ape,1 = tp, (Apc)) A (Ape,2 = tp. (Apc))

Apc,l = _Apc
Apc,2 = _Apc
Apc,l = Apc,2

(Apcy = lpe (Ape)) A (Apea = lpe (Apc)) = (Ape,1 = Ape,2)

Exponentiation of chromatic pitch intervals

Definition 517 (Definition of €;_, (Apc)) Given that:

1. 9 is a pitch system;

2. pc is a chromatic pitch in v;

3. Apc is a chromatic pitch interval in 1;

4. m s an integer;

228
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5. k is an integer and 1 < k < abs (n);
6. Apca,x = Apc for all k; and
7. Apeak = tp. (Ape) for all k;

then €p, n (Apc) returns a chromatic pitch interval that satisfies the following equation:

Tpe (Pes Opc (Ape,1,1, Ape,1,2, - APe,in)) it n>0
Tpe (Pes €pen (Ape)) = 1 pe if n=0
Tpe (P pe (APe2,1, Ape2,2, .- Apea,—n)) if n <0

Theorem 518 (Formula for ¢,_, (Ap.)) If
w = [Mcv Hm, anpC,O]
18 a pitch system and Apc is a chromatic pitch interval in ¢ and n is an integer then

€pe,n (Apc) =n x Apc
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Proof
R1 Let n be any integer
R2  Let k be an integer such that 1 < k < abs(n)
R3 Let Ape 1,k = Apc for all k
R4  Let Apecok = tp, (Apc) for all k
R5  Let n1 be any integer greater than zero
R6 R3,R5 & 511 = Tp. (Pes Op. (APe,1,1, Ape12s- - APeing))
= Tp. (pc, it Apc,l,j)
= Tp, (Dc, 1 X Apc)
R7 427 = Tp. (P, 0 X Apc) = pc + 0 X Ape = pe
R8  Let ng be any integer less than zero
R9 R4, R8 & 511 = Tp. (Pe, 0p, (APe,2,1, Ape2,2;s - - APe,2,—ny))
= Tp. (Pm PP Apc,z,a)
= Tpe (Pe; =n2 X tp, (Ape))
R10 R9 & 515 = Tp. (Pes Ope (APe,2.1, Ape22y- .- APe2.—ny))
= Tpe (Pe; =2 X (=Apc))
= Tpe (Pe; 12 X Ape)
R11 R1,R5 & R6 = Tp. (Pc; Ope (ADc,1,1,APe1,2, - APcin)) = Tpo (Pe, n X Apc) when n > 0
R12 R1 & R7 = pc=Tp, (Pe,n X Apc) when n =0
R13 R1, R8 & R10 = Tp. (Pes Op, (ADc2.1, ADc 2,2, .- APe2,—n)) = Tp. (Pe; 1 X Ape) when n < 0

R14 R1to R4, R11to R13 & 517 = 7. (Pc, €pe,n (APc)) = Tp. (Pc, n X Apc) for all integer n

R15 R14 & 430 = €p.n (Apc) =n x Ape
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Theorem 519 If
1/) = [IUJCa Hm, vapC,O]

is a pitch system and Apc is any chromatic pitch interval in 1) then

ch (Apc) = epmfl (Apc)

Proof
R1 515 = . (Ape) = —Apc
R2 518 = €p,,—1(Apc) = —Apc

R3 R1&R2 = . (Apc) = €p.,—1 (Apc)

Theorem 520 If
w = [Mcv Hm, anpC,O]

s a pitch system, ni,no,...nk is a collection of integers and Apc is a chromatic pitch interval in 1) then

€pen (- - - Epeynz (€pe,ny (Ape)) ...) = Cpe.TTh_, n; (Ape)
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Proof
R1 Let Tk = €peng (- €peng (€perny (APc)) .- -)
R2 Let Yk = €p [T, ny (APC)
R3 RI1 & R2 =YL= 6 T, ny (BPe) = €peny (Ape) = 11
R4 RI1 & R2 = (Th =Yk = Thi1 = onngr (Ur))
R5 R2 & 518 = €penpis (Yk) = Nyl X Yg
= Ng41 X epcﬂ?:l n; (Ape)
= N1 X (H?:l ”j) x Ape
= (H?:ll nj) x Ape
= Cpullitt ny (A7)
= Yk+1
R6 R4 & Rb = (Th =Yk = Th1 = Yht1)
R7 R3 & R6 = x = yi for all integer k greater than zero

R8 RI,R2& R7 = €p ny (- €pens (€pens (ADc))...) = €pe ITE_, ny (Apc)

Theorem 521 If
¥ = [pe; pim; fo, Pe,o]

18 a pitch system, n is an integer and Ap. is a chromatic pitch interval in v then

tpe (€pen (Ape)) = €pe,—n (Apc)
Proof

Rl 515 = tpe (€pen (Ape)) = = €pen (Ape)

R2 R1&518 = i (€pen (Apc)) = —n X Ape = €5, —pn (Apc)

Theorem 522 If
1/) = [IUJCa Hm, vapC,O]

is a pitch system, n is an integer and Ap. is a chromatic pitch interval in v then:

Ac(€pe,n (Apc)) = €cn (Ac(Ape))

232
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Proof
R1 Let x = Ac(ep, n (Apc))
R2 Let y = €cn (Ac(Ape))
R3 518 & R1 = xz=Ac(nx Ap)
R4 287 & R3 = = (nx Apc) mod pc
R5 R2 & 287 = Y= e€cn (Ape mod pic)
R6 R5 & 454 = y=(nx (Apc mod pc)) mod pic
R7 R6 & 45 = y=(nx Apc) mod pc
R8 R4 & RT = z=y

R9 R1,R2& R8 = Ac(ep.n(Apc)) =€cn (Ac(Apc))

Theorem 523 If
1/) = [IUJCa Hm, vapC.,O]

18 a pitch system, n is an integer and Apc is a chromatic pitch interval in v then:

Af (€pe,n (Ape)) = €50 (Af (Apc))
Proof

R1 518 =  Af(ep.n(Apc)) = Af(n x Ape)
R2 R1&284 = Af(epmn (Apc)) — 9nXApc/pc

(QApc/uc)"

= (Af(Apc))n
R3 R2&549 =  Af(epon (Apc)) = €0 (AL (Ape))

Theorem 524 If
1/) = [IUJCa Hm, vapC,O]

s a pitch system, ni,no,...ng is a collection of integers and Apc is a chromatic pitch interval in 1) then

Tpe (€pe,ni (APC) s €pens (APe) - -+ s €peny, (Ape)) = €pe, >k ny (Ape)
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Proof
Rl Let T = 0p, (€pe,ny (APe) s €peyna (APc) -+ €pe iy (Apc))
R2 R1&511 = z=3" €. (Ap)

R3 R2&518 = a=3" (n;xApc)=Apex Y5y n; =€, s, (Apc)

R4 R1&R3 = op (6pon; (APc): €pens (Ape) -5 €peny (Ape)) = Cpe, >k n, (Ape)

Exponentiation of the chromatic pitch tranposition function
Definition 525 (Definition of 7,_, (pc, Apc)) If ¢ is a pitch system and pc is a chromatic pitch in 1 and
Apc is a chromatic pitch interval in 1 then

Tpe,n (Pe, Apc) = Tpe (Pes €pe,n (Apc))

Theorem 526 If
1/) = [,UJCa Hm, vapC,O]

18 a pitch system, ni,na, ..., ny is a collection of integers, pe is a chromatic pitch in Y and Apc is a chromatic

pitch interval in 1 then

Tpernx (- -« Tpena (Tpe,na (Pes Ape) s Ape) - .., Ape) = Toe, 3k ) n; (pe, Ape)



CHAPTER 4.

Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

R11

R12

R13

R14

R15

R16

Let

Let

R1

R2

R3 & R4

R1

R2

R7 & 525

R8 & 518

R9 & 427

R10 & 518

R11 & 525

R2 & R12

R6 & R13

R5 & R14

R1, R2 & R15

FORMAL SPECIFICATION OF MIPS 235

Tk = Toe,nk (- - Tpeyna (Tpena (Pes APe) , Ape) .., Ape)

Y = Tpe, 30k ny (pe, Ape)

T1 = Tpe,ny (Pe, Ape)

Y1 = Tpo 52 ny (Pes Ape) = Toem, (Pe; Ape)

r1 =Y

(Tk = Yk = Tht1 = Toemys Uk Ape))

Tpernnss (Yks BPe) = Tponiyy ( Too 5 n; (Pes Ape) Apc)

Toemis Uy APe) = T, (Tpc Pes €pe 50 (Apc)) » €penig (Apc))
Toemisr (Yks APe) = Tp, (Tpc ( ( =1 nj) X Apc) s Ma1 X Apc)
Tpenigr Yk, Ape) = pe + (Zle nj) X Ape + ng1 X Ape

= pc + Apc X (nk+1 +30 nj)

= pe + Apc X ZJ 1”3

= Tpc (pc,Apc X Z] 1 ”J)

Toeoirs (Y APc) = Ty, (pc, pe K4, (Apc))

Tpe, k41 (Yr» Ape) = Tpmzé?ill n; (pe, Ape)

Tpe,nkt1 (yk, Apc) = Yk+1

(Th = Yk = Tht1 = Ykt1)

x =y for all integer k greater than zero

Toesni (- - Toens (Toe,na (Pe; Ape) , Ape) ..., Ape) = e ooy (pe; Ape)
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4.6.6 Summation, inversion and exponentiation of morphetic pitch intervals
Summation of morphetic pitch intervals

Definition 527 If
w = [MCv Hm, anpC,O]

is a pitch system and

Apm,1,Apm2, ... APpmn

18 a collection of morphetic pitch intervals in v then

n
UPm (Apm-,1? Apm,27 e Apmyn) = Z Apch
k=1

Theorem 528 If ¢ is a pitch system and
Apm,lu Apm,% s Apm,n
is a collection of morphetic pitch intervals in ¥ and py is a morphetic pitch in 1 then

Tpm (pm? UPm (Apm-,1? Apm,27 e Apmyn)) = Tpm ( t Tpm (Tpm (pm’ Apm-,l) ’Apm72) e ?Apmyn)
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Proof
R1  Let Ty, = Tpw (- T (Tow (Pm, APm.1), APm2) -+, APm.n)
R2  Let Yn = Tpm (Pm; Opry (APm, 1, APm 2, - - - Apmyn))
R3 Rl & 432 = 21 = Tp, (Pm, APm,1) = Pm + APm 1
R4  R2 & 432 = Y1 = Pm + Op,, (Apm1)
R5 R4 & 527 = Y1 =Pm+ Apm,1
R6 R3 & R5 = T1=uy
R7 Rl = (Tk =Yk = Th41 = Tpo (Uk, ADPm kt1))
R8  R2 & 432 = Yn = Dm + Tp (APm1, APm2, - - Apm.y)
R9 RS & 527 = Yo =DPm+ Y pey APmk
R10 432 = Tpw Yk APmk+1) = Y + Apm k11
RI1 R9 & RI10 = Tow Uk APmiit1) = P+ 20y APmj + Apm ks
= P+ Y0 Apmj
R12 RI11 & R9 = Tom Uks APmk+1) = Ykt1
R13 RI2 & R7 = (T = Yk = Tht1 = Yrt1)
R14 R6 & R13 = 1 = y for all positive integers k

R15 R1,R2&R14 = 75, (Pm,0pm (APm, 1, APm2, .- APmn)) = Tpw (- Tpm (Tpm (Pm, APm1), APm2) -+, APm.n)

Inversion of morphetic pitch intervals

Definition 529 (Definition of ¢, (Apm)) If ¢ is a pitch system and Apm is a morphetic pitch interval in
Y and pm is a morphetic pitch in ¢ then i, (Apm) is the morphetic pitch interval that satisfies the following
equation

Tpm (Tpm (Pm, Apm) » lpm (Apm)) = pm

Definition 530 (Inversional equivalence of morphetic pitch intervals) If ¢ is a pitch system and
Apm,1 and Apm 2 are morphetic pitch intervals in v then Apm i1 and Apm o are inversionally equivalent
if and only if

(tpe (Apm,1) = Apm2) V (Apm,1 = Apm,2)



CHAPTER 4. FORMAL SPECIFICATION OF MIPS

The fact that two morphetic pitch intervals are inversionally equivalent is denoted as follows:

Theorem 531 If

Apm,l = Apm,2

1/) = [,UJCa Hm, vapC,O]

s a pitch system and Apy is a morphetic pitch interval in 1 then

Proof

R1

R2

529

R1 & 432

=

me (Apm) = _Apm

Tom (Tpu (Pmy APm) s tp,, (APm)) = P
Tow (Pm + AP, tp,, (Apm)) = pm

Pm + Apm + tp, (Apm) = pm

Apm + tp,, (Apm) =0

Upm (Apm) = —Apn

238

Theorem 532 If ) is a pitch system and Apm, Apm,1 and Apm o are morphetic pitch intervals in ¢ then

Proof

R1

R2

R3

R4

R5

Let

R1 & 531

R1 & 531

R2 & R3

R1 to R4

=

=

=

=

(Apm1 = tp,, (Apm)) A (Apm2 = tp,, (Apm)) = (Apm,1 = Apm,2)

(Apm1 = tp, (Apm)) A (Apm2 = tp,, (Apm))
APm,l = —Apm
APm,2 = —Apm
Apm1 = Apm 2

(Apm,1 = tp,, (Apm)) A (Apm2 = tp,, (Apm)) = (Apm,1 = Apm,2)

Exponentiation of morphetic pitch intervals

Definition 533 (Definition of €, (Apm)) Given that:

1. o is a pitch system;

2. pm is a morphetic pitch in ;

3. Apm is a morphetic pitch interval in 1);

4. m s an integer;
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5. k is an integer and 1 < k < abs (n);
6. Apm 1,k = Apm for all k; and
7. Apmak = tpy, (Apm) for all k;

then €y, n (Apm) returns a morphetic pitch interval that satisfies the following equation:

Tpm (pma Opm (Apm,l,la Apm,l,Qa e Apm,l,n)) if n>0
Tpm (pm’ Epm,n (Apm)) = pm 1f n =
Tom (Pms Op (APm,2,1, Apm2,2, - - Apmy2,—n)) if n<0

Theorem 534 (Formula for ¢, , (Apw)) If

w = [Mcv Hm, anpC,O]

18 a pitch system and Apw is a morphetic pitch interval in v and n is an integer then

Epnnn (Apm) =nX Apm
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Proof
R1 Let n be any integer
R2  Let k be an integer such that 1 < k < abs(n)
R3 Let Apm1k = Apm for all &
R4  Let Apm 2.k = lp, (Apm) for all k
R5  Let n1 be any integer greater than zero
R6 R3, R5 & 527 = Tpwm (Pms Opr (APm1,1, APm1,2, - - APmi1,n,))
= Tpu (pm, it Apm,l,j)
= Tpm (Pm; N1 X Apm)
R7 432 = T (Pm; 0 X Apr) = pm + 0 X Apyy = P
R8  Let ng be any integer less than zero
R9 R4, R8 & 527 = Tpw (Pms Opy, (ADPm,2,1, APm2,2, - - - APm,2,—ns))
= Tom ( ms Dt Apm,z,j)
= Tpw (Pm; =2 X tp,, (Apm))
R10 R9 & 531 = Tpuw (Pm; Opu (APm2,1, APm2,2, - - Apm2,—n,))
= Tpum (Pm, =12 X (—Apm))
= Tpu (Pm; 2 X Apm)
R11 RI1, R5 & R6 = Tpn (Pms Tpr (APm 1,1, APm,1,25 - - APmi 1)) = Tp (Pm, M X Apm) when n > 0
R12 R1 & R7 = Pm = Tpn (Pm;N X Apm) when n =0
R13 RI1, R8 & R10 = Tpm (Pms Opn (APm 2,1, APm 2.2, - APm,2.—n)) = Tpw (Pm, " X Apm) when n < 0

R14 Rl1toR4,R11to RI3& 533 = 7, (Pm:€pmn (APm)) = Tpo, (Pm, 1 X Apr) for all integer n

R15 RI14 & 435 = epun (Apm) =n X Apm
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Theorem 535 If
1/) = [IUJCa Hm, vapC,O]

is a pitch system and Apy, is any morphetic pitch interval in 1 then

me (Apm) = 6pmv*l (Apm)

Proof
R1 531 = lp, (Apm) = —Apm
R2 534 = €pu—1 (Apm) = —Apm

R3 R1&R2 = i, (Apm) = €pn.—1 (Apm)

Theorem 536 If
w = [MCv Hm, anpC,O]

is a pitch system, ni,na,...nk is a collection of integers and Apm is a morphetic pitch interval in 1 then

e (- Eprnns Epmn (D)) ) = €5 11, (Bp)
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Proof
R1 Let Tk = €pmn (- € (€pmy (Apm)) - )
R2 Let Yk = €pp I, ny (APm)
R3 RI1 & R2 = Y= T ny (APm) = €ppny (Apm) = 21
R4 RI & R2 = (k= Yk = Tt = Epmnss (Y1)
R5 R2 & 534 = €pmnrss Uk) = kg1 X Yk
= Ng41 X Epm,nle n; (Apm)
= N1 X (H?:l ”j) X Apm
= (H?:ll nj) X Apm
= ot n, (BPm)
= Yk+1
R6 R4 & R5 = (T = Yb = Tpr1 = Yht1)
R7 R3 & R6 = x = yi for all integer k greater than zero

R8 RI,R2& R7T = €pun, (- s (Epmms (ADm))...) = o TTE_, s (Apm)

Theorem 537 If
w = [/’LCv Hm, anpC,O]

s a pitch system, n is an integer and Apy, is a morphetic pitch interval in 1 then

me (epmﬂl (Apm)) = epmy*'n (Apm)
Proof

R1 531 = o (€pn (APm)) = — € n (APm)
R2 Rl & 534 = me (Epnnn (Apm)) =-"nX Apm = prn,*n (Apm)
Theorem 538 If

1/) = [IUJCa Hm, vapC,O]

is a pitch system, n is an integer and Apy, is a morphetic pitch interval in v then:

Am (ep,, 0 (Apm)) = €mn (Am (Apm))

242
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

Let

Let

534 & R1

290 & R3

R2 & 290

R5 & 468

R6 & 45

R4 & R7

R1, R2 & RS

Theorem 539 If

18 a pitch system, ni,no, ..

Proof

R1

R2

R3

R4

=

z=Am (e, n (Apm))

Y = €mn (Am (Apm))
z=Am(nx Apn)

z = (n X Apm) mod fim

Y = €m,n (Apm mod fim)

y = (n X (Apm mod pim)) mod pim
y = (n x Apm) mod jim

T=y

A (€p,,n (Apm)) = €mn (Am (Apm))

1/) = [IUJCa Hm, vapC.,O]

.ng 18 a collection of integers and Apm s a morphetic pitch interval in 1 then

O.pm (epmﬂll (Apm) 9 6pmyn2 (Apm) yc epmﬂlk (Apm)) = epnhzl?:l n; (Apm)

Let

R1 & 527 =
R2& 534 =
R1&R3 =

T = O.pm (Eptxnnl (Apm) ?Eptxnn2 (Apm) yc Eptxnnk (Apm))

k
T = Zj:l €puasn; (APm)

k k
T = Zj:l (nj x Apm) = Apm X Zj:l NG = Cpu, 3k 0, (Apm)

Upm (Epm-,nl (Apm) ?Epm-,n2 (Apm) e ?Epm-,nk (Apm)) = Epm,zj;zl n; (Apm)

Exponentiation of the morphetic pitch tranposition function

Definition 540 (Definition of 7, , (Pm, Apm)) If ¥ is a pitch system and pm is a morphetic pitch in

and Apy, is a morphetic pitch interval in v then

Theorem 541 If

Tomon (Pms APm) = Tp,, (Pm; €ppn (APm))

¥ = [He, fim;, fo, Pe,0)
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18 a pitch system, ni,no,..

.,ng @S a collection of integers, pm is a morphetic pitch in ¥ and Apny is a

morphetic pitch interval in 1) then

Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

R11

R12

R13

R14

R15

R16

Tomsni (-« Tomnz (Tomyna (Pm, APm) , Apm) ..., Apm) = Tpm, X5y my (Pm, Apm)

Let

Let

R1

R2

R3 & R4

R1

R2

R7 & 540

R8 & 534

R9 & 432

R10 & 534

R11 & 540

R2 & R12

R6 & R13

R5 & R14

R1, R2 & R15

Tk = Tpmng (- Tomins (Tpayna (Pms APm) s APm) - .., Apm)
Yk = Tpp 555y (Pmy APim)

T1 = Tpy,ny (Pm, Apm)

YL = Tp 530, ny (P APm) = Tppny (P, Apm)

1 =U

(% = Yk = Tht1 = Tomngs (Yo APm))

Tomnsr (Yks APm) = Tpniia (Tpmz?:l n,; (Pm, Apm) Apm)

Tomnis U APm) = oy (o (P €5 55 ) (APm)) s oy (A0im) )

=
Tom,mkt1 (yk, Apm) = Tpm (Tpm (pmu (Z?:l nj) X Apm) y M1 X Apm)
Tpmynk+1 (yka Apm) =Pm+ (E?:l nj) X Apm + Nk41 X Apm

= Pm + Apm X (nk+1 +3 ”j)

= pm + Apm x S5 0y

= Toum (pm, Apm x Y511 nj)

Tommiia (Y, APm) = Tpy, (Pma b, 4 (Apm))
Tomomnss (Ys APm) = Ty soiir, (Pmy Apm)
Tommis (Yks APm) = Ykt

(Th = Yk = Tht1 = Yt1)

x =y for all integer k greater than zero

Tomoni (- - Tomnz (Tomna (Pm, Apm) s Apm) ..., Apm) = Tom, 3k, nj (P, Apm)

244
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4.6.7 Summation, inversion and exponentiation of frequency intervals
Summation of frequency intervals

Definition 542 If
w = [MCv Hm, anpC,O]

s a pitch system and

Afi,Afa,. . Af,

18 a collection of frequency intervals in v then
o (Af1,Afa, . Afn) = H Afy
k=1

Theorem 543 If ¢ is a pitch system and

AflaAf27"'Afn

s a collection of frequency intervals in v and f is a frequency in 1 then

T (fyop (Af1, Afay o Afn)) = 7 (o1 (16 (f, A1), Af2) o, ASn)
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

R11

R12

R13

R14

R15

R16

Let

Let

R1

R3 & 542

R2

R4 & R5

R2

437

R1 & R8

R9 & 437

R10 & 542

R11 & 437

R1 & R12

R7 & R13

R6 & R14

R1, R2 & R15

=

=

=

=

=

=
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T =T (fy0p (Af1, Afo, ... Afy))

Yn =Tt (. (76 (f,Af1) , Afa) ... AS)

x1 =7¢ (f, 0 (Af1))

x1 =1 (f,Af1)

y1 =1 (f,Af)

T1 =Y

(k= yr = Yrt1 = 7t (Th, Afrt1))

Ti (@, Afis1) = o X Afin

Ti (T Afegr) = 7 (f 00 (Af1, Afa, o Afr)) X Afra
Tt (T, Afip1) = f x 0 (Af1, Afay o Afr) X Afiia
7 (2h, A1) = £ < [1my Afj X Afisa

= [ xIIZ Af

=fxo;(Af1,Afe, ... Afpi1)

Tp (@k, Afrsr) = 70 (f, 0 (Af1, Afa, o Afrga))

Tt (Tk, Afis1) = ot

(Th = Yk = Tha1 = Yrt1)

25 = yi. for all integer k greater than zero

e (fioe (Af1, Afas o Afn)) = 75 (o7 (7 (L, A1) Af2) o, Afn)

Inversion of frequency intervals

Definition 544 (Definition of ¢; (Af)) If ¢ is a pitch system and Af is a frequency interval in ¢ and f
is a frequency in 1 then v (Af) is the frequency interval that satisfies the following equation

T (e (L Af) i (Af)) = f

Definition 545 (Inversional equivalence of frequency intervals) If 1 is a pitch system and Af, and
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Afs are frequency intervals in v then Afy and Afy are inversionally equivalent if and only if
(s (Af1) = Afa) V(Afi = Afs)
The fact that two frequency intervals are inversionally equivalent is denoted as follows:
Afi =, Afy

Theorem 546 If
1/) = [IUJCa Hm, vapC,O]

18 a pitch system and Af is a frequency interval in i then

w(Af) = 37
Proof
R1 544 = 7 (f,Af),u(Af)=f
R2 437 = 7 (1 (f,Af),u (Af))

=7 (f x Af, 1 (Af))
=[x Afxu (Af)
R3 RI&R2 = fxAfxu(Af)=Ff
= Afxu(Af)=1
= u(Af) =37

Theorem 547 If 1) is a pitch system and Af, Af1 and Afy are frequency intervals in ¢ then

(Afi =u (Af) AN(Af2 =4 (Af) = (Afr = Afs)

Proof
R1 Let Afi =1 (Af)
R2 Let Afo =1 (Af)

R3 R1&546 = Afi =4
R4 R2&546 = Afy =37
R5 R3&R4 = Afi=Af

R6 R1toR5 = (Afi = (Af)A(Afo =1 (Af)) = (Afy = Af)

247
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Exponentiation of frequency intervals

Definition 548 (Definition of €, (Af)) Given that:
1. 9 is a pitch system;
2. f is a frequency in ¥;
3. Af is a frequency interval in ;
4. m s an integer;
5. k is an integer and 1 < k < abs (n);
6. Afrp=Af for all k; and
7. Afar =t (Af) for all k;

then €. (Af) returns a frequency interval that satisfies the following equation:

7 (fyoe (Af11,Af12,. .. Af1))  if
Tf (fa €tn (Af)) = f if
e (f,0e (Afa1,Afa2,.. . Afa _y)) if

Theorem 549 (Formula for ¢, (Af)) If

1/) = [,UJCa Hm, vapC,O]

is a pitch system and Af is a frequency interval in 1 and n is an integer then

ern (Af) = (Af)"

n>0
n=~0
n<0

248
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

R11

R12

R13

R14

R15

R16

R17

R18

R19

R20

R21

R22

R23

R24

Let

Let

Let

Let

Let

R2, R3, R5 & 548

R6 & 542

R7 & 440

R3 & R8

R1, R5 & R9

R11

R12 & 437

548

R13, R14 & 440

R1 & R15

Let

R4, R17 & 548

R18 & 542

R19 & 440

R4 & R20

R21 & 546

R1, R17 & R22

R1, R10, R16 & R23

=

n be an integer

k be an integer such that 1 < k < abs(n)
Afi,=Af for all k

Afar =1 (Af) for all k

n1 be an integer greater than zero

7 (fs €6 (Af)) =76 (fr0e (Af11, Af12, - Afiny))

7 (fr et (BD) =71 (£ 1T Afy)
o (AF) = TT1L Afy

s (AF) = T[4 AF = (A"

ern (AF) = (Af)" when n > 0
(an’=1

7 (£.8°) =7 (£.1)

i (£AN°) = 1=

7 (frero (Af) = f

é0 (AF) = (Af)°

€ (Af) = (Af)" when n =0

ng be any integer less than zero

Ty (fv €f,no (Af)) =T (fv O¢ (AfQ,la Af2727 cee Af27*n2))

7 (Fr et (B) = 71 (£ T1;25 A2
ety (AF) = T1,22 A

ety (AF) = TI22 1 (AF) = (e (A)) ™
s (A) = (25) T =(an™

€t (AF) = (AF)" whenn < 0

€ (Af) = (Af)" for all integer n

249



CHAPTER 4. FORMAL SPECIFICATION OF MIPS

Theorem 550 If
1/) = [,UJCa Hm, vapC,O]

is a pitch system and Af is any frequency interval in ¢ then

u (Af) = &1 (Af)

Proof
R1 546 S u(Af) = =@n"
R2 549 = -1 (Af)= (A7

R3 R1 & R2 = Lg (Af) = €1 (Af)

Theorem 551 If
¥ = [le, fm; fo, Pe,o]

is a pitch system, ni,na,...nk is a collection of integers and Af is a frequency interval in 1) then

€t,ny ( - €fng (Efﬂll (Af)) e ) = 6{,1_[;?:1 n;

J

(Af)

250
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Proof
R1  Let Tk = €ty (- €pmy (€p,my (AS))-00)
R2  Let Yk = €1 n, (AS)
R3 Rl = 1= ¢, (Af)
RI R2 S =, (Af) = ey (AS)
R5 R3 & R4 = 1=y
R6 R1 = (:Ek =Yk = Tht1 = €t nyiy (yk))
R7 R2 = €mpr (k) = €mpas (ef,mzl n; (Af))
RS RT&S9 = ey () = s ((ADT2")
= ((apm=m) ™
= (Af)+ <ITjamy (Af)l_[?ill n;
= I n, (Af)
R9 R2 & RS = €t (Uk) = Yrt1
R10 R6 & RY =  (Th =Yk = Thi1 = Yrr1)
R11 R5 & R10 = xk = yi for all integer k greater than zero

R12 R1,R2& R11 = €, (- €y (€pny (AS))...) = €T, ny (Af)

Theorem 552 If
1/) = [IUJCa Hm, vapC,O]
18 a pitch system, n is an integer and Af is a frequency interval in 1 then
v (€n (AS)) = €,—n (AS)
Proof

R1 549 = i (ern (AF)) = e (AH™)

R2 R1&546 = (60 (Af) = b = (Af) "

R3 R2 & 549 = Lg (ef,n (Af)) = €,—n (Af)
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Theorem 553 If

1/) = [,UJCa Hm, vapC,O]

is a pitch system, n is an integer and Af is a frequency interval in 1 then:

Proof

R1 549 =

R2 R1&293 =

R3 R2& 518 =

Theorem 554 If

Ape (€6, (Af)) = €pen (Ape (Af))

Apc (ef,n (Af)) = Apc ((Af)n)
Ape (€0 (Af)) = pe x 2AD"

In(Af)
In2

=n X e X
=nxApc(Af)

Apc (65,0 (Af)) = €pe,n (Apc (Af))

¥ = [He, fim;, fo, Pe,0]

18 a pitch system, n is an integer and Af is a frequency interval in ¢ then:

Proof

R1 549 =

R2 R1&296 =

R3 R2&45 =

R4 R3&296 =

R5 R4 & 454 =

Theorem 555 If

is a pitch system, ni,na,...ny is a collection of integers and Af is a frequency interval in ¢ then

Ac(epn (Af)) = cen (Ac(Af))

Ac (e (Af)) = Ac((A)™)
Ac(epn (A) = (e x (2E20)) mod pe

— (i % e 440 mod g

Ac(en (Af)) = (n X ((uc X lnl(réf)) mod uc)) mod e
Ac(én (Af)) = (nx Ac(Af)) mod pe

Ac(ern (Af)) = €en (Ac(Af))

¥ = [He, fim;, fo, Pe,0]

p (€gny (AS) s €pmy (Af) ..o ey (AS)) = €50k ny (Af)

252
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Proof
R1 Let Tr = 0¢ (€gny (AS) s €ny (AF) -5 €my (AS))
R2 R1&542 =  ap =[]} €rn, (AS)
R3 R2&549 = ap =[], (Af)™
= (Af)F=™
=5 n (A)

R4 R1 & R3 = O¢ (ef,nl (Af) ; € no (Af) s ooy €fng, (Af)) = Ef)zk

Jj=1

n; (Af)

Exponentiation of the frequency tranposition function

Definition 556 (Definition of 7, (f,Af)) If ¢ is a pitch system and f is a frequency in ¢ and Af is a
frequency interval in i then

Ten (s Af) =7 (f, €t,n (Af))

Theorem 557 If
¥ = [pe, fim, fo, Pe,0]
18 a pitch system, ni,na, ..., Nk s a collection of integers, [ is a frequency in ¥ and Af is a frequency interval
in Y then
Troe (- Trng (T, (F, AF) S Af) o Af) = £,5°5  n; (f,Af)
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

R11

R12

R13

R14

R15

R16

Let

Let

R1

R2

R3 & R4

R1

R2

R7 & 556

R8 & 549

R9 & 437

R10 & 549

R11 & 556

R12 & R2

R13 & R6

R5 & R14

R1, R2 & R15

=

Tk = Teng (o Teong (Teona (FLAF),Af) o Af)

Yk =Tk oy (LAS)

r1 =Ty (f; AS)

U1 =Tost oy (FAS) = Tom, (£,A1)

P

(Tk = Yk = Thi1 = Trngy (U, AS))

Temess W AS) = e (Tt o, (FAS),AS)
Trames U AF) = Tems (70 (Freesn o, (BD) AF)
=7 (71 (Frcesor, ny (AD) €tms (AN))

Toms s A1) = 70 (70 (£, (ADTI™) L (a)™ )
Tomes (s A) =76 (f X (AT (Af)™)

= [ (AfT X (Af)

— Fx (AHEE

=7 (f.an=m)

T Uk AF) =T (fv €3k, (Af))

Tess (U AF) = T sowen,, (fAF)

Trness (Yoo AF) = Yt

(Th = Y& = Th41 = Yi+1)

) = yi for all integers k greater than zero

Tty ( - TEmo (Tf-,nl (fa Af) ) Af) cey Af) = Tf,zle n; (fv Af)
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4.6.8 Summation, inversion and exponentiation of pitch intervals
Summation of pitch intervals

Definition 558 (Definition of o, (Apy, Apa, ..., Ap,)) If

1/) = [,UJCa Hm, vapC,O]

is a pitch system and

AplaAp27 .. 7Ap’n.

18 a collection of pitch intervals in v then

op (Ap1, Apa, ..., Apn) = | Y (Ape (Ap)), Y (Apm (Apr))
k=1 k=1

Theorem 559 If
w = [MCv Hm, anpC,O]

is a pitch system and

AplaAp27 .. 7Ap’n.

18 a collection of pitch intervals in ¢ then

Ope (Ape (Ap1) ,Ape (Apz) ... Apc (Apg), ... Ape (Apy))
op (Ap1, Apa,...,Ap,) =
O (ADPm (Ap1) , APm (Ap2) ... AP (Apk) 5 - .- Apm (Apy))

Proof
R1 Let Tn = 0p (Ap1, Apa, ..., Apy)
R2 Let Yn = 0p. (Ape (Ap1), Ape (Aps) ;... Ape (Apg) ... Ape (Apy))
R3  Let Opm (ADPm (Ap1), Apm (Ap2) ;... Apm (Apk), ... Apm (Apn))
R4 558 & Rl = 2p = [0, (Ape(Apr)), S0y (A pm (Apk))]
R5 511 & R2 = Yn =2 p_s (Apc(Apy))
R6 527 & R3 = Zn =2 1 (Apm (Apr))
R7 R4, R5 & R6 = Zn = [Yn, 2n]

R8 R7,R1,R2& R3 = op(Ap1,Aps,...,Ap,)
Op. (Ape (Ap1) ,Apc (Ap2) ... Ape (Apk), ... Apc (Apy)),

Opm (ADPm (Ap1) , ApPm (Ap2) ;... Apm (Apk) ;- - Apm (Apn))
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Theorem 560 If ¢ is a pitch system and
Aplu AP% ceey Apn
is a collection of pitch intervals in ¥ and p is a pitch in ¢ then

T (p, 0p (Ap1, Apa, ..., App)) = 7p (... 7o (7o (p, Ap1) , Ap2) ..., Apy)
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

R11

R12

R13

R14

Let

Let

R1

R3 & 558

R4 & 270

R2

R5 & R6

R1 & R2

R1

R9 & 558

R10, 442, 267 & 269

R11, 427 & 432

R12, 442, 63 & 64

R13, 427 & 432

=

=

=

=

FORMAL SPECIFICATION OF MIPS

257

Tn = Tp (p7 Op (Aplu Ap% ceey Apn))

Yn = Tp ( --Tp (Tp (paApl) ,APQ) s ,Apn)

x1 = Tp (p,0p (Ap1))

21 =15 (b, [Shor (Ape (Api)), iy (A pu (A1)

=7 (p, [Ape (Ap1),

1 = Tp (p7 Apl)
y1 = Tp (p, Ap1)

1 =Y

Apm (Apl)])

(T = Y = Ykt1 = o (Tk, ADr11))

o (T, Aprs1) = Tp

('rka Akarl = Tp

o (T, Aprs1) = Tp

o (Tk, Aprs1) = Tp

T (Thy Apry1) =

T (Thy Apry1) =

Tp p: Op Aph Ap27 ceey Apk)) ) Apk"rl)

( ( p, [ 1 (Ape (Apy)), Z?:1 (Apm (Apj))D aApk+1)

Toe (pe (), 1 (Ape () |
s Apit1
i Tom (pm (p) Z?:l (A Pm (Apj)))
[ pe (p )+Z] 1 (Ape (Apj)),
s Aprt1
m (p) + ZJ 1 (A pm (Apj))

e (pc (p) + b1 (Ape (Ap;)), Ape (Apk+1)) :
T (P () + 251 (AP (891)) s A Pun (i) )
pe (p) + X5 (Ape (Ap;)) + Ape (Aprs) .

P (p) + 251 (Apm (Ap;)) + A pm (Apii1)

= [pe @) + S5 (Ape (8p5)) b (9) + 521 (A (29,))]

= [Tpc (pc (p), 521 (Ape (Apg)))  Toum (pm (p), X5 (Apm (Apg)))}
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R15 RI14, 442,267 & 269 = 7 (x4, Aprs1) = T (p7 [25;1 (Ape (Ap))) . S (A (Apj))D

R16 R15 & 558 = 7p (Tk, Apr+1) = 7o (P, 0p (Ap1, Apa, ..., Apgi1))

R17 RI16 & R1 = Tp (T, APkt1) = Tpt1

R18 RI17 & RS =  (Tk = Yk = Thi1 = Ykt1)

R19 RI18 & R7 = xp = yi for all integers k greater than zero

R20 RI19, R1 & R2 = 7 (p,op (Ap1,Apa, ..., Apy)) =1 (... (Tp (, Ap1) , Apa) ..., Apy)

Inversion of pitch intervals

Definition 561 (Inverse of a pitch interval) If ¢ is a pitch system and Ap is a pitch interval in b and
p is a pitch in v then the inverse of Ap, denoted tp (Ap), is the pitch interval that satisfies the following
equation

o (7o (p, Ap) s o (Ap)) =p

Definition 562 (Inversional equivalence of pitch intervals) If ¢ is a pitch system and Apy and Aps
are pitch intervals in 1 then Apy and Aps are inversionally equivalent if and only if

(to (Ap1) = Ap2) V (Ap1 = Aps)
The fact that two pitch intervals are inversionally equivalent is denoted as follows:
Apl =, Ap2

Theorem 563 If
1/) = [IUJCa Hm, vapC,O]

is a pitch system and Ap is a pitch interval in 1 then

tp (Ap) = [-Apc (Ap), —Apm (Ap)]
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Proof

R1

R2

R3

R4

R5

R6

561

R1 & 446

R2, 63, 64 & 446

R3 & 63

R3 & 64

R4, R5 & 270

Theorem 564 If

=

=

7o (7o (p, Ap) , tp (Ap)) = p

P =70 ([Pc () + Apc (Ap) , Pm (P) + Apm (Ap)], 1 (Ap))

p = [pc (p) + Ape (Ap) + Apc (tp (Ap)) , Pm (P) + Apm (Ap) + A pm (1 (Ap))]
Pe (p) = pe (p) + Ape (Ap) + Ape (tp (Ap))

Ape (tp (Ap)) = —Apc (Ap)

Pm () = Pm (P) + APm (Ap) + Apm (1p (Ap))

Apm (tp (Ap)) = —Apm (Ap)

tp (Ap) = [~Ap. (Ap), —Apm (Ap)]

¥ = [He, fim;, fo, Pe,0]

is a pitch system and Ap is a pitch interval in 1 then

Proof

R1

R2

R3

R4

563

515

531

R1, R2 & R3

=

tp (Ap) = [tp. (Apc (AP)), tp (A Pm (Ap))]

tp (Ap) = [~Ap. (Ap), —Apm (Ap)]

—Apc (Ap) = tp, (Apc (Ap))

—Apm (Ap) = tp,, (Apm (Ap))

tp (Ap) = [tp. (Ape (AP)), tp,m (A pm (Ap))]

Theorem 565 If ¢ is a pitch system and Ap, Apy and Aps are pitch intervals in v then

(Ap1 = tp (Ap)) A (Apa = tp (Ap)) = (Ap1 = Aps)
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Proof

R1

R2

R3

R4

R5

R6

Let

Let

R1 & 563

R2 & 563

R3 & R4

R1 to R5

=

=

=

=

Ap1 = tp (Ap)

Apy = 1p (Ap)

Apy = [-Apc (Ap) , —Apm (Ap)]
Apz = [-Apc (Ap) , —Apm (Ap)]
Apr = Aps

(Ap1 = tp (Ap)) A (Apa = tp (Ap)) = (Ap1 = Aps)

Exponentiation of pitch intervals

Definition 566 (Definition of €p,, (Ap)) Given that:

1. Y s a pitch system;

2. p is a pitch in Y;

3. Ap is a pitch interval in 1;

4. m is an integer;

5. k is an integer and 1 < k < abs (n);

6. Ap1,r = Ap for all k; and

7. Apa = tp (Ap) for all k;

then ep ., (Ap) returns a pitch interval that satisfies the following equation:

To (P, 0p (Ap1,1, Ap1y2, ... Ap1y))

™ (p, €p,n (Ap)) = p

To (D, 0p (Ap2,1, Ap2,2, ... Ap2 1))

Theorem 567 (Formula for ¢, (Ap)) If

¥ = [He, fim;, fo, Pe,0]

s a pitch system and Ap is a pitch interval in ¥ and n is an integer then

€pn (Ap) = [n x Apc (Ap) ,n x Apm (Ap)]

260
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

R11

R12

R13

R14

R15

R16

R17

R18

R19

Let

Let

Let

566, R2 & R1

445 & R4

558 & RH

R2 & R6

R1 & R7

Let

R3, R9 & 566

R10 & 445

558 & R11

R3 & R12

563 & 267

563 & 269

R13, R14 & R15

R9 & R16

566

446 & R18

n1 be any integer greater than zero.

Ap1 = Ap for all integer k

Apg i, = tp (Ap) for all integer k

o (D, €p,ny (AP)) = 7o (P, 0p (Ap1,1, Apr,2, .. - Ap1ny )
€p,ny (Ap) = 0p (Ap1,1, Ap12,- .. Apin,)

epny (Ap) = [5L1 (Ape (Ap1r)), ply (Apm (Ap,k))]
epny (Ap) = [ (Ape (Ap)), 3o5L; (Apm (Ap))]

= [n1 X Ap (Ap),n1 X Apm (Ap)]

ep,n (Ap) = [n X Apc (Ap),n X Apm (Ap)] for all integers n greater than zero

ng be any integer less than zero.
o (D, €p,nz (AP)) = 7o (p, 0p (Ap2,1, Ap2y2, ... Apa,—n,))
€pny (AP) = 0p (Ap21,Ap2a, ... AP _p,)

oans (A0) = [S0072 (Ape (Ap2)) s 0% (A b (Apz))]
epna (BP) = |11 (Ape (10 (Bp))).

o (Apm (10 (A9)))]

Ape (tp (Ap)) = —Apc (Ap)

ons (Ap) = [ (~Ape (8p), 373 (=2 b (Ap)

= [=n2 x (=Ape (Ap)) , —n2 X (A pm (Ap))]

= [n2 X (Apc (Ap)) ;2 X (Apm (Ap))]

ep.n (Ap) = [n X Ape (Ap) ,n x Apm (Ap)] for all integers n less than zero.
T (p,ép.0 (Ap)) = p

P = [pc (P) + Apc (€p,0 (Ap)) , Pm (P) + A Pm (€p,0 (Ap))]
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R20 RI19 & 65 = [Pc(P),Pm (P)] = [Pc (P) + Apc (€p,0 (AP)) ; Pm (P) + A Pm (€p,0 (Ap))]
R21 R20 = Pe(p) = Dpe (P) + Ape (ep,0 (Ap)) = Apc (ep,0 (Ap)) =0
R22 R20 = Pm (P) = Pm (P) + Apm (ep,0 (Ap)) = Apm (€p,0 (Ap)) =0

R23 R21,R22& 65 = epo(Ap) = [0,0]
R24 R23 = epn (Ap) =[n X Apc (Ap),n X Apm (Ap)] when n =0

R25 R8,R1I7T& R24 = €, (Ap) =[n x Apc(Ap),n x Apm (Ap)] for all integers n

Theorem 568 If
w = [MCv Hm, anpC,O]

is a pitch system and Ap is any pitch interval in ¥ then

tp (Ap) = €p,—1 (Ap)

Proof
R1 563 = 1p(Ap) = [~Apc (Ap), —Apm (Ap)]
R2 567 = ep—1(Ap) = [~1 X Apc (Ap), =1 x Apw (Ap)]

R3 R1 & R2 = lp (Ap) = €p,—1 (Ap)

Theorem 569 If
¥ = [e; pim; fo, Pe,o]

18 a pitch system, ni,na,...nk 1s a collection of integers and Ap is a pitch interval in 1) then

€p,ny ( - €pny (Ep,’ﬂl (Ap)) o ) = Ep,H;?:l nj (Ap)
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Proof
R1 Let Tk = €p,ny (.. S (2 (Ap))...)
R2  Let Yk = €p 15, n, (AP)
R3 Rl = 1 =¢épn, (Ap)
R4 R2 = U1 =G, 0, (AD) = e, (Ap)
R5 R3& R4 = 2=y
R6 Rl = (k= = Tep1 = @nyy (Uk))
R7 R2 = e k) = Doy (epmzl n; (Ap))
R8  RT7 & 567 = Epngyr (Uk) = Epngp ([Hle nj x Ape (Ap), TT5_; nj x Apm (AP)D

R9 R8, 567, 267 & 269 = €pn,,, (Yr) = [nkJrl X H?:l n; X Ape (Ap), N1 X H?Zl n; X Apm (Ap)}

= T2 s % Ape (Ap) T 0y x Apw (Ap)]

R10 R9 & 567 = ey (V) = 6y, (AP)

R11 R2 & RI10 = e (Yk) = Yrt1

R12 R6 & R11 = (Th =Yk = Thi1 = Yht1)

R13 R5 & R12 = xp = yi for all integers k greater than zero.
R14 RI1, R2 & R13 = (o Epma (Epmy (AD)) ) = €, (AD)

Theorem 570 If
¥ = [e, pim; fo, Pe,o]

18 a pitch system, n is an integer and Ap is a pitch interval in i then

tp (€p,n (Ap)) = €p,—n (Ap)
Proof

R1 568 = ip(€pn (Ap)) = €p,—1 (€p,n (Ap))

R2 569 & Rl = p(epn (Ap)) = €p,(—1xn) (Ap) = ep,—n (Ap)
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Theorem 571 If
1/) = [IUJCa Hm, vapC,O]

is a pitch system, n is an integer and Ap is a pitch interval in ¢ then:

Ac(epn (Ap)) = €cn (Ac(Ap))
Proof

R1 567 = Ac(epy (Ap)) =Ac([n x Apc (Ap),n x Apm (Ap)])

R2 274,267 & R1 = Ac(epn(Ap)) = (n x Apc (Ap)) mod pic

R3 454 =  €cn(Ac(Ap)) = (nx Ac(Ap)) mod e

R4 274 & R3 =  €en(Ac(Ap)) = (n X (Ape (Ap) mod pc)) mod pie
R5 R4 & 45 = e (Ac(Ap)) = (n x Apc (Ap)) mod pc

R6 R2 & R5 =  Ac(épy (Ap)) = €cn (Ac(Ap))

Theorem 572 If
1/) = [IUJCa Hm, vapC,O]

18 a pitch system, n is an integer and Ap is a pitch interval in ¢ then:

Am (epn (Ap)) = émn (Am (Ap))

Proof

R1 567 = Am(ep (Ap)) =Am([n x Ape (Ap),n x Apm (Ap)])

R2 276,269 & R1 = Am(epy, (Ap)) =(n X Apm (Ap)) mod pim

R3 468 = mn (Am(Ap)) = (n x Am (Ap)) mod fim
R4 276 & R3 = mn (Am(Ap)) = (1 % (A pm (Ap) mod fim)) mod fim
R5 R4 & 45 = mn (Am(Ap)) = (n X Apm (Ap)) mod fim

R6 R2& R5 =  Am(epn (Ap)) = emn (Am (Ap))

Theorem 573 If
1/) = [,UJCa Hm, vapC,O]

18 a pitch system, n is an integer and Ap is a pitch interval in ¢ then:

Ad(epn (Ap)) = €an (Ad(Ap))
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Proof

R1

R2

R3

R4

R5

482

301, 304 & R1

571, 572 & R2

R3, 301 & 304

R4 & 305

=

=

=

=

€an (AA(Ap)) = [ecn (Ac(AA(AP))); émn (Am (Ad(Ap)))]
€an (A4(Ap)) = [ecn (Ac(Ap)), €mn (Am (Ap))]
€an (AA(Ap)) = [Ac(epn (Ap)), Am (ép,n (Ap))]
can (Ad(Ap)) = [Ac(Ad(epn (Ap))), Am(Ad(epn (Ap)))]

Aq (Ep,n (Ap)) = €qn (Ad (Ap))

Theorem 574 If 1) is a pitch system, n is an integer and Ap is a pitch interval in ¢ then:

Ag(epn (Ap)) = €gn (AB(AP))
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Proof

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

R11

282

567

R2, 280, 267 & 269

572

R1, R3 & R4

501

317, 311 & R6

R7, 280 & 276

R8 & 58

R9 & 468

R10 & R5

=

Ag(epn (Ap)) = [Age (epn (Ap)), Am (6pn (Ap))]

Age (ép.n (Ap)) = Age ([n x Ape (Ap) ,n X Apm (Ap)])

Age (epn (Ap)) = n x Ape (Ap) — pe X ((n X Apm (Ap)) div pim)

Am (epn (Ap)) = émn (Am (Ap))

Ag(epn (Ap)) =

e (A8(Ap)) =

cgn (A8 (Ap)) =

cgn (A8(Ap)) =

cg.n (A8(Ap)) =

cgn (A8 (Ap)) =

cgn (A8(Ap)) =

[ x Ape (Ap) — pre X ((n X Apm (Ap)) div i) ,

€m,n (Am (Ap))
nxAg.(Ag(Ap))
—pte % ((n x Am (Ag(Ap))) div fim)
(n x Am(Ag(Ap))) mod fum
n X Age (Ap) — pre x ((n x Am (Ap)) div pim) ,
(n x Am (Ap)) mod i
n x (Ape (Ap) — pic X (A pm (Ap) div fim))
—pe % ((n % (Apm (Ap) mod pim)) div pim) ,
(n x Am (Ap)) mod fim
n x Apc (Ap)
n X (Apm (Ap) div fim)
e X
+((n % (Apm (Ap) mod pim)) div fim)
(n x Am (Ap)) mod i
n X Ape (Ap) — pe X ((n X Apm (Ap)) div pim) ,
(n x Am (Ap)) mod i
n X Ape (Ap) — pe X ((n X Apm (Ap)) div fim) ,

€m,n (Am (Ap))

Ag (ep,n (Ap)) = €g,n (Ag(Ap))

266
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Theorem 575 If 1 is a pitch system, n is an integer and Ap is a pitch interval in ) then:

Proof

R1

R2

R3

R4

018

567

267 & R2

R1 & R3

=

=

Apc (ep,n (Ap)) = €pen (Apc (Ap))

€pen (ADe (Ap)) = n x Apc (Ap)

€p,n (Ap) = [n X Apc (Ap),n X Apm (Ap)]

Apc (€pn (Ap)) =n x Apc (Ap)

Apc (€p,n (Ap)) = €p.,n (Ape (Ap))

Theorem 576 If ¢ is a pitch system, n is an integer and Ap is a pitch interval in i then:

Proof

R1

R2

R3

R4

534

567

269 & R2

R1 & R3

=

=

Apm (€pn (Ap)) = €ppn (Apm (Ap))

€pmn (A Pm (Ap)) =n X Apw (Ap)

€pn (Ap) = [n X Apc (Ap),n X Apm (Ap)]

Apm (€p,n (Ap)) =n X Apm (Ap)

Apm (€pn (Ap)) = €ppn (APm (Ap))

Theorem 577 If 1) is a pitch system, n is an integer and Ap is a pitch interval in ¢ then:

Proof

R1

R2

R3

R4

R5

R6

549

567

272

R2, R3 & 267

R4 & 272

R1 & RH

=

=

=

Af(epn (Ap)) = €rn (Af (Ap))

et (A (Ap)) = (Af (Ap))”

€p,n (Ap) = [n x Apc (Ap) ,n x Apm (Ap)]
At (epn (Ap)) = 2(Ape(ep,n(Ap))/pc)

AT (€pn, (Ap)) = 20 xAP(Ap)/pc)

= (Q(Apc(Ap)/uc))"

Af (epn (Ap)) = (Af (Ap))"

Af (ep,n (Ap)) = €, (Af (Ap))
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Theorem 578 If
1/) = [IUJCa Hm, vapC,O]

is a pitch system, ni,na,...nk is a collection of integers and Ap is a pitch interval in 1 then
Tp (€p,ny (AP) s €p.ns (AD) -5 € (AP)) = €5 5k 1, (AP)
Proof
R1 Let Tk = 0p (€p,ny (AD), €pny (AD) ;- €pny, (AD))
R2 RI & 558 = @ =[S0 (Ape (e, (A9))) Ty (A (epn, (A9)))]
R3 567 = €, (Ap) = [nj X Apc (Ap),nj X Apm (Ap)]

R4 R3, 267,260 & R2 = aj = {Z?:l (nj x Ape (Ap), X, (nj x Apm (Ap))}

= [(Shams) x b (@), () * Ap (9]
R5 R4 & 567 = ok =&y, (Ap)

R6 R1&RH = Op (Ep,nl (Ap) ) €p,ngy (Ap) oo Epyng (Ap)) = Ep,zfz g (Ap)

Exponentiation of the pitch tranposition function
Definition 579 (Definition of 7 ,, (p, Ap)) If ¢ is a pitch system and p is a pitch in v and Ap is a pitch
interval in Y then

Tp,n (p7 Ap) =Tp (p7 Ep,n (Ap))

Theorem 580 If
Y = [He, fim, fo, Pe,0]
18 a pitch system, my,no,...,ng is a collection of integers, p is a pitch in ¢ and Ap is a pitch interval in
then
o (- Toins (o1 (P, AP), AP) -, Ap) = Ty 5o (s AP)
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Proof

R1

R2

R3

R4

R5

R6

Let

R1 & 579

R2 & 560

R3 & 578

R4 & 579

R1 & R5

=

Tk = Tpng (- Toons (Tony (0, Ap), Ap) ..., Ap)

2 =Tp (.. 7o (7o (P, €p,n, (AP)) , €p,ns (AP)) - -, €0,y (AP))
2 = Tp (P, 0p (€p,ny (AP), €p,ny (AD) .- - €pny, (AP)))
=70 (P65, (AD))

Tk =Tp 52k ny (p, Ap)

Tp,np ( -+ Tp,ngy (Tp,nl (p7 AP) ) AP) ) Ap) =Tp,>k_n; (pu Ap)

Jj=1

4.7 Sets of MIPS objects

4.7.1 Universal sets of MIPS objects

Definition 581 The universal set of pitches P, for a specified pitch system ¥ is the set that contains all and

only pitches within .

Theorem 582 For a specified pitch system 1, p, contains all and only those values p = [pc, pm] such that

(pc € Z) A (pm € Z)

where Z is the universal set of integers.

Proof

R1

R2

R3

R4

Let

R1 & 62

R1 & 62

R2, R3 & 581

p = |pe, pm| be any pitch whatsoever in a pitch system ).

= pc can only take any integer value.
= pm can only take any integer value.

= p, contains all and only those values p = [Pc, Pm]

such that (pc € Z) A (pm € Z)

where Z is the universal set of integers.

Definition 583 The universal set of chromatic pitches p_ N for a specified pitch system 1 is the set that

contains all and only chromatic pitches within 1.

Theorem 584 For a specified pitch system 1,

where 7 is the universal set of integers.
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Proof

R1 Let p = |pe, pm| be any pitch whatsoever in a pitch system ).
R2 R1&62 = pc can only take any integer value.

R3 R2&583 = »p

P, = Z where 7 is the universal set of integers.

Definition 585 The universal set of morphetic pitches . for a specified pitch system 1 is the set that

contains all and only morphetic pitches within .

Theorem 586 For a specified pitch system 1,

P =2
where Z is the universal set of integers.
Proof
R1 Let p = |pe, pm| be any pitch whatsoever in a pitch system ).

R2 R1&62 = pm can only take any integer value.

R3 R2& 585 = p = Z where Z is the universal set of integers.

m,u

Definition 587 The universal set of frequencies Ll for a specified pitch system 1 is the set that contains all

and only those values that can be taken by the frequency of a pitch within .

Theorem 588 For a specified pitch system 1,

[, =R"
where RT is the universal set of real numbers greater than zero.
Proof

R1 Let f be any frequency in .

R2 67& Rl = f can only take any value such that f € R™.

R3 R2&587 = f = R* where RT is the universal set of positive real numbers.

Definition 589 The universal set of chromae ¢, for a specified pitch system 1 is the set that contains all

and only those values that can be taken by a chroma in 1.
Theorem 590 For a specified pitch system

¥ = [He, fim, fo, Pe,0]
¢, contains all and only those values ¢ such that

(ceZ)N(0<c< pe)
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Proof

R1 Let p be any pitch in .
R2 72& R1 = c(p) can only take any value such that (c(p) € Z) A (0 < c(p) < pc).

R3 589 & R2 = ¢, contains all and only those values ¢ such that (¢ € Z) A (0 < ¢ < pic).

Definition 591 The universal set of morphs m, for a specified pitch system 1) is the set that contains all

and only those values that can be taken by a morph in .
Theorem 592 For a specified pitch system

¥ = [fic, ;s fo, Pe,o]
m,, contains all and only those values m such that

(meZ)A0<m< i)

Proof

R1 Let p be any pitch in .
R2 77& R1 = m(p) can only take any value such that (m(p) € Z) A (0 <m (p) < pim)-

R3 591 & R2 = m, contains all and only those values m such that (m € Z) A (0 <m < pm).

Definition 593 The universal set of chromamorphs q, for a specified pitch system 1) is the set that contains

all and only those values that can be taken by a chromamorph in .
Theorem 594 For a specified pitch system

Y = [He, fim, fo, Pe,o]
q,, contains all and only those values q = [e,m] such that

(c €cy) AN(m em,)
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Proof
R1 Let p be any pitch in .
R2 80 & Rl = d(p) = [c(p), m(p)]
R3  Let c=c(p)
R4 Let m = m (p)
R5 Let qg=14(p)

R6 R2,R3,R4&R5 = q=]lc,m]
R7 R3 & 589 = ¢ can only take any value such that ¢ € ¢,.
R8 R4 & 591 = m can only take any value such that m € m,,.

R9 593, R6, R7T & R8 = ¢ contains all and only those values g = [c, m] such that (c € ¢,) A (m € m,,).

Definition 595 The universal set of chromatic genera g_ N for a specified pitch system v is the set that

contains all and only those values that can be taken by a chromatic genus in .

Theorem 596 For a specified pitch system 1,

e =
where Z is the universal set of integers.
Proof
R1 Let p be any pitch in .
R2 83 = g (p) can only take any integer value.

R3 R2&595 = g =17

Zc,u

Definition 597 The universal set of genera g, for a specified pitch system 1 is the set that contains all and

only those values that can be taken by a genus in 1.

Theorem 598 For a specified pitch system 1, g, contains all and only those values g = [gc, m| such that

(gc € g) A (m € my,)
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Proof
R1 Let p be any pitch in .
R2 84 = 8(p) = [ge(p), m(p)]
R3  Let ge (P) = ge
R4  Let m(p) =m
R5  Let g(p) =g
R6 R2toR5 = g=[ge,m]
R7 595 & R3 = gc can only take any value in 9o
R8 591 & R4 = m can only take any value in m,,.

R9 R6,R7& R8 = g can only take any value such that (gc €9, u) A (m € m,).

R10 597, R6 & R9 = g contains all and only those values g = [gc, m] such that (gC €9, u) A (m e m,).

4.7.2 Definitions for sets of MIPS objects
Definition 599 IfBu is the universal set of pitches for the pitch system v, then p is a well-formed pitch set
n Y if and only if

pEp,

Definition 600 If P, 18 the universal set of chromatic pitches for the pitch system 1, then p, isa well-
formed chromatic pitch set in ¢ if and only if

|3

c - Z_jc,u

Definition 601 Ifp L, is the universal set of morphetic pitches for the pitch system ¢, then p_ is a well-
formed morphetic pitch set in ¥ if and only if

p

Definition 602 If iu is the universal set of frequencies for the pitch system 1, then f is a well-formed
frequency set in ¢ if and only if

f<rf,
Definition 603 If ¢, is the universal set of chromae for the pitch system 1, then c is a well-formed chroma
set in ¢ if and only if

N

=Gy

Definition 604 If m, is the universal set of morphs for the pitch system 1, then m is a well-formed morph
set in ¢ if and only if

m C m,
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Definition 605 If q,, is the uniersal set of chromamorphs for the pitch system 1, then q is a well-formed
chromamorph set in 9 if and only if

1<,

Definition 606 If g_ . 18 the universal set of chromatic genera for the pitch system 1, then g_ is a well-
formed chromatic genﬁs set in ¥ if and only if

9.5 9.,

Definition 607 Ifgu is the universal set of genera for the pitch system v, then g is a well-formed genus set
n Y if and only if
9¢9,

4.7.3 Chroma set number and morph set number
Definition 608 If ¢ is any chroma set in a pitch system 1,
Cc = {01,02,...ck,...c‘g‘}

then the set number of ¢, n(c) is given by the following equation:

||
n(c) = Z 20k
k=1

Definition 609 If m is any morph set in a pitch system ),
m = {ml,mg,...mk,...m‘m|}

then the set number of m, n (m) is given by the following equation:

4.7.4 Functions that convert between MIPS object sets of different types
Functions that take a MIPS pitch set as argument

Definition 610 If
p=A{p1,p2, - Pk, -}

is a pilch set in a pitch system 1, then the following function returns the chromatic pitch set of p:

|
p. (p) = |J {pe (1)}
k=1

Definition 611 If
b= {p17p27 v Dky e }

is a pitch set in a pitch system ), then the following function returns the morphetic pitch set of p:

Pl

Py () = U {pm (o)}
k=1
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Definition 612 If

is a pitch set in a pitch system 1,

Definition 613 If

is a pitch set in a pitch system 1,

Definition 614 If

18 a pitch set in a pitch system 1,

Definition 615 If

18 a pitch set in a pitch system 1),

Definition 616 If

18 a pitch set in a pitch system 1),

Definition 617 If

18 a pitch set in a pitch system 1),

p=Ap1,p2, - Pk, ...}

then the following function returns the frequency set of p:

|p|
f£(p) = |J {t (o)}
k=1

p=A{p1,p2, .- Pk, .-}

then the following function returns the chroma set of p:

p=A{p1,p2, - Dky ...}

then the following function returns the morph set of p:

Pl

m (p) = (J {m (px)}
k=1

p=A{p1,p2, - Dk; .-}

then the following function returns the chromamorph set of p:

Pl

a(p) = J {aew)}
k=1

p=A{p1,p2, - Pk; ...}

then the following function returns the chromatic genus set of p:

Pl

g, (p) = | {8 (ox)}
k=1

B: {p17p27" -Pk, - - }

then the following function returns the genus set of p:

Pl
g(p) = J{sn)}



CHAPTER 4. FORMAL SPECIFICATION OF MIPS 276

Functions that take a MIPS chromatic pitch set as argument

Definition 618 If
p. = {Pe,15Pe,25 -+ Doy -+ -}

s a chromatic pitch set in a pitch system 1, then the following function returns the chroma set ofg_jc:

lp.|

¢(p.) = U {e@en))
k=1

Definition 619 If
p.= {Peaspe2, Doy}

18 a chromatic pitch set in a pitch system 1, then the following function returns the frequency set of;l_)c:

lp.|

t(n) = U o)

Functions that take a MIPS morphetic pitch set as argument

Definition 620 If
b, = {Pm,1,Pm2s - Pmks - - -}

is a morphetic pitch set in a pitch system v, then the following function returns the morph set of p_:
lp,,|

m(p,,) = U {(m (i)}
k=1

Functions that take a MIPS frequency set as argument

Definition 621 If
i: {f17f27-'-f]g,...}

is a frequency set in a pitch system 1, then the following function returns the chromatic pitch set of f:

[f]
2. (f) = J {pe ()}
k=1

Definition 622 If
i: {flva;---fk,...}

is a frequency set in a pitch system 1, then the following function returns the chroma set of f:

f]
c(f) = Y {ern)
k=1



CHAPTER 4. FORMAL SPECIFICATION OF MIPS 277

Functions that take a MIPS chromamorph set as argument

Definition 623 If
g: {qlana"'qu"'qn}

is a chromamorph set in a pitch system 1, then the following function returns the chroma set of q:

lq|
c(q) = J {el@)}
k=1

Definition 624 If
g: {qlana"'qu"'qn}

is a chromamorph set in a pitch system 1, then the following function returns the morph set of q:

Functions that take a MIPS chromatic genus set as argument

Definition 625 If
QC = {gcylng.,Qa c--Geky - }

is a chromatic genus set in a pitch system v, then the following function returns the chroma set of g :

lg.|

c(g,) = U felger)}
k=1

Functions that take a MIPS genus set as argument

Definition 626 If
9= {917927"-gk,...}
is a genus set in a pitch system 1, then the following function returns the chromatic genus set of g:
lgl

g (9) = U fec (90)}
k=1

Definition 627 If
9=191,92,-- -9k, -}

is a genus set in a pitch system 1, then the following function returns the morph set of g:

lgl
m (g) = | J {m(gx)}
k=1

Definition 628 If
9= {917927"-gk,...}

is a genus set in a pitch system 1, then the following function returns the chroma set of g:

lgl

c(9) = U {elon)}
k=1
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Definition 629 If
9=191,92,-- -9k, -}

is a genus set in a pitch system 1, then the following function returns the chromamorph set of g:

S

a(g) = | {a(gx)}

o

k

1

4.7.5 Equivalence relations between MIPS object sets
Equivalence relations between pitch sets

Definition 630 (Bl =pe 32) Two pitch sets P, and p, i a well-formed pitch system are chromatic pitch

b (0) =2 (2)

The fact that two pitch sets are chromatic pitch equivalent will be denoted

equivalent if and only if

r, =pe Db,

Definition 631 (}_91 =5 ]32) Two pitch sets P, and Py i a well-formed pitch system are morphetic pitch

o (22) = o (22)

The fact that two pitch sets are morphetic pitch equivalent will be denoted

equivalent if and only if

Bl Epm BQ
Definition 632 (}_91 = ]_92) Two pitch sets P, and Py ina well-formed pitch system are frequency equivalent

if and only if
f (El) =f (32)

The fact that two pitch sets are frequency equivalent will be denoted

Py =t Py

Definition 633 (Bl =c 92) Two pitch sets P, and Py N a well-formed pitch system are chroma equivalent if

c(e) -<(z)

The fact that two pitch sets are chroma equivalent will be denoted

and only if

Py =c Dy

Definition 634 (Bl =m 32) Two pitch sets P, and p, ina well-formed pitch system are morph equivalent if

n(n) -m (s

The fact that two pitch sets are morph equivalent will be denoted

and only if

Py =mp,
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Definition 635 (}_91 =q ]32) Two pitch sets P, and P, ina well-formed pitch system are chromamorph equiv-

a(n) =a(z.)

The fact that two pitch sets are chromamorph equivalent will be denoted

alent if and only if

Py =aPp,

Definition 636 (Bl = Bg) Two pitch sets P, and Py G well-formed pitch system are chromatic genus

g, (21) =& (32)

The fact that two pitch sets are chromatic genus equivalent will be denoted

equivalent if and only if

Dy Zec Py

Definition 637 (Bl =g 92) Two pitch sets P, and P, in a well-formed pitch system are genus equivalent if

g(r,) =5(r.)

The fact that two pitch sets are genus equivalent will be denoted

and only if

P, =D,

Equivalence relations between chromatic pitch sets

Definition 638 (Bc LSt P, 2) Two chromatic pitch sets p_ L and p,_ , N a well-formed pitch system are fre-

f (Bc,l) =1 (Bc.z)

The fact that two chromatic pitch sets are frequency equivalent will be denoted

quency equivalent if and only if

I—?c,l =t I—?c,2

Definition 639 (Bc | =c Bcz) Two chromatic pitch sets p_ L and P, ina well-formed pitch system are

¢(2e1) =¢(r.)

The fact that two chromatic pitch sets are chroma equivalent will be denoted

chroma equivalent if and oﬁly if

1_?(:,1 =c 2—?0,2

Equivalence relations between morphetic pitch sets

Definition 640 (Bm L =mp 2) Two morphetic pitch sets p | L and p_ , ina well-formed pitch system are

m(p,,,) =m(p,,)

The fact that two morphetic pitch sets are morph equivalent will be denoted

morph equivalent if and only if

]_?m,l —m Bm,2
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Equivalence relations between frequency sets

Definition 641 (il =pe i2) Two frequency sets il and i2 in a well-formed pitch system are chromatic pitch

2 (£,) = (£,)

The fact that two frequency sets are chromatic pitch equivalent will be denoted

il =pe iz

equivalent if and only if

Definition 642 (il = iQ) Two frequency sets i1 and iQ in a well-formed pitch system are chroma equiv-

c(£,)=<(s)

The fact that two frequency sets are chroma equivalent will be denoted

il =c iz

alent if and only if

Equivalence relations between chromamorph sets

Definition 643 (gl = g2) Two chromamorph sets q, and g, in a well-formed pitch system are chroma

¢(n) =<(z)

The fact that two chromamorph sets are chroma equivalent will be denoted

equivalent if and only if

4 =c 4,

Definition 644 (gl =m 22) Two chromamorph sets 4, and q, " a well-formed pitch system are morph

n(g,) =m(s)

The fact that two chromamorph sets are morph equivalent will be denoted

equivalent if and only if

4, =m 4,

Equivalence relations between chromatic genus sets

Definition 645 (g, =cg_,

chroma equivalent if and only if

) Two chromatic genus sets 9., and 9., na well-formed pitch system are
(0.1) =2(0.:)

The fact that two chromatic genus sets are chroma equivalent will be denoted

gc,l =c gc,Q

Equivalence relations between genus sets

Definition 646 (21 = 22) Two genus sets 9, and g, ina well-formed pitch system are chromatic genus

e (9,) =2 (9,)

The fact that two genus sets are chromatic genus equivalent will be denoted

equivalent if and only if

93 =g 9y
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Definition 647 (21 =m ﬁz) Two genus sets 9, and g, i a well-formed pitch system are morph equivalent

if and only if
o(u)-n(s)

The fact that two genus sets are morph equivalent will be denoted

9y =m Yy

Definition 648 (21 =c 22) Two genus sets 9, and g, i a well-formed pitch system are chroma equivalent
if and only if

¢(2,) =< (s.)
The fact that two genus sets are chroma equivalent will be denoted

91 =c Y,

Definition 649 (21 =q £2) Two genus sets 9, and g, ina well-formed pitch system are chromamorph equiv-

1) =4(s.)

The fact that two genus sets are chromamorph equivalent will be denoted

alent if and only if

9, =a9,

4.7.6 Sorting MIPS object sets

Sorting pitch sets

Definition 650 If
Bl = {p1717p1,27 ey Pl 7p1,\£1\}

is a pitch set in a well-formed pitch system then the function p Tp. (Bl) returns the unique ordered pitch set

BTPC (Bl) = |:p2717p2,27" s P2ks - - '7]92,\21\}

that satisfies the following conditions:

(peptn () = (ren)

> [t (o) =
3. For all natural numbers k such that 1 < k < |g1|, it is true that

)

P2,k Spe P2,k+1
4. For all natural numbers k such that 1 <k < |g1|, it is true that
(P2,k Zpe P2kt1) = (P2.k <pm P2k+1)

Definition 651 If
p, = {p1,1,p1,2, s Pk - 7p1,\£1\}

is a pitch set in a well-formed pitch system then the function p |, (]31) returns the unique ordered pitch set

El«pc (Ql) = [p2,1,p2,2,---7p2,k,---7p2,\£1\}

that satisfies the following conditions:
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(pepin () = (pen)

2 \B L. (231)\ = \1_91

3. For all natural numbers k such that 1 <k < |p |, it is true that

)

P2k Zpe P2.k+1
4. For all natural numbers k such that 1 <k <|p,|, it is true that
(P2,k Zpe P2kt1) = (P2.k >pm P2k+1)

Definition 652 If
p, = {p1,1,p1,2, ces Pk - 7p1,\£1\}

is a pitch set in a well-formed pitch system then the function p Tp,, (1_91) returns the unique ordered pitch set

ETpm (QJ = [p2,1,p2,2,---7p2,k,---7p2,\£1\}

that satisfies the following conditions:

perinn () = (ren)

2 [ Ton (2)| = |2y

3. For all natural numbers k such that 1 <k < |p |, it is true that

)

P2k Spm P2,k+1
4. For all natural numbers k such that 1 <k < |p,|, it is true that
(P2,k Zp P2,i+1) = (P25 <pe P2,k+1)

Definition 653 If
p, = {p1,1,p1,2, s Pk - 7p1,\gl\}

is a pitch set in a well-formed pitch system then the function p |, (1_91) returns the unique ordered pitch set

Elpm (Ql) = [p2,1,p2,2,---7p2,k,---7p2,\£1\}

that satisfies the following conditions:

L (penten () = (en):
2 \Elpm (21)\ = !91

3. For all natural numbers k such that 1 <k < |p |, it is true that

)

D2k Zpw P2,k+1
4. For all natural numbers k such that 1 <k <|p,|, it is true that

(P2,k =pm P2,k+1) = D2,k >pe P2,k+1)
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Sorting chromatic pitch sets

Definition 654 If
BC,] = {pC,l,lapC,l,Qa ... 5pC,l,k7 cee 7pC,l,|EC ll}

18 a chromatic pitch set in a well-formed pitch system then the function p. 1 (]_96 ) returns the unique ordered

1
chromatic pitch set

BC T (BC,I) = |:pC,2,17pC,2,27 cee 7pC,2,k7 cee apC,Q,‘BCY1|:|

that satisfies the following conditions:
& (pc €p. 1 (Bc,l)) (pc egc,l)"

p 1 (Bc,l)‘ -

3. For all natural numbers k such that 1 < k < |gc 1|, it is true that

2.

)

Bc,l

Pe,2,k < Pe,2,k+1
Definition 655 If
Poqr = {pc,l,lapc,l,% s PeLks -5 Pe,|p, 1|}

18 a chromatic pitch set in a well-formed pitch system then the function p. ! (]_96 1) returns the unique ordered
chromatic pitch set

BC l (BC,I) = |:pC,2,17pC,2,27 cee 7pC,2,k7 cee apC,Q,‘BCY1|:|

that satisfies the following conditions:
L (pc €p !l (Bc,l)) A (pc egc,l)"

Pl (Bc,l)‘ =

3. For all natural numbers k such that 1 <k < |gc 1|, it is true that

2.

Bc,l

)

Pec,2,k > De,2,k+1

Sorting morphetic pitch sets

Definition 656 If
Bm,l = {pm,l,lupm,l,Qa cesPm 1k, - 7pm,1,|gm 1\}

is a morphetic pitch set in a well-formed pitch system then the function P, T (B ) returns the unique

m,1
ordered morphetic pitch set

Em T (Qm,l) = [pm,?,lapm,&% ceeyPm 2,k - - 7pm,2,|gmyl\j|

that satisfies the following conditions:

b (ome (o)) = (mena)

2 [ 1 (as)| = [

3. For all natural numbers k such that 1 < k < |gm 1|, 1t is true that

Pm,2,k < Pm,2,k+1
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Definition 657 If
pm,l - {pm,l,lapm,l,% <o Pm ks - ’pm’l’lgm 1‘}

18 a morphetic pitch set in a well-formed pitch system then the function p, | (]gm 1) returns the unique
ordered morphetic pitch set

p, ! (Ijmﬁl) = [pm,z,l,pm,z,z, cePm2ks ,pm,z,@m@

that satisfies the following conditions:

b (pme (o)) = (mena)

2 ot ()] -

3. For all natural numbers k such that 1 <k <|p_ 1|, it is true that

7

Pm 2,k > Pm,2,k+1

Sorting frequency sets
Definition 658 If
[ = {fl,la Sz, fiks s fl,\il\}

1s a frequency set in a well-formed pitch system then the function f T (il) returns the unique ordered frequency

set
£ T (il) = |:f2,17f2,27 ceey f2,7€7 KR 7f2,|i1|:|
that satisfies the following conditions:

1(retr(n)) = (res)
201 (2)]= |,

8. For all natural numbers k such that 1 <k < |f [, it is true that

)

for < for41

Definition 659 If
il = {f1,17f1,27"'7fl,k7"'7fl,\il\}

18 a frequency set in a well-formed pitch system then the functionf | (i1) returns the unique ordered frequency
set

fl (L) = [f2,1,f2,2,---,f2,kv---vf27lill}

that satisfies the following conditions:

C(reti(s) = (ren)

2 |1 (4)]= 15

3. For all natural numbers k such that 1 <k < |f [, it is true that

7

fox > fort1
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Sorting chroma sets

Definition 660 If
Ql - {Cl,la C1,27 ety Cl,kv ) Cl,‘gll}

is a chroma set in a well-formed pitch system then the function ¢ 1 (¢;) returns the unique ordered chroma
set

QT (gl) - [62,1702,2; . '702,]6; . '702,@1‘}

that satisfies the following conditions:
1. (cecT(e)) <= (c€q);

2. |e T ()l = leal;
3. For all natural numbers k such that 1 < k < |c|, it is true that
C2.k < C2k+1
Definition 661 If

G = {01,1701,27 - Clks - -701,\91|}

is a chroma set in a well-formed pitch system then the function c | (¢;) returns the unique ordered chroma
set

C l (gl) - [62,17 02,2; sty 02,]6; ceey CQ,‘gld
that satisfies the following conditions:
1. (cecl(e)) <= (ceq);

2. lc | (c)l = lal;

3. For all natural numbers k such that 1 < k < |c|, it is true that
C2k > C2k+1

Sorting morph sets

Definition 662 If

my; = {m1,17m1,27 sy MKy - - ,ml,\ml\}

is a morph set in a well-formed pitch system then the function m T (m;) returns the unique ordered morph
set

m | (m1) = [m2,1;m2,2;'"7m2,k7"'5m2,‘m1|]

that satisfies the following conditions:

L(meml (m)) < (mem);

3. For all natural numbers k such that 1 < k < |my|, it is true that

ma kg < M2 k+1
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Definition 663 If

my; = {m1,17m1,27 sy MKy - - ,ml,\ml\}

is a morph set in a well-formed pitch system then the function m | (m,) returns the unique ordered morph

set
m | (my) = [ma1,m22,. .., Mok, ..., Mo jm, ]

that satisfies the following conditions:
1. (mem| (my)) < (mem);
2. |m | (my)] = [my,|;
3. For all natural numbers k such that 1 <k < |my,|, it is true that

ma k. > M2 k+1

Sorting chromamorph sets
Definition 664 If
21 = {Q1,17 q1,2,---54q1,ky - -, ql,\gl|}

is a chromamorph set in a well-formed pitch system then the function q T (21) returns the unique ordered
chromamorph set

q Te (gl) = {Q2,1,Q2,2, s 2,k - - -7Q2,|g1|}

that satisfies the following conditions:

(veare(0) = (ren)

o e (0)] -l

3. For all natural numbers k such that 1 <k <'|q |, it is true that

)

@2,k Sc §2,k+1
4. For all natural numbers k such that 1 <k < |g1|, it 1s true that
(QQ,k =c Q2,k+1) = (Q2,k <m Q2,k+1)

Definition 665 If
4, = {(J1,1,(J1,2, s 1k - -,(J1,\gl|}

is a chromamorph set in a well-formed pitch system then the function q |c (21) returns the unique ordered
chromamorph set

q e (gl) = {Q2,1,Q2,2, s 2,k - - '7Q2,|g1|:|

that satisfies the following conditions:

 (vear (a) — (rea)
2 fate ()

7
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3. For all natural numbers k such that 1 <k <'|q |, it is true that
Q2,k Zc q2,k+1
4. For all natural numbers k such that 1 <k <|q, |, it is true that

(qQ,k =c Q2,k+1) = (Q2,k >m Q2,k+1)

Definition 666 If
21 = {Q1,17 41,25 -5 q1ky -+ ql,\gl|}

is a chromamorph set in a well-formed pitch system then the function q Tm (g1> returns the unique ordered
chromamorph set

ng (gl) = [Q2,1,Q2,2,---,Q2,k,---7Q2,|gl\}

that satisfies the following conditions:

(seain(n) = (ren)
2 fato (0] = Ja

3. For all natural numbers k such that 1 <k <'|q |, it is true that
@2,k <m q2,k+1
4. For all natural numbers k such that 1 <k < |g1|, 1t is true that

(qQ,k =m qQ,k+1) = (QQ,k <c Q2,k+1)
Definition 667 If
21 = {Q1,17 41,2, 4q1,ky - -, ql,\gl|}

is a chromamorph set in a well-formed pitch system then the function q |m (g1> returns the unique ordered
chromamorph set

glm (gl) = [Q2,1,Q2,2,---,Q2,k,---7Q2,|gl\}

that satisfies the following conditions:

(veain(n) = (ren)

2. \g i (21)\ = !21

3. For all natural numbers k such that 1 < k < |g1|, it is true that

)

92,k Zm §2,k+1
4. For all natural numbers k such that 1 <k < |g1|, 1t is true that

(qQ,k =m qQ,k+1) = (QQ,k >c Q2,k+1)
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Sorting chromatic genus sets

Definition 668 If
gc)l = {gc,l,lng,l,Qa sy G9c1ky - 7gC,l,|gC 1|}

is a chromatic genus set in a well-formed pitch system then the function g 1 (ge 1) returns the unique ordered

chromatic genus set
g. 1 (20,1) = [90,2,179072,27-'-790,2,k7'-'79c,2,|gc’1|}

that satisfies the following conditions:
t(oeen(8,)) = (ecn,)

g1 (gc,l)’ =

3. For all natural numbers k such that 1 <k <'g_|, it is true that

2. g

Ze,1 |’

ge,2,k < Ge,2,k+1

Definition 669 If

gC 1 = {gC,lylng,LQa sy 9c1ky - 7gC,l,|gC 1|}

18 a chromatic genus set in a well-formed pitch system then the function g. ! (gc 1) returns the unique ordered
chromatic genus set

gc l (gc,l) = |:gc,2,1;g(3,2,25 sy 89c2ky - 7gC,2,|gCY1|:|

that satisfies the following conditions:
L (gc €g. (Qc,l)) — (gc € 20,1);

g ! (gc,l)‘ -

3. For all natural numbers k such that 1 <k <'|g_|, it is true that

2.

gc 1 ’
Je,2,k > Ge,2,k+1

Sorting genus sets

Definition 670 If
9 = {91,1,91,2, Lk ’gl"ﬂl‘}

is a genus set in a well-formed pitch system then the function g Tg (gl) returns the unique ordered genus set

g Tgc (21) = [92,1,92,2, N o T ’92"21‘}

that satisfies the following conditions:

1. (gengc (21)) — (9621)"

2 [, (2)] = o

3. For all natural numbers k such that 1 <k <|g |, it is true that

92,k <g. 92,k+1
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4. For all natural numbers k such that 1 <k <|g |, it is true that
(92,k =g. 2,6+1) = (92,6 <m g2,k+1)

Definition 671 If
Ql = {91,1791,27 e 91k - 791,\21\}

is a genus set in a well-formed pitch system then the function g lg (&) returns the unique ordered genus set

g lgc (gl) = [92,1,92,2, e 920k - ,92,@1\}

that satisfies the following conditions:

1. (gEglgc (21)) — (9621);

2 [ (21)] = o
3. For all natural numbers k such that 1 <k <|g |, it is true that

)

92,k Zge 92,k+1
4. For all natural numbers k such that 1 <k <|g |, it is true that
(926 =gc 92.k41) = (926 >m g2,k41)

Definition 672 If
Ql = {91,1791,27 e 91k - - 791,\21\}

is a genus set in a well-formed pitch system then the function g T (&) returns the unique ordered genus set

g Tm (gl) = [92,1792,2, 92k - ,92,@1\}

that satisfies the following conditions:

t(ocetn(a)) = (vea)

> [t (2)] = o
3. For all natural numbers k such that 1 < k < |g1|, it s true that

)

92,k <m 92,k+1
4. For all natural numbers k such that 1 <k <|g |, it is true that
(926 =m g2.6+1) = (92, <go 92.k+1)

Definition 673 If
9, = {91,1,91,2, RER S WINEE ’gl"ﬂl‘}

is a genus set in a well-formed pitch system then the function g . (gl) returns the unique ordered genus set

g lm (gl) = [92,1792,2, 92k - ,92,@1\}

that satisfies the following conditions:
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(resia(e) = (ren)

2 Jota @)l - o

3. For all natural numbers k such that 1 < k < |g1|, it is true that

)

92,k Zm 92,k+1
4. For all natural numbers k such that 1 <k < |g1|, it is true that
(926 =m g2.k+1) = (926 >gc G2.h+1)

4.7.7 Inequalities between MIPS object sets
Inequalities between pitch sets

Definition 674 Ifg1 and p, are any two pitch sets in a pitch system ¥ then p, s chromatic pitch less than
Py denoted
Dy <pc Py

if and only if one of the following conditions is satisfied:

1. 6(2 Tpe (1_91) 71) <pe e(g Tpe (1_92) 71)

2. There exists a value n such that

(G(ETPC (Bl)’k) ZG(ETpC (QQ),k)szlgkgn)

A

(et () 1) <o (21 () 2 1)

Definition 675 If P, and p, are any two pitch sets in a pitch system 1 then p, is chromatic pitch greater
than Py denoted

r, Zpe Db,

if and only if one of the following conditions is satisfied:

1. e(E Tpe (21) ,1) >pe e(E Tpe (22) 71)

2. There exists a value n such that

(¢ (@10 (1) 5) =€ 2 o () 4) ¥ 21 <k <)

A

(¢ (2o (22) 1) e (R (22) 2 1))

Definition 676 If}_?l and p, are any two pitch sets in a pitch system v then p, is morphetic pitch less than
Py denoted

Bl <pm BQ

if and only if one of the following conditions is satisfied:

e () ) e (o (2



CHAPTER 4. FORMAL SPECIFICATION OF MIPS 291

2. There exists a value n such that

(e (2 1on (2,) k) = (B 10w (py) k) Vh:1< k<)

A

(¢ (@ on (21) 7 1) <o (R Ton (1) n+1))

Definition 677 If P, and p, are any two pitch sets in a pitch system 1 then p, is morphetic pitch greater
than Py denoted

Bl >pm BQ

if and only if one of the following conditions is satisfied:

e () ) e (e (1))

2. There exists a value n such that

(c(21om (2,) k) =c(D1om (p,) k) ¥E: 1<k <n)

A

(¢ (@ on (21) 7 1) o e (R Ton (22) 1 +1))

Definition 678 Ifg1 and p, are any two pitch sets in a pitch system ¥ then p, s chromatic pitch less than
or equal to Dys denoted

by Spe Db,
if and only if
(0 =2) v (22 <o)

Definition 679 If P, and p, are any two pitch sets in a pitch system 1 then p, is chromatic pitch greater
than or equal to Py denoted

by Zpe Db,
if and only if
(2 =12) v (21 >0 22)

Definition 680 Ifgl and p, are any two pitch sets in a pitch system ¢ then p, is morphetic pitch less than
or equal to Py denoted

]21 SPm 222
if and only if
(22 =r2) v (21 <0 12)

Definition 681 If P, and Py are any two pitch sets in a pitch system 1 then p, is morphetic pitch greater
than or equal to Dys denoted

Bl me BQ
if and only if
(0 =2) v (20 22)
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Inequalities between chromatic pitch sets

Definition 682 If Py and P, are any two chromatic pitch sets in a pitch system v then P, s less than
P o denoted
Bc,l < ]_?c,2

if and only if one of the following conditions is satisfied:

e () ) <o ) )

2. There exists a value n such that

(o1 1) ) =01 () ) 1205 )

A

(e (0 () 1) <o (ot ) v ))

Definition 683 If P, and p_ , are any two chromatic pitch sets in a pitch system 1 then p_ | s greater
than Do o denoted
Bc,l > Bc,2

if and only if one of the following conditions is satisfied:

oo (m) ) > () 1)

2. There exists a value n such that

(o (0 1 (2e) 1) = e (0T (o) ) ¥Ee 1 < 1)

A

(et () o 1) >t () 2 0)

Definition 684 If Py and P, are any two chromatic pitch sets in a pitch system i then Py is less than
or equal to Py denoted
Pey Py
if and only if
(&,1 :Ec,z) v (Bc,l < Bc,2)

Definition 685 If Py and P, are any two chromatic pitch sets in a pitch system 1 then P, 1S greater
than or equal to Do o denoted
Py Z Py
if and only if
(&,1 :Ec,z) v (Bc,l > Bc,2)

Inequalities between morphetic pitch sets

Definition 686 If}_?m L andp , are any two morphetic pitch sets in a pitch system ¢ then p LS less than
P o denoted ’ ’
p

—m,1

< Bm,2

if and only if one of the following conditions is satisfied:
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1o (b, 1 () 1) <€ (B 1 () 1)

2. There exists a value n such that

(5 (2 T (2n) ) = (00 1 (20) 1) ¥ 21 < k)

A

(6 (2T (s) 5] <o (a1 (22) 1))

Definition 687 Ime L and P, , are any two morphetic pitch sets in a pitch system 1 then p,, , is greater
than P o denoted

Qm,l > ]—?m,Q

if and only if one of the following conditions is satisfied:

e () 1) > o () 1)

2. There exists a value n such that

(5 (2 T (2n) ) = (00 1 (20) 1) ¥ 21 < k)

A

(¢ (2 T () m51) > (0 1 (22) 7 1))

Definition 688 If}_?m L andp , are any two morphetic pitch sets in a pitch system ¢ then p LS less than
or equal to Do denoted

Bm,l = Bm,2
if and only if
(Bm,l = Z_jm,2) v (Qm,l < I_?m,Q)

Definition 689 Ime L and P, , are any two morphetic pitch sets in a pitch system 1 then p,, , is greater
than or equal to p o denoted

Qm,l 2 ]—?m,Q
if and only if
(Bm,l = Bm,2) v (Bm,l > Bm,2)
Inequalities between frequency sets
Definition 690 Ifil and iz are any two frequency sets in a pitch system 1 then il is less than i2, denoted
I <4
if and only if one of the following conditions is satisfied:

ot (1)) <01 (2) 1)

2. There exists a value n such that

((61/(2) ) =o(t1 (2). ) o1 <220)

A

(c(t1(r,) m+1) <e(tt(£,)n+1))
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Definition 691 If i1 and iz are any two frequency sets in a pitch system 1 then i1 is greater than iQ,
denoted

L= 1

if and only if one of the following conditions is satisfied:

ot (1)) =01 (2) 1)

2. There exists a value n such that

((01/(2) ) =o(t1 (£).a) o1 <220)

A

(c(t1(r,) m+1)>e(tt(1,) n+1))

Definition 692 If i1 and iQ are any two frequency sets in a pitch system v then i1 1s less than or equal
to i2, denoted

L=/
if and only if
(f1=2) v (L <L)

Definition 693 Ifil and iz are any two frequency sets in a pitch system 1 then il is greater than or equal
to iz) denoted

if and only if

Inequalities between chroma sets

Definition 694 If ¢, and c, are any two chroma sets in a pitch system 1 then ¢, is less than ¢,, denoted
<Gy

if and only if one of the following conditions is satisfied:

1. e(c1 (¢),1) <e(cT (), 1)

2. There exists a value n such that

(e(cT (cr), k) =elcT (c) k) Vk:1<k<mn)

(e(cT(cr),n+1)<e(ct(c)n+1))

Definition 695 If ¢, and ¢, are any two chroma sets in a pitch system ¢ then ¢, is greater than c,, denoted
Cc1 > Cy

if and only if one of the following conditions is satisfied:

1. e(cT (), 1) >e(cT (¢),1)
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2. There exists a value n such that

(e(cT(c1),k)=e(cT (ca),k)Vk:1 <k <nm)
A
(e(cT(cr)n+1)>elct (c)n+1))

Definition 696 If ¢; and c, are any two chroma sets in a pitch system 1 then ¢, is less than or equal to

Cy, denoted

if and only if
(¢ =¢) V(e <)

Definition 697 If ¢; and ¢y are any two chroma sets in a pitch system 1 then ¢, is greater than or equal

to ¢y, denoted

if and only if

Inequalities between morph sets

Definition 698 If m; and m, are any two morph sets in a pitch system 1 then m; is less than my, denoted
my < Mmy
if and only if one of the following conditions is satisfied:

1.e(m7 (my),1) <e(mT (my),1)
2. There exists a value n such that
(e(m T (my) k) =e(mT (my),k)Vk: 1<k <n)

A
(e(mT (my),n+1)<e(mT (my),n+1))

Definition 699 If m; and m, are any two morph sets in a pitch system 1 then m; is greater than m,,
denoted

my > My
if and only if one of the following conditions is satisfied:
Le(mT (my),1)>e(mT (my),1)
2. There exists a value n such that
(e(m 1 (my), k) =e(m 1 (my), k) Vk: 1 <k <n)

A
(e(mT (my),n+1)>e(mT (my),n+1))



CHAPTER 4. FORMAL SPECIFICATION OF MIPS 296

Definition 700 If m;, and m, are any two morph sets in a pitch system ¢ then m; is less than or equal to

m,, denoted

my < my
if and only if
(my =my) V (my < my)
Definition 701 If m; and ms are any two morph sets in a pitch system 1 then m, is greater than or equal

to my, denoted

my 2@2

if and only if

Inequalities between chromamorph sets

Definition 702 Ifg1 and q, are any two chromamorph sets in a pitch system 1 then q, s chroma less than
9y denoted

gl <c 22

if and only if one of the following conditions is satisfied:

1. e(g Te (21) ,1) <Ce(c_1 Te (gQ) ,1)

2. There exists a value n such that

(c(ate (@) 1) = (ate (g) ) o1 <k n)

A

(e (c_ch (gl) ,n+1) <Ce(g Te (gQ) ,n+1))

Definition 703 If 4, and q, are any two chromamorph sets in a pitch system i then q, 18 chroma greater
than 4 denoted

gl >c 22

if and only if one of the following conditions is satisfied:

toe(ate(g,).1) >ee(ate (g,) 1)

2. There exists a value n such that

(e (ate (@) 1) = (ate (a) ) e 1<k n)

A

(e(ate (@) me1)>ee(ate (z) m+1))

Definition 704 If 4, and q,, are any two chromamorph sets in a pitch system v then q, 18 morph less than
4. denoted

4, <m 4,

if and only if one of the following conditions is satisfied:

Le (g Tm (gl) ,1) <m € (‘_1 [ (22) ’1)
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2. There exists a value n such that

(e(atn () %) =efatm () #) Vi1 <k <)

A

((atm (@) 1) <me(atn (g) m+1))

Definition 705 If 4, and g, are any two chromamorph sets in a pitch system i then q, s morph greater
than 4. denoted

4y Zm gy

if and only if one of the following conditions is satisfied:

te(atn (5) 1) 2ne (ot (1) 1)

2. There exists a value n such that

(e(atn () 5) =efatn () #) ¥ 1 <k <n)

A

((atm (@) 1) >me(atn (g) mr1))

Definition 706 Ifg1 and q, are any two chromamorph sets in a pitch system 1 then q, s chroma less than
or equal to 4 denoted

g1 <c 22

(0 =2.) v (5 <o)

Definition 707 If 4, and q, are any two chromamorph sets in a pitch system i then q, 18 chroma greater

if and only if

than or equal to 4, denoted

4 Ze 9

(0 =2.) v (5 >0)

Definition 708 If 4, and 4, are any two chromamorph sets in a pitch system v then q, 18 morph less than

if and only if

or equal to 4, denoted

4, Sm 2,

(6=2.) v (5 <n,)

Definition 709 If 4, and g, are any two chromamorph sets in a pitch system i then q, is morph greater

if and only if

than or equal to 4 denoted

4 Zm 4,

(1=2.) v (5 >n )

if and only if
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Inequalities between chromatic genus sets

Definition 710 If g_ L and g , are any two chromatic genus sets in a pitch system 1 then g_ L8 less than
9 o denoted
gc,l < QC,Q

if and only if one of the following conditions is satisfied:

el () ) <o (et ()

2. There exists a value n such that

(o) 8)=ole 1 o) 4 ir<a )

A

(e gea) mr 1) <o (a1 (ea) mt1))

Definition 711 If 9.4 and g, , are any two chromatic genus sets in a pitch system v then g_ | Us greater

than 9o o denoted
QC 1 > Qc 2

if and only if one of the following conditions is satisfied:

toe(g, 1 (g.,):1) >e (g1 (.,) 1)

2. There exists a value n such that

(¢ & (gen) ) = (81 (920) 1) e <k )

A

(e 1 gea) mr 1) > e (a1 (e0) mt1)

Definition 712 If g L and g , are any two chromatic genus sets in a pitch system 1 then g_ L8 less than

or equal to oo denoted
91 S Yep
if and only if
(Qc,l - Qc,z) v (Qc,l < Qe,2)

Definition 713 If g L and g , are any two chromatic genus sets in a pitch system v then g_ | 1s greater

than or equal to oo denoted
91 Z 9o
if and only if
(Qc,l - Qc,z) v (Qc,l > Qe,2)

Inequalities between genus sets

Definition 714 If 9, and g, are any two genus sets in a pitch system ) then g, 18 chromatic genus less

than 9y denoted
9; <ec 9,

if and only if one of the following conditions is satisfied:
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1. e (g T, (gl) ,1) <g. © (g T, (32) ’1)

2. There exists a value n such that

(e(et. (01) #) =e (a1, (ga) ) v < k<)

A

(el (@) 1) <eelel, () n 1))

Definition 715 If 9, and g, are any two genus sets in a pitch system 1 then g, 1s chromatic genus greater
than 9y denoted

gl >gc QQ

if and only if one of the following conditions is satisfied:

e (g T, (gl) ,1) > € (5 g, (32) ’1)

2. There exists a value n such that

(c(e1 (02) #) =e (a1, (9a) ) w1 < k<)

A

(et (o) 1) ee el (o) 1))

Definition 716 If 9, and g, are any two genus sets in a pitch system 1 then g, s morph less than 9y
denoted

gl <m g2

if and only if one of the following conditions is satisfied:

efet, (5,) 1) <oe (e, (s,) 1)

2. There exists a value n such that

(e (et (2) 1) = (T (ga) ) vi 1 < <)

A

(e(e 1 (o) me1) mefat, (o) mr1))

Definition 717 If 9, and g, are any two genus sets in a pitch system 1 then g, is morph greater than 9y
denoted

gl >m g2

if and only if one of the following conditions is satisfied:

toe(zt,(g)1) >me (g, (5,)1)

2. There exists a value n such that

(e(e 1 (21) 1) = (T (ga) ) w1 < <)

A

(e (et (@) met) >mefat g) mr1))
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Definition 718 If 9, and g, are any two genus sets in a pitch system 1) then g, 18 chromatic genus less

than or equal to 9y denoted
9, Sec 9
if and only if
(21 - 22) v (21 <ee 22)

Definition 719 If 9, and g, are any two genus sets in a pitch system 1 then g, 1s chromatic genus greater

than or equal to 9o denoted
9, ch 9y
if and only if
(9,=2,) v (2> 9,)

Definition 720 Ifgl and g, are any two genus sets in a pitch system 1 then g, s morph less than or equal
to g,, denoted

£1 <m QQ
if and only if
(0= 2) v (2 <w22)

Definition 721 If 9, and g, are any two genus sets in a pitch system i then g, is morph greater than or

equal to 9y denoted
9, 2m g,
if and only if
(9= 9) v (0, >n 25)

4.8 Sets of MIPS intervals

4.8.1 Universal sets of MIPS intervals

Definition 722 The universal set of chromatic pitch intervals Ap_ N for a specified pitch system 1 is the set

that contains all and only chromatic pitch intervals within .

Theorem 723 For a specified pitch system 1,

ap,, =2
where 7 is the universal set of integers.
Proof
R1 Let Ap = [Apc, Apm| be any pitch interval whatsoever in a pitch system .

R2 R1& 237 = Ap. can only take any integer value.

R3 R2& 722 = Ap =7 where Z is the universal set of integers.

c,u

Definition 724 The universal set of morphetic pitch intervals Ap N for a specified pitch system 1 is the

set that contains all and only morphetic pitch intervals within .
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Theorem 725 For a specified pitch system 1,

ap,, =2
where 7 is the universal set of integers.
Proof
R1 Let Ap = [Apc, Apm| be any pitch interval whatsoever in a pitch system .

R2 R1& 241 = Apm can only take any integer value.

R3 R2& 724 = Ap L= L where Z is the universal set of integers.

)

Definition 726 The universal set of pitch intervals %u for a specified pitch system 1 is the set that contains
all and only pitch intervals within .

Theorem 727 For a specified pitch system 1, &u contains all and only those values

Ap = [Ape, Apm]
such that
(Apc € Ap, u) A (Apm €Ap, u)
Proof
R1 Let Ap = [Apc, Apm] be any pitch interval whatsoever in a pitch system ).
R2 R1 & 722 = Apc can only take any value such that Ap. € Ap_ o
R3 R1 & 724 = Apm can only take any value such that Ap,, € Ap

mu’

R4 RI1,R2,R3& 726 = Ap contains all and only those values Ap = [Apc, Apm]

such that (ApC S %C,u) A (Apm S %m,u)'

Definition 728 The universal set of frequency intervals ﬂu for a specified pitch system 1 is the set that

contains all and only those values that can be taken by a frequency interval in 1.

Theorem 729 For a specified pitch system 1,

_ R+
Af, =R
where RY is the universal set of real numbers greater than zero.
Proof
R1 Let Af = Af(f1, f2) where f1 and fo are any two frequencies in a pitch system .

R2 R1& 243 = Af can only take any positive real value.

R3 R2&728 = Af =R*
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Definition 730 The universal set of chroma intervals Ac, for a specified pitch system 1 is the set that
contains all and only those values that can be taken by a chroma interval in 1.
Theorem 731 For a specified pitch system
¥ = [fic, ;s fo, Pe,o]
Ac, contains all and only those values Ac such that
(Ace Z) N (0 < Ac < pie)

where 7 is the universal set of integers.

Proof
R1 Let Ac = Ac(cy,c2) where ¢; and ¢ are any two chromae in .
R2 R1 & 214 = Ac can only take any value such that (Ac € Z) A (0 < Ac < pic).

R3 R1,R2& 730 = Ac, contains all and only those values Ac such that
(AceZ) A (0 < Ac< pic)

where Z is the universal set of integers.

Definition 732 The universal set of morph intervals Am, for a specified pitch system 1 is the set that

contains all and only those values that can be taken by a morph interval in 1.
Theorem 733 For a specified pitch system
¥ = [fic, i, fo, Peo]
Am,, contains all and only those values Am such that
(Am e Z) A (0 < Am < fim)

where 7 is the universal set of integers.

Proof
R1 Let Am = Am (mq,mg) where m; and mqy are any two morphs in 1.
R2 RI1 & 218 = Am can only take any value such that (Am € Z) A (0 < Am < fim).

R3 RI1,R2& 732 = Am, contains all and only those values Am such that
(Am e Z) A (0 < Am < fim)

where Z is the universal set of integers.
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Definition 734 The universal set of chromamorph intervals gu for a specified pitch system 1 is the set
that contains all and only those values that can be taken by a chromamorph interval in .

Theorem 735 For a specified pitch system

1/) = [,UJCa Hm, vapC,O]

gu contains all and only those values

Ag = [Ac, Am]
such that
(Am e Am,) A (Ac € Ac,)
Proof
R1 Let Ag = [Ac, Am] be any chromamorph interval whatsoever in a pitch system ).
R2 R1 & 730 = Ac can only take any value such that Ac € Ac,,.
R3 R1 & 732 = Am can only take any value such that Am € Am,,.

R4 RI1,R2,R3& 734 = Agq  contains all and only those values Ag = [Ac, Am)

such that (Ac € Ac,) A (Am € Am,).

Definition 736 The universal set of chromatic genus intervals ﬁc N for a specified pitch system 1 is the set

that contains all and only those values that can be taken by a chromatic genus interval in 1.
Theorem 737 For a specified pitch system 1, gc L= 4 where Z is the universal set of integers.

Proof

R1 Let Age = Age (p1, p2) where p; and py are any two pitches in .
R2 R1 & 256 = Agc can only take any integer value.

R3 736 &R2 = Ag, , = Z where Z is the universal set of integers.

Definition 738 The universal set of genus intervals ﬁu for a specified pitch system 1) is the set that contains

all and only those values that can be taken by a genus interval in 1.
Theorem 739 For a specified pitch system 1, gu contains all and only those values
Ag = [Age, Am]

such that
(Am € Am,) A (Age € Ag, )
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Proof
R1 Let Ag = [Age, Am] be any genus interval whatsoever in a pitch system ).
R2 RI1 & 736 = Agc can only take any value such that Ag. € ﬁqu.
R3 R1 & 732 = Am can only take any value such that Am € Am,,.

R4 RI1,R2,R3& 738 = Ag contains all and only those values Ag = [Age, Am]

such that (AgC € Ag, u) A (Am € Am,).

4.8.2 Definitions for sets of MIPS intervals

Definition 740 If&u is the universal set of pitch intervals for the pitch system v, then Ap is a well-formed
pitch interval set in ¥ if and only if
ApC Ap,

Definition 741 If Ap_ . is the universal set of chromatic pitch intervals for the pitch system 1, then Ap_
s a well-formed chromatic pitch interval set in 1 if and only if

Ap. CAp,

Definition 742 If Ap . s the universal set of morphetic pitch intervals for the pitch system v, then Ap
1s a well-formed morphetic pitch interval set in ¥ if and only if

AV SELV N

Definition 743 If ﬂu is the universal set of frequency intervals for the pitch system 1, then Af is a
well-formed frequency interval set in ¢ if and only if

AfCAf,

Definition 744 If Ac, is the universal set of chroma intervals for the pitch system 1, then Ac is a well-

formed chroma interval set in ¥ if and only if

>

Ac C Ac

u

Definition 745 If Am, is the universal set of morph intervals for the pitch system 1, then Am is a well-

formed morph interval set in v if and only if

Am C

>

m

u
Definition 746 If ﬁu is the universal set of chromamorph intervals for the pitch system 1, then Aq is a
well-formed chromamorph interval set in ¥ if and only if

AqC Ag,

Definition 747 If Ag_ , s the unwversal set of chromatic genus intervals for the pitch system v, then Ag_

s a well-formed chromatic genus interval set in i if and only if

Ag.CAg,,
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Definition 748 Ifﬁu is the universal set of genus intervals for the pitch system 1, then Ag is a well-formed
genus interval set in 1 if and only if
Ag C Ag

p—4 —Zu

4.8.3 Derived MIPS interval sets
Deriving MIPS interval sets from a pitch interval set

Definition 749 If
% = {Aph APQ, cee Apk, .. }
is a pitch interval set in a pitch system 1, then the following function returns the chromatic pitch interval

set of Ap:
|Ap|

AP, (Ap) = |J {Ape (Ap)}
k=1

Definition 750 If
Ap = {Ap1, Aps,... Apg, ...}

18 a pitch interval set in a pitch system 1, then the following function returns the morphetic pitch interval
set of Ap:

|Ap|
U Apm Apk

Definition 751 If
% = {Aph APQ, cee Apk, .. }
is a pitch interval set in a pitch system 1, then the following function returns the frequency interval set of

Ap:
|Ap|

At (Ap) = | {At(Ap)}

k=1

Definition 752 If
% ={Ap1,Apa, ... Apg,...}

is a pitch interval set in a pitch system 1, then the following function returns the chroma interval set of Ap:

Definition 753 If
Ap = {Ap1,Apa,... Apy, ...}

is a pitch interval set in a pitch system 1), then the following function returns the morph interval set of Ap:
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Definition 754 If
Ap = {Ap1,Apa,... Apy, ...}

is a pitch interval set in a pitch system 1, then the following function returns the chromamorph interval set

of Ap:
|Ap|

Aa(Ap) = | {Aa(Apk)}

k=1
Definition 755 If
Ap={Ap1, Apa,... Apy,...}
is a pitch interval set in a pitch system 1, then the following function returns the chromatic genus interval

set of Ap:
|Ap]

Ag, (8p) = | {Aee (Api)}

k=1
Definition 756 If
% ={Ap1,Apa, ... Apg,...}

is a pitch interval set in a pitch system 1), then the following function returns the genus interval set of Ap:

|Ap|

Ag(Ap) = |J {as(Ap)}
k=1

Deriving MIPS interval sets from a chromatic pitch interval set

Definition 757 If
&C = {Apc,la Apc,m cee Apc,ku .- }
is a chromatic pitch interval set in a pitch system 1, then the following function returns the chroma interval
set of Ap :
|Ap,|
ac(ap) = U {ac@pen)}
k=1
Definition 758 If
Ap, = {Ape1, Apc2y ... Ape ...}
18 a chromatic pitch interval set in a pitch system 1, then the following function returns the frequency interval
set of Ap :
|Ap,|

Ar(ap,) = U {ar@pen))

k=1

Deriving MIPS interval sets from a morphetic pitch interval set

Definition 759 If
Ap = {Apm1,Apm2, ... Apmk, ...}
is a morphetic pitch interval set in a pitch system 1, then the following function returns the morph interval
set of Ap_:
|Ap, |

am(ap, )= U {Am(Apus)
k=1
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Deriving MIPS interval sets from a frequency interval set

Definition 760 If
Af ={Af1,Af2, ... Afg, ...}

is a frequency interval set in a pitch system 1, then the following function returns the chromatic pitch interval
set of Af:
1Af]
Ap, (Af) = U {apc (A}
k=1
Definition 761 If
M = {AflvAfQ, .. Afk, .. }

18 a frequency interval set in a pitch system 1, then the following function returns the chroma interval set of
Af:
|AS]

Ac(Af) = [J{Ac(af)}

k=1

Deriving MIPS interval sets from a chromamorph interval set

Definition 762 If
Ag={Aq,Aq,... Ay, ... Agn}

is a chromamorph interval set in a pitch system 1, then the following function returns the chroma interval
set of %
[Aq]
Ac(Ag) = [ {Ac(Aaw)}
k=1
Definition 763 If
M = {Aql, Aga, ... Agg, - . .Aqn}

is a chromamorph interval set in a pitch system ¥, then the following function returns the morph interval set

of Ag:
|Ag|

Am (Ag) = [ J {Am (Ag)}

k=1

Deriving MIPS interval sets from a chromatic genus interval set

Definition 764 If
Ag. = {Age1,Age2, .. - Dge ey}

18 a chromatic genus interval set in a pitch system 1, then the following function returns the chroma interval
set of Ag -
|Ag,|

Ac(ag,) = | {ac(agen)}

k=1
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Deriving MIPS interval sets from a genus interval set

Definition 765 If
Ag ={Ag1,Ags, ... Agy,...}

18 a genus interval set in a pitch system 1, then the following function returns the chromatic genus interval

set of Ag:
|1Agl

Ag (Ag) = | {Aec(Agn)}
k=1

Definition 766 If
Ag ={Ag1,Ags, ... Agy,...}

is a genus interval set in a pitch system ), then the following function returns the morph interval set of Ag:

Definition 767 If
ﬁ = {AglaAQQ, .. .Agk, .. }

is a genus interval set in a pitch system v, then the following function returns the chroma interval set of Ag:

Definition 768 If
ﬁ = {AglaAQQ, .. .Agk, .. }

18 a genus interval set in a pitch system 1, then the following function returns the chromamorph interval set
of Ag:



CHAPTER 4. FORMAL SPECIFICATION OF MIPS 309

4.8.4 Equivalence relations between MIPS interval sets
Equivalence relations between pitch interval sets

Equivalence relations between chromatic pitch interval sets
Equivalence relations between morphetic pitch interval sets
Equivalence relations between frequency interval sets
Equivalence relations between chromamorph interval sets
Equivalence relations between chromatic genus interval sets

Equivalence relations between genus interval sets

4.8.5 Inequalities between MIPS interval sets
Inequalities between pitch interval sets

Inequalities between chromatic pitch interval sets
Inequalities between morphetic pitch interval sets
Inequalities between frequency interval sets
Inequalities between chroma interval sets

Inequalities between morph interval sets

Inequalities between chromamorph interval sets
Inequalities between chromatic genus interval sets

Inequalities between genus interval sets

4.8.6 Equivalence partitions on MIPS interval sets
Equivalence partitions on pitch interval sets

Equivalence partitions on chromatic pitch interval sets
Equivalence partitions on morphetic pitch interval sets
Equivalence partitions on frequency interval sets
Equivalence partitions on chroma interval sets

Equivalence partitions on morph interval sets

Equivalence partitions on chromamorph interval sets
Equivalence partitions on genus interval sets

Theorem 769 If Ag is a genus interval set in a pitch system v then there evists a unique partition on Ag,

called the morph interval equivalence partition of Ag and denoted PAm (ﬂ), such that
(ﬂ1 €Pam (g)) A (A91, Ags € gl) < (Ag1 =am Ago)

Each element of PAm (&) is called a morph interval equivalence class of genus intervals on Ag.
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Proof

R1 343 = Morph interval equivalence of genus intervals is an equivalence relation.

R2 R1 = Theorem is proved.

4.8.7 Deriving sets of MIPS intervals from sets of MIPS objects
Deriving sets of MIPS intervals from pitch sets

Deriving sets of MIPS intervals from chromatic pitch sets

Deriving sets of MIPS intervals from morphetic pitch sets

Deriving sets of MIPS intervals from frequency sets

Deriving sets of MIPS intervals from chroma sets

Deriving sets of MIPS intervals from morph sets

Deriving sets of MIPS intervals from chromamorph sets

Deriving sets of MIPS intervals from genus sets

Definition 770 If g is a genus set in a specified pitch system 1) then the set of genus intervals in g, denoted
Ag (g) 1s given by the following formula:

Ag(g) = U U {Aag(9,9)}

(91€9) (92€9)



Bibliography

[Agm89]

[Agm96]

[Ass60]

[Bab60]

[Bab65]

[Bac50]

[Bal80)]

[BB8Y)

[Bri9o]

[BWs2]

[Cam96]

[Cam98]

[CD91]

[CDRRY3]

[Clo79]

Eytan Agmon. A mathematical model of the diatonic system. Journal of Music Theory, 33(1):1-
25, 1989.

Eytan Agmon. Coherent tone-systems: a study in the theory of diatonicism. Journal of Music
Theory, 40(1):39-59, 1996.

American Standards Association. Acoustical Terminology. Technical Report SI,1-1960, American
Standards Association, New York, 1960.

Milton Babbitt. Twelve-tone invariants as compositional determinants. The Musical Quarterly,
46(2):246-259, 1960.

Milton Babbitt. The structure and function of music theory: I. In College Music Symposium,
volume 5, pages 49-60, 1965.

A. Bachem. Tone height and tone chroma as two different pitch qualities. Acta Psychologica,
7:80-88, 1950.

Gerald J. Balzano. The group-theoretic description of 12-fold and microtonal pitch systems.
Computer Music Journal, 4(4):66-84, 1980.

Ephraim J. Borowski and Jonathan M. Borwein. Dictionary of Mathematics. Collins, 1989.

Alexander R. Brinkman. PASCAL Programming for Music Research. The University of Chicago
Press, Chicago and London, 1990.

Edward M. Burns and W. Dixon Ward. Intervals, scales and tuning. In Deutsch [Deu82b], pages
241-269.

Emilios Cambouropoulos. A general pitch interval representation: theory and applications. Jour-
nal of New Music Research, 25:231-251, 1996.

Emilios Cambouropoulos. Towards a General Computational Theory of Musical Structure. PhD
thesis, University of Edinburgh, February 1998.

John Clough and Jack Douthett. Maximally even sets. Journal of Music Theory, 35(1-2):93-173,
1991.

John Clough, Jack Douthett, N. Ramanathan, and Lewis Rowell. Early indian heptatonic scales
and recent diatonic theory. Music Theory Spectrum, 15(1):36-58, 1993.

John Clough. Aspects of diatonic sets. Journal of Music Theory, 23(1):45-61, 1979.

311



BIBLIOGRAPHY 312

[Clo80)

[CWH91]

[Deu82al

[Deu82b)
[Dow91]
[For73]

[HWC91]

[MMA96]

[Moo89]

[Mor87]

[Rah80]
[Rot92]

[She64]

[She65]

[She82]

[WBs2]

John Clough. Diatonic interval sets and transformational structures. Perspectives of New Music,
18(2):461-482, 1980.

Tan Cross, Robert West, and Peter Howell. Cognitive correlates of tonality. In Howell et al.
[HWC91], pages 201-243.

Diana Deutsch. The processing of pitch combinations. In The Psychology of Music [Deu82b],
pages 271-316.

Diana Deutsch, editor. The Psychology of Music. Academic Press, Orlando and London, 1982.
W. Jay Dowling. Pitch structure. In Howell et al. [HWC91], pages 33-57.
Allen Forte. The Structure of Atonal Music. Yale University Press, New Haven and London, 1973.

Peter Howell, Robert West, and Ian Cross, editors. Representing Musical Structure. Academic
Press, London, 1991.

MMA. The Complete MIDI 1.0 Detailed Specification. MIDI Manufacturers’ Association, MMA,
P.0.Box 3173, La Habra CA 90632-3173, February 1996. Version 96.1 (includes v 4.1.1 of the
MIDI 1.0 Detailed Specification and MIDI 1.0 Addendum v 4.2).

Brian C.J. Moore. An Introduction to the Psychology of Hearing. Academic Press, London and
San Diego, third edition, 1989.

Robert D. Morris. Composition with Pitch-Classes: A Theory of Compositional Design. Yale
University Press, New Haven and London, 1987.

John Rahn. Basic Atonal Theory. Longman, New York, 1980.
Joseph Rothstein. MIDI: A Comprehensive Introduction. Oxford University Press, Oxford, 1992.

Roger N. Shepard. Circularity in judgments of relative pitch. Journal of the Acoustical Society of
America, 36:2346-2353, 1964.

Roger N. Shepard. Approximation to uniform gradients of generalization by monotone trans-
formations of scale. In D.I. Mostofsky, editor, Stimulus Generalization, pages 94-110. Stanford
University Press, Stanford, CA., 1965.

Roger N. Shepard. Structural representations of musical pitch. In Deutsch [Deu82b], pages 343—
390.

W. Dixon Ward and Edward M. Burns. Absolute pitch. In Deutsch [Deu82b], pages 431-451.



