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Abstract

MIPS is a formal language for investigating the math-
ematical properties of equal-tempered pitch systems
and scales within those systems. It is based on
four distinct mathematical representations of ‘oc-
tave equivalence’: chroma equivalence, morph equiv-
alence, chromamorph equivalence and genus equiva-
lence. Genus equivalence correctly models the tra-
ditional tonal concept of octave equivalence wherein
two pitches are considered ‘octave equivalent’ if and
only if they are an integer number of perfect octaves
apart.

Futhermore, genus equivalence can be generalized
to any pitch system without first having to know
‘where the white notes are’ in the system.

For each of the four models of octave equivalence
there exists a system of definitions and theorems
analogous to pitch class set theory.

1 MIPS

MIPS is a formal language devised by the author for
investigating the mathematical properties of equal-
tempered pitch systems and their associated nota-
tional systems.! Tt is fully defined in [8]. MIPS has
been implemented as a computer program written in
Lisp.

MIPS models the way that pitch information is rep-
resented within Western staff notation. In fact, it
models a whole class of pitch notation systems that

IMIPS stands for Mathematical Investigation of Pitch Sys-
tems

contains the Western staff notation system as one of
its members. In this sense, MIPS mathematically
models and generalizes the cognitive structure of the
pitch representation system used in Western staff no-
tation.

MIPS is based on four representations of ‘octave
equivalence’ including chroma equivalence and genus
equivalence. Chroma equivalence is essentially iden-
tical to the concept of ‘pitch class equivalence’ used
by Babbitt ([3]), Forte ([7]), Rahn ([10]), Morris ([9])
and many others. Genus equivalence is a new rep-
resentation invented by the author which provides a
correct cognitive model of the traditional tonal con-
That 1s, two pitches
are genus equivalent if and only if they are an in-
teger number of perfect octaves apart. Genus equiv-
alence can also be generalized to other pitch systems
in which scales contain more or less than 7 notes and
the octave 1s divided into more or less than 12 equal
intervals.

cept of ‘octave equivalence’.

2 Representing octave equiva-
lence

Chroma equivalence i1s not a very good cognitive
model of the traditional tonal concept of octave
equivalence. The three pitches in Figure 1 are ‘oc-
tave equivalent’ in the traditional tonal sense and,
of course, they have the same chroma (in this case,
3)—they are therefore chroma equivalent.

However, the two pitches in Figure 2 are also
chroma equivalent but they are not ‘octave equiva-
lent’ in the traditional tonal sense because the in-
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Figure 1: Three pitches that are chroma equivalent
and ‘octave equivalent’ in the traditional tonal sense.
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Figure 2: Two pitches that are chroma equivalent but
not ‘octave equivalent’ in the traditional tonal sense
and not chromamorph equivalent.

terval between them is an augmented seventh and
not a perfect octave. So although the sounds pro-
duced when the two notes are performed in an equal-
tempered system might be psycho-acoustically an oc-
tave apart, they are not ‘octave equivalent’ in terms
of the cognitive logic of the Western tonal pitch no-
tation system.

This demonstrates that the concept of pitch class
in the sense of Forte ([7]), Rahn ([10]) and others, is
not a correct cognitive model of ‘octave equivalence’
in the Western tonal pitch notation system.

There have been a number of attempts to produce
better models of the traditional tonal concept of ‘oc-
tave equivalence’. For example, Brinkman ([4], 128)
and Agmon ([1], 11; [2], 44) use a representation
of octave equivalence that Brinkman calls a ‘bino-
mial representation’. MIPS incorporates a represen-
tation called chromamorph which is essentially identi-
cal to Brinkman’s ‘binomial representation’. A chro-
mamorph is an ordered pair in which the first num-
ber represents the chroma and the second number
(which in MIPS is called morph and which Brinkman
calls ‘name class’ ([4], 124-126)) represents the letter-
name of the note. So, in the Western system, this
second number—the morph—will range over the in-
tegers 0—6. But in a system that uses five-note scales,
the morph would take an integer value between 0 and
4.

If two notes that have the same chromamorph are
defined to be chromamorph equivalent then it can
be seen from Figure 2 that chromamorph equiva-
lence is a better model of the Western tonal concept
of ‘octave equivalence’ than ‘chroma equivalence’—
two notes an augmented seventh apart are not chro-
mamorph equivalent just as they are not ‘octave
equivalent’ in the traditional tonal sense.

However, the two notes in Figure 3 are chro-
mamorph equivalent but they are certainly not ‘oc-
tave equivalent’ in the traditional Western tonal
sense—the interval between them is a ‘12 xdiminished
octave’. This demonstrates that chromamorph equiv-
alence is not a correct cognitive model of the tradi-
tional concept of Western tonal octave equivalence.

In the traditional Western tonal pitch-naming sys-
tem, a note has a letter-name (A to G), an inflection
(...,bb,b,,4,44,...) and an octave number (for ex-
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Figure 3: Two pitches that are chromamorph equiva-
lent but not octave equivalent in the traditional tonal
sense.

ample, middle C—Cf4—has an octave number of 4
and the C above middle C (Clj5) has an octave num-
ber of 5). This naming system derives from the staff
notation system which has evolved over the past 400
years to be a highly effective means of notating West-
ern tonal music. To this extent, the pitch-namingsys-
tem correctly models the Western tonal pitch system.
And if the octave number of a pitch-name i1s omitted
(for example, Cl4 becomes C1f), the result is a cor-
rect representation of ‘octave equivalence’ within the
Western tonal system.

So, if one wishes to find a correct mathemati-
cal representation of the traditional tonal concept
of octave equivalence, one strategy might be to base
a numerical representation on the traditional pitch-
naming system. A number of researchers have done
this (including Cambouropoulos ([5], 233; [6], 49). In
this system, the letter-name (A to G) is represented
by a number between 0 and 6 and the inflection (or
‘modifier-accidental’ as Cambouropoulos calls it) is
represented by an integer (0 corresponds to f, 1 cor-
responds to §, —1 corresponds to b and so on).

The row labelled ‘Old genus’ in Figure 3 shows that
this representation correctly captures the fact that
the two notes are not ‘octave equivalent’ in the tra-
ditional sense. So this simple numeric representation
of the Western tonal pitch naming system provides a
correct cognitive model of the traditional concept of

‘octave equivalence’ within that system.

However, one of the motivations behind the devel-
opment of MIPS was to produce a system that would
allow one to examine the special mathematical prop-
erties of the Western tonal scales—and particularly
the diatonic scale—and then go on to determine if
scales with similar properties exist in systems where
the octave 1s divided into more or less than 12 equal
divisions. In other words, it should be possible to
use MIPS to find out ‘where the white notes should
be’” in other equal-tempered pitch systems. But un-
fortunately, it is not possible to generalize a repre-
sentation such as Cambouropoulos’ to other equal-
tempered pitch systems without first knowing ‘where
the white notes are’ because one first has to know
which pitch classes correspond to the naturals.

3 Genus

It turns out, however, that it s possible to produce a
correct mathematical model of traditional tonal ‘oc-
tave equivalence’ that is generalizable to any equal-
tempered pitch system and does not require one first
to know ‘where the white notes are’ in that pitch sys-
tem.

In MIPS, this model of octave equivalence is called
genus equivalence: two pitches are genus equivalent if
and only if they have the same genus. A genus is an
ordered pair rather like a chromamorph. Asin a chro-
mamorph, the second number 1s a morph and repre-
sents the letter-name (see Figure 3). However, the
first member of a genus is not a chroma but a chro-
matic genus which is not quite the same as chroma.
Unfortunately the fact that chromatic genus is ‘not
quite’ chroma means that the whole theory surround-
ing the genus representation—the theory that defines,
for example, how to transpose and invert genus sets,
find their interval vectors and so on—is rather more
involved than the pitch class set theory of Babbitt,
Forte and Rahn.
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4 Summary

In summary, MIPS is a formal language for in-
vestigating the mathematical properties of equal-
tempered pitch systems and scales within those sys-
tems. It is based on four distinct mathematical rep-
resentations of ‘octave equivalence’: chroma equiva-
lence, morph equivalence, chromamorph equivalence
and genus equivalence. Genus equivalence correctly
models the traditional tonal concept of octave equiv-
alence wherein two pitches are considered ‘octave
equivalent’ if and only if they are an integer num-
ber of octaves apart.

Futhermore, genus equivalence can be generalized
to any pitch system without first having to know
‘where the white notes are’ in the system.

For each of the four models of octave equivalence
there exists a system of definitions and theorems
analogous to pitch class set theory. For example,
one component of MIPS deals with chromamorph and
states a number of definitions and theorems concern-
ing chromamorph that describe, for example, how to
transpose, invert and find the interval vectors of chro-
mamorph sets. Another component does the same
thing for genus sets and so on. In addition, for each
model of octave equivalence there exists within MIPS
a system for representing relations using digraphs.
These systems can be used to show that the tonal
scales possess certain unique graph-theoretical prop-
erties.

A full specification of MIPS including a formal def-
inition of the concept of genus can be found in [8].
Enquiries relating to the material presented in this
article should be addressed to the author whose e-
mail address 1s as follows:

dave.meredith@dial.pipex.com
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