
A Geometric Approach to
Repetition Discovery and Pattern Matching

in Polyphonic Music

David Meredith
Department of Computing,

City University, London.

dave@titanmusic.com

Geraint A. Wiggins
Department of Computing,

City University, London.

geraint@soi.city.ac.uk

Kjell Lemström
Department of Computer Science,

University of Helsinki.

klemstro@cs.helsinki.fi

Computer Science Colloquium
Department of Computer Science, King’s College London

Wednesday, 21 November 2001.

1. A Geometric Approach to Repetition
Discovery and Pattern Matching in

Polyphonic Music

1. The diversity of perceptually significant repetition in music.

2. Most repetitions in music are not interesting.

3. Previous approaches to repetition discovery in music.

4. Representing music using multidimensional datasets.

5. SIA: Computing maximal repeated patterns.

6. SIATEC: Computing all the occurrences of each maximal re-

peated pattern.

7. Running SIA and SIATEC on music data.

8. Isolating perceptually significant repetitions.

9. SIA(M)ESE: Pattern matching in multidimensional datasets.

10. Some possible directions for further work.

1. A Geometric Approach to Repetition Discovery and Pattern Matching in Polyphonic
Music

1. [THANK COSTAS and STEFAN.]

2. [E-MAIL LIST]

3. I’m going to talk to you about the work that I’ve been doing with Geraint Wiggins and
Kjell Lemström on repetition discovery and pattern matching in polyphonic music.

4. Most of this talk will be about repetition discovery, and, in particular, the problem
of developing an algorithm that can discover the perceptually significant repetitions
in a passage of polyphonic music.

5. I’ll begin by presenting some examples of perceptually significant repetitions in music
which will illustrate the fact that this class of phenomena is very diverse.

6. I’ll then show that, although the identification of perceptually significant repetitions is
extremely important for achieving a rich understanding of a piece of music, typically,
the vast majority of repetitions that occur within a piece are not interesting.

7. It seems that most previous approaches to repetition discovery in music have been
based on the assumption that the music to be analysed is represented in the form of
a string or a set of strings.

8. I’ll briefly review a couple of these string-based approaches and I’ll show that there
seem to be certain types of perceptually significant repetition that occur quite often
that are very difficult to find using a string-based approach.

9. Also, it seems that if you want to find a wide range of types of perceptually signifi-
cant repetition using a string-based approach, you generally have to run a variety of
different algorithms on a number of different representations of the music.

10. In our work we’ve avoided these difficulties by adopting a geometric approach in which
the music to be analysed is represented as a multidimensional dataset—that is, a set
of points in a Euclidean space.

11. We’ve found that by doing this we’re able to

(a) process polyphonic music as easily and efficiently as monophonic music.

(b) compute some of the repetitions that are difficult to find using a string-based
approach.

(c) dispense with multiple representations because we can simply run the same al-
gorithms on various orthogonal projections of a single, rich multidimensional
representation of the music.

12. I’ll present two repetition discovery algorithms, SIA and SIATEC, that are based on
this approach.

(a) SIA computes all the maximal repeated patterns in a dataset.

(b) SIATEC computes all the occurrences of all the maximal repeated patterns in a
dataset.

13. I’ll then briefly talk about what happens when you run these algorithms on music
data.

14. Our experiments suggest that the repeated patterns that we’re interested in are often
either equal to the maximal repeated patterns computed by SIA or derivable from
them. However, typically, SIA also generates many patterns that are not musically
interesting.

15. So some post-processing is therefore usually required to isolate the interesting repe-
titions in the output of SIA and SIATEC and I’ll suggest a couple of heuristics that
may be useful for doing this.

16. I’ll then briefly describe a pattern-matching algorithm called SIA(M)ESE. This algo-
rithm is based on SIA and it finds complete and partial matches of multidimensional
query patterns in multidimensional datasets.

17. I should perhaps point out that although I’m going to be focusing on the musical
applications of the algorithms, they are, in fact, quite general and could be used to
process any data that can appropriately be represented in the form of a multidimen-
sional dataset.

18. I’ll finish up by suggesting some possible directions for further research.

2. The diversity of musical repetition
&

?

b

b

b

b

b

b

b

b

b

b

b

b

c

c

‰ .
r

œ œ .œ œn .œ œ

‰ .
r

œ

œ

.

.

œ

œ

œ

œ

n

n

. .

. .

œ

œ

r

œ

œ

.œb
œ œ .œ œn

.œ œ

.

.

œ

œ

œ

œ

n

n

œ

œ

.

.

œ

œ
œ

œ

.

.

œ

œ

œ

œ

&

?

b

b

b

b

b

b

b

b

b

b

b

b

3

.œn

œb œ .œ œ∫ œ

‰ .

R

œ
. .œ

R

œ∫

.

.

œ

œ

œ

œ

b

b

.

.

œ

œ

œ

œ

n

n

˙

˙

b

b

.œ œ∫

3

œ œ

‰

3

œ∫ œ œn œb œn
œ

3

‰
œ œn œb

.

.

œ

œ
œ

œ

.

.

œ

œ

œ

œ

n

n

˙

˙

b

b

œb œn œb

3

A1 A2 A3

A4 A5A3 (cont.)

2. The diversity of musical repetition

1. Many music psychologists and music analysts have stressed that identifying the sig-
nificant repetitions in a piece of music is an essential part of achieving a rich and
satisfying interpretation of the piece.

2. Our work was originally motivated by the desire to develop a computational model of
expert music cognition and it seems clear that one component of such a model would
have to be able to discover perceptually significant repetitions.

3. However, the class of perceptually significant repetitions is a very diverse set. There
are at least two reasons for this:

(a) One reason is that the patterns involved in such repetitions vary widely in their
structural characteristics.

(b) A second reason is that there are many different ways of transforming a musi-
cal pattern to give another pattern that’s perceived to be a version of it. For
example, patterns can be truncated, augmented, diminished, inverted, reversed,
embellished and so on.

4. I’ll now present a couple of examples of significant repeated patterns that illustrate
the diversity of this class of patterns.

5. A significant repeated pattern may be just a very small motif, consisting of no more
than a few notes or it might be a whole section of a work containing hundreds of
notes.

6. Here’s an example of a very small perceptually significant repeated pattern from the
beginning of Barber’s Sonata for Piano, Op. 26. This example illustrates the general
rule that for a very small pattern to be perceived as being significant, it generally has
to be repeated many times—this one’s repeated 5 times in the first 4 bars.

7. Here’s what this example sounds like—try to listen to the rising bass pattern. [PLAY
BARBER.MID.] Here’s what it sounds like with the bass part emphasized. [PLAY
BARBER MODIFIED.MID.]

8. On the other hand, in a sonata form movement it’s typical for the whole exposition
to be stated twice and then repeated in a modified form at the end of the movement.
The exposition of a sonata-form movement often contains hundreds of notes. For
example, there are Beethoven piano sonatas in which the exposition accounts for a
quarter of all the notes in the first movement.

9. In polyphonic music in which the voices are unambiguously identifiable, the notes in
a repeated pattern may all come from one voice or they may come from two or more
voices. For example, in this stretto passage here taken from a Bach Fugue, each state-
ment of the subject only contains notes from a single voice. [PLAY STRETTO.MID]

10. On the other hand, in this example from Mozart’s G minor Symphony, each of the
patterns involves the whole orchestra and contains notes from 13 voices. [PLAY
MOZ.MID]

11. These two examples also show that the occurrences of a pattern may overlap as they
do here [BACH] or they may occur consecutively, as they do here [Mozart] or they
may be widely separated in the music as they often are, for example, in the case of
the exposition and recapitulation of a sonata-form movement.

12. A significant repeated pattern may be what I call temporally compact—that is, it may
contain all the notes that occur within the time interval spanned by the pattern as
in this Mozart example here.

13. Alternatively, the pattern involved in a significant repetition might be bounding box
compact—that is, it might contain all the notes in the piece that occur within the
pattern’s bounding box as in this Barber example.

14. This Bach extract illustrates yet another possibility where the repeated patterns are
monophonic vocally compact patterns—that is, each pattern contains all the notes
that occur in a single voice within the time period spanned by the pattern.

15. It’s also possible to find examples of perceptually significant patterns that are not
compact in any sense at all and I’ll show you an example later on.

3. Most repetitions in music are not
interesting

&

?

#

#

#

#

#

#

#

#

c

c

œ œ

œ

œ

œ

œ

w

w

w

‰ œ

œ

œ

œ

œ

œ

œ

œ

œ

#

‰ j

œ

œ

œ

n

n

n

‰ j

œ

œ

œ

#

#

˙

œn œ

‰
œ

œ
œ

œ

œ
œ

œ

œ
œ

‹

‹
#

‰

J

œ

œ

œ

#

#

‰

J

œ

œ
œ

˙

˙

œ

œ

n

n

œ

œ

‰ œ

œ

œ

œ

œ

œ

œ

œ

œ

#

#

#

‰ j

œ

œ

œ

n

n

n

‰ j

œ

œ

œ

#

#

˙

œn œ

‰
œ

œ
œ

œ

œ
œ

œ

œ
œ

‹

‹
#

‰

J

œ

œ

œ

#

#

‰

J

œ

œ
œ

˙

˙

œ

œ

n

n

œ

œ

&

?

#

#

#

#

#

#

#

#

4
‰

œ

œ

œ

œ

œ

œ

œ

œ

œ

‰
j

œ

œ

œ

‰ j

œ

œ

œ

˙

œn œ

‰
œ

œ
œ

œ

œœ

œ

œ
œ

‰

J

œ

œ
œ

‰

J

œ

œ
œ

˙

˙

œ

œ

n

n

œ

œ

‰

œ

œ

œ

œ

œ

œ

œ

œ

œ

‰

j

œ

œ

œ

‰

j

œ

œ

œ

‹

‹

˙

œ œ

‰

œ

œ
œ

œ

œœ

#

#

œ

œ
œ ‰

J

œ

œ
œ

#

#
‰

J

œ

œ
œ

˙

˙

œ

œ

œ

œ

The pattern consisting of the notes in square boxes is an exact

transposed repetition of the pattern consisting of the notes in

elliptical boxes.

3. Most repetitions in music are not interesting

1. I’d now just like to demonstrate that although structurally significant repetitions are
fundamental to a listener’s understanding of piece of music, not all the repetitions
that occur in a piece are interesting and significant.

2. For example, here we have the first few bars of Rachmaninoff’s Prelude in C sharp
minor, Op.3, No.2. The pattern consisting of the notes in round boxes is repeated
7 crotchets later, transposed up a minor ninth to give the pattern consisting of the
notes in square boxes. [SHOW ON SLIDE.]

3. This is what these few bars sound like: [PLAY RACH-BS1-6.MID].

4. Now I’m going to play the same bars with the pattern notes emphasized: [PLAY BAD-
PATTERN.MID].

5. Clearly, this repetition is just an artefact that results from the other musically sig-
nificant repetitions that are occurring in this passage such as, for example, the exact
repetition of bar 3 in bar 4.

6. In fact, it turns out that, typically, the vast majority of exact repetitions that occur
within a piece of music are not musically interesting.

7. One of the main motivations behind our work is to develop algorithms that extract
only the interesting repeated patterns of a particular type from the music.

8. Our task, therefore, involves formally characterising what it is about the interesting
structural repetitions that distinguishes them from the many exact repetitions that
the expert listener and analyst do not recognize as being structurally significant.

4. Previous approaches to repetition
discovery in music

& 4

3

. .œ

r

œ œ œ

˙ œ

&

œ

œ œ œ œ
œ œ œ œ

œ œ
œ

œ

3
œ œ œ œ œ œ œ

A

B

• Rolland 1999 (FlExPat)

– Cannot be used for unvoiced polyphonic music.

– Can only find patterns whose sizes lie within a user-specified range.

– Too slow if allow patterns of any size.

– Cannot find highly decorated repetitions.

• Hsu, Liu & Chen 1998

– Cannot be used for unvoiced polyphonic music.

– Cannot find transposed repetitions.

– Slow (worst-case running time of O(n4)).

– Does not allow for gaps.

• Cambouropoulos 1998 (uses Crochemore 1981)

– Does not allow for gaps.

– Cannot be used for unvoiced polyphonic music.

• Conklin & Anagnostopoulou 2001

– Allows crude repetition discovery at higher structural levels.

– Only finds factors (not subsequences).

4. Previous approaches to repetition discovery in music

1. It seems that most previous attempts to develop a repetition discovery algorithm for
music have been based on the assumption that the music to be analysed is represented
as a string of symbols or a set of such strings.

2. An example of such an approach is Pierre-Yves Rolland’s FlExPat program (Rolland
1999). This program can find approximate repetitions within a monophonic source.
It could also be used to find repeated monophonic patterns in a polyphonic work in
which each voice is represented as a string. Also, it is capable of finding repeated
monophonic patterns which contain ‘gaps’. However it suffers from a few weaknesses.

(a) First, it cannot deal with unvoiced polyphonic music such as piano music.

(b) Second, it can only find patterns whose sizes lie within a user-specified range and
if the range is defined so that it allows patterns of any size, the overall worst-case
running time goes up to at least O(n4).

(c) Secondly, like most string-based approaches to approximate pattern matching, it
uses the edit-distance approach. Unfortunately, such an approach is not typically
capable of finding a repetition like the one shown here (CANT-FIND-THIS-2)
because the edit distance between these two occurrences is actually quite large
owing to the high number of insertions required to transform the plain version
(A) into the ornamented one (B).

(d) A program like Rolland’s regards two patterns as being similar if the edit distance
between them is less than some threshold k. However, for these two patterns to
be considered ‘similar’ by Rolland’s algorithm, this value of k would have to be
set to at least 14 to allow for all these extra notes to be inserted. Unfortunately,
this value would in general be too high because the program would then start
regarding highly dissimilar patterns as being similar.

3. Hsu, Liu & Chen 1998 have also described a repetition discovery algorithm for music.
Their algorithm is based on dynamic programming but it suffers from a number of
serious weaknesses:

(a) First, again, it cannot be used for analysing unvoiced polyphonic music.

(b) Second, it is not capable, as described, of finding transposed repetitions.

(c) Third, it has a worst-case running time of O(n4) which means it’s too slow to be
used for analysing large pieces.

(d) It cannot find patterns ‘with gaps’. That is, it can only find a pattern if it
contains all the notes in the piece that occur during the time interval spanned by
the pattern.

4. Cambouropoulos’s (1998) General Computational Theory of Musical Structure also
contains a pattern discovery component, that, in the most recent incarnation of
the theory, is based on Crochemore’s (1981) ‘set partitioning’ algorithm. In Cam-
bouropoulos’s theory, this pattern-discovery algorithm is used to help with determin-
ing the boundaries of the segments that are then categorised. Crochemore’s algorithm

is very fast—it runs in O(n log2 n) time. However, the algorithm does suffer from a
few short-comings:

(a) It cannot find patterns with gaps.

(b) It cannot be used for finding patterns in unvoiced polyphonic music.

5. I’d also like to mention a recent approach described by Conklin & Anagnostopoulou 2001.
In their method, a number of different string representations each representing a dif-
ferent ‘viewpoint’ on the music, are derived from a rich representation of the music
to be analysed. They then discover repeated factors in these various string repre-
sentations and isolate those factors that occur most frequently. Their approach is
interesting because it offers a crude way of identifying repeated patterns at higher
structural levels than the musical surface—one of their viewpoints, for example, rep-
resents just the first note in each crotchet beat. However, such an approach would
not be capable of finding the example shown here because the notes that are common
to both occurrences of the pattern do not all fall on the beat.

6. There is a multitude of string-processing algorithms available for discovering repeated
factors in strings. However, there are far fewer algorithms available for finding re-
peated subsequences (i.e. patterns with gaps) and most of these seem to be NP-
complete.

5. Representing music using multidimensional
datasets (1)

〈onset time, chromatic pitch, morphetic pitch, duration, voice〉
{ 〈0, 27, 16, 2, 2〉, 〈1, 46, 27, 1, 1〉, 〈2, 39, 23, 2, 2〉, 〈2, 44, 26, 1, 1〉, 〈3, 46, 27, 1, 1〉,

〈4, 32, 19, 2, 2〉, 〈4, 47, 28, 1, 1〉, 〈5, 44, 26, 1, 1〉, 〈6, 39, 23, 2, 2〉, 〈6, 42, 25, 1, 1〉,
〈7, 44, 26, 1, 1〉, 〈8, 30, 18, 2, 2〉, 〈8, 46, 27, 1, 1〉, 〈9, 42, 25, 1, 1〉, 〈10, 39, 23, 2, 2〉,
.
〈27, 30, 18, 1, 2〉, 〈28, 32, 19, 1, 2〉, 〈28, 41, 24, 2, 1〉, 〈29, 29, 17, 1, 2〉, 〈30, 27, 16, 1, 2〉,
〈30, 50, 29, 2, 1〉, 〈31, 29, 17, 1, 2〉 }

5. Representing music using multidimensional datasets (1)

1. All the algorithms that I’ve just been talking about assume that the music to be
analysed is represented either as a 1-dimensional string of symbols or, in the case of
polyphonic music, as a set of such symbol strings.

2. And this assumption is the cause of many of their short-comings. For example, the
fact that they process symbol strings means that these algorithms cannot deal with
unvoiced polyphonic music such as keyboard music. Their string-matching basis also
causes problems when it comes to finding patterns that are distributed between several
voices or finding transposed occurrences of polyphonic patterns with gaps.

3. We’ve decided to avoid these problems by adopting a new, geometric approach in
which the music to be analysed is represented as a multidimensional dataset.

4. A multidimensional dataset is simply a set of position vectors or datapoints in a
Euclidean space with a finite number of dimensions. The algorithms that I’m going
to describe work with datasets of any dimensionality and any size. Also the co-
ordinates may take real values (which, of course, in an implementation would be
represented as floating point values).

5. There are many possible appropriate ways of representing a piece of music as a mul-
tidimensional dataset and I’m going to use this example here to demonstrate some of
the simpler possibilities.

6. At the top we have the first two bars of a Prelude from Bach’s 48 Preludes and Fugues.

7. Underneath we have a 5-dimensional dataset that represents this score. The co-
ordinate values in each datapoint represent onset time, chromatic pitch, morphetic
pitch (which is continuous diatonic pitch), duration and voice. Each datapoint rep-
resents a single note event.

8. We can then consider various orthogonal projections of such a dataset. For example,
we could just consider the first two dimensions and get this projection which tells us
the chromatic pitch and onset time of each note.

6. Representing music using multidimensional
datasets (2)

6. Representing music using multidimensional datasets (2)

1. Here are a number of other 2-dimensional projections of that dataset that give us
useful information.

2. For example, this first one is a graph of morphetic pitch against onset time. Note
that some of the patterns that were only similar in the chromatic pitch against onset
time graph are now identical because we’re using a representation of diatonic pitch.
It’s often more profitable when analysing tonal music to look for exact repetitions in
this type of projection than in the chromatic pitch representation.

3. Here’s another projection which shows pitch against voice and shows the range of
each voice rather nicely.

4. This projection shows morphetic pitch against chromatic pitch and gives a represen-
tation of the pitch set that’s used in the passage. In this particular case it shows
quite clearly that the passage is in G major.

5. Finally, this projection shows voice against onset time and tells us the rhythm of each
voice.

6. Adopting this geometric approach allows us to find classes of perceptually significant
musical repetition that are very difficult to compute using string-based approaches.

7. It also allows us to process polyphonic music as simply and efficiently as monophonic
music.

8. It dispenses with the need for multiple representations because we can run the same
repetition discovery algorithms on various orthogonal projections of a single, rich
multidimensional dataset representation.

9. It also allows us to discover repetitions in the dynamic, timbre and rhythmic structure
of a piece as well as its pitch structure.

7. SIA: Discovering maximal repeated
patterns in multidimensional datasets

0

1

2

3

0 1 2 3

×

×

×

×

×

×
a

b

c

d

e

f

y

x

f = 〈3, 2〉
e = 〈2, 3〉
d = 〈2, 2〉
c = 〈2, 1〉
b = 〈1, 3〉
a = 〈1, 1〉

〈2, 1〉
〈1, 2〉
〈1, 1〉
〈1, 0〉
〈0, 2〉

〈2,−1〉
〈1, 0〉
〈1,−1〉
〈1,−2〉

〈1, 1〉
〈0, 2〉
〈0, 1〉

〈1, 0〉
〈0, 1〉

〈1,−1〉

〈1, 1〉 〈1, 3〉 〈2, 1〉 〈2, 2〉 〈2, 3〉 〈3, 2〉
a b c d e f

� � � � �

From

To

〈2, 1〉
〈2,−1〉
〈1, 2〉
〈1, 1〉
〈1, 1〉
〈1, 0〉
〈1, 0〉
〈1, 0〉
〈1,−1〉
〈1,−1〉
〈1,−2〉
〈0, 2〉
〈0, 2〉
〈0, 1〉
〈0, 1〉

〈1, 1〉
〈1, 3〉
〈1, 1〉
〈2, 1〉
〈1, 1〉
〈2, 2〉
〈1, 3〉
〈1, 1〉
〈2, 3〉
〈1, 3〉
〈1, 3〉
〈2, 1〉
〈1, 1〉
〈2, 2〉
〈2, 1〉

Vector Datapoint

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

7. SIA: Discovering maximal repeated patterns in multidimensional datasets

1. I’ll now describe the SIA algorithm.

2. SIA takes a multidimensional dataset as input and finds for every possible vector the
largest pattern in the dataset that can be translated by that vector to give another
pattern in the dataset.

3. For example, if we consider this dataset here, then the largest pattern that can be
translated by the vector 〈1, 0〉 is the pattern {a, b, d}.

4. And the largest pattern that can be translated by the vector 〈1, 1〉 is the pattern
{a, c}.

5. We say that a pattern is translatable by a vector if it can be translated by the vector
to give another pattern in the dataset.

6. And we say that the maximal translatable pattern or MTP for a vector is the largest
pattern that can be translated by the vector to give another pattern in the dataset.

7. SIA discovers all the non-empty MTPs in a dataset and it does it like this:

8. First, the dataset is sorted.

9. Then the algorithm constructs this table here which we call the vector table for the
dataset. A cell in the table contains the vector from the datapoint at the head
of the column of that cell to the datapoint at the head of the row for that cell.
[GIVE EXAMPLE.]

10. SIA computes all the values in this table below the leading diagonal as shown here.
In other words, it computes for each datapoint all the vectors from that datapoint to
every other datapoint in the dataset greater than it.

11. Note that each of these vectors is stored with a pointer that points back to the “origin”
datapoint for which it was computed (that is, the datapoint at the top of its column).

12. Because the dataset has been sorted, the vectors increase as you descend the column
and decrease as you move from left to right across a row.

13. Having constructed this table, SIA then simply sorts the vectors in the table using a
slightly modified version of merge sort to give a list like this one here on the right-hand
side.

14. Note that each vector in this list is still linked to the datapoint at the head of its
column in the vector table. Simply reading off all the datapoints attached to the
adjacent occurrences of a given vector in this list gives us the maximal translatable
pattern for that vector.

15. The complete set of non-empty maximal translatable patterns can be obtained simply
by scanning the list once, reading off the attached datapoints and starting a new
pattern each time the vector changes. Each box in the right-hand column of the list
corresponds to a maximal translatable pattern.

16. The most expensive step in this process is sorting the vectors which can be done in a
worst-case running time of O(kn2 log2 n) for a k-dimensional dataset of size n.

17. The space complexity of the algorithm is O(kn2).

18. I understand that Costas’s group has developed ways of sorting in a worst-case run-
ning time of O(n log2 log2 n). If this could be applied to sorting vectors like this
then that would mean that we could reduce the worst-case running time of SIA to
O(kn2 log log n).

8. SIATEC: Discovering all the occurrences for
each maximal translatable pattern

0

1

2

3

0 1 2 3

×

×

×

×

×

×
a

b

c

d

e

f

y

x

From
a = 〈1, 1〉 b = 〈1, 3〉 c = 〈2, 1〉 d = 〈2, 2〉 e = 〈2, 3〉 f = 〈3, 2〉

a = 〈1, 1〉 〈0, 0〉 〈0,−2〉 〈−1, 0〉 〈−1,−1〉 〈−1,−2〉 〈−2,−1〉
b = 〈1, 3〉 〈0, 2〉 〈0, 0〉 〈−1, 2〉 〈−1, 1〉 〈−1, 0〉 〈−2, 1〉
c = 〈2, 1〉 〈1, 0〉 〈1,−2〉 〈0, 0〉 〈0,−1〉 〈0,−2〉 〈−1,−1〉

To d = 〈2, 2〉 〈1, 1〉 〈1,−1〉 〈0, 1〉 〈0, 0〉 〈0,−1〉 〈−1, 0〉
e = 〈2, 3〉 〈1, 2〉 〈1, 0〉 〈0, 2〉 〈0, 1〉 〈0, 0〉 〈−1, 1〉
f = 〈3, 2〉 〈2, 1〉 〈2,−1〉 〈1, 1〉 〈1, 0〉 〈1,−1〉 〈0, 0〉

Time to find all occurrences of pattern of size m = O(kmn).

l∑
i=1

mi ≤ n(n − 1)

2

O

(
l∑

i=1

kmin

)
≤ O

(
k
n2(n − 1)

2

)

Overall worst-case running time of SIATEC = O(kn3)

8. SIATEC: Discovering all the occurrences for each maximal translatable pattern

1. I’ll now describe our SIATEC algorithm.

2. SIATEC first generates all the maximal translatable patterns using a slightly modified
version of SIA and then it finds all the occurrences of each MTP.

3. I explained on the previous slide that SIA only computes the vectors below the leading
diagonal in the vector table. This is because the maximal translatable pattern for
a vector −v is the same as the pattern that you get by translating the maximal
translatable pattern for v by the vector v itself. [DEMONSTRATE ON SLIDE.]

4. However, it turns out that by computing all the vectors in the vector table we can
more efficiently discover all the occurrences of any given pattern within the dataset.

5. So in SIATEC we actually compute this complete table here and we use the region
below the leading diagonal to compute the MTPs as in SIA.

6. We sort the dataset before computing the table so that the vectors increase as you
descend a column and decrease as you move from left to right along a row.

7. Now, we know that a given column contains all the vectors that the datapoint at the
top of the column can be translated by to give another point in the dataset.

8. Say we want to find all the occurrences of the pattern {a, c} which is the maximal
translatable pattern in this dataset for the vector 〈1, 1〉.

9. Now, when we say that we want to “find all the occurrences” of a pattern, all we
actually need to find is all the vectors that the pattern is translatable by. So, for
example, the pattern {a, c} is only translatable by the vectors 〈1, 1〉 and 〈0, 2〉.

10. We know that the column of vectors under a contains all the vectors that the point a
can be translated by; and we know that the column under c contains all the vectors
that the point c can be translated by. So we know that the pattern {a, c} can only
be translated by the vectors that occur in both of these columns.

11. In other words, to find the set of occurrences for a given pattern we simply have to
find the intersection of the columns headed by the datapoints in the pattern.

12. By exploiting the orderedness of this table, we can find all the occurrences of a k-
dimensional pattern of size m in a dataset of size n in a worst-case running time of
O(kmn).

13. We know that the complete set of maximal translatable patterns is found by SIA

simply by sorting the vectors below the leading diagonal in the vector table. If there
are l such patterns and mi is the size of the ith pattern then this implies

l∑
i=1

mi ≤ n(n − 1)

2
.

14. So the overall worst-case running time of SIATEC is

O

(
l∑

i=1

kmin

)
≤ O

(
kn2(n − 1)

2

)

So the algorithm is O(kn3) for a k-dimensional dataset of size n.

15. The space complexity is O(kn2).

9. Running SIA and SIATEC on music data.

• SIA and SIATEC implemented in C and run on 500MHz Sparc.

• Run on 52 datasets 6 ≤ n ≤ 3456, 2 ≤ k ≤ 5.

• 2 minutes for SIA to process piece containing 3500 notes.

• 13 minutes for SIATEC to process piece containing 2000 notes.

9. Running SIA and SIATEC on music data.

1. We’ve implemented SIA and SIATEC in C and run the programs on 52 datasets ranging
in size from 6 to 3500 datapoints and in dimensionality from 2 to 5 dimensions.

2. We used a 500MHz Sparc machine.

3. The top graph here shows the running time of SIA on this machine for the 2-
dimensional datasets in the sample. The smooth curve represents a running time
of kn2 log2 n.

4. The lower graph shows the running time of SIATEC on this machine for the 2-
dimensional datasets in the sample. In this graph, the smooth curve represents a
running time of kn3.

5. As you can see, it took less than 2 minutes for SIA to process a piece containing 3500
notes and about 13 minutes for SIATEC to process a piece containing 2000 notes.

10. Isolating significant repetitions (1)

• Number of patterns in a dataset of size n = 2n

• Number of patterns generated by SIA < n2

2

• Experiments suggest that many interesting patterns are either

equal to or derivable from the patterns generated by SIA.

• BUT many of the patterns generated by SIA are not musically

interesting.

– Over 70000 patterns discovered for Rachmaninoff Prelude

Op.3 No.2.

– Probably less than 100 of these are going to be analytically

interesting.

• Need systems that evaluate the output of SIATEC and isolate

various classes of musically significant repetitions.

10. Isolating significant repetitions (1)

1. A dataset of size n contains 2n distinct subsets.

2. The number of patterns generated by SIA is less than n2

2
.

3. SIA discovers all the maximal translatable patterns in the powerset of a dataset
and typically this set of maximal translatable patterns is only a tiny fraction of the
patterns in the powerset of the dataset.

4. Our experiments suggest that the repeated patterns that we’re interested in (including
many that are very hard to find using string-matching techniques) are often either
equal to the maximal translatable patterns generated by SIA or straightforwardly
derivable from them.

5. Nevertheless, only a very small proportion of the patterns generated by SIA would
be considered musically interesting by an analyst or expert listener. [SEE EXAM-
PLE ON SLIDE.]

6. This means that we need to devise systems that evaluate the output of SIA and
SIATEC and isolate various classes of musically interesting repetitions.

11. Isolating significant repetitions (2)

� � �

� �

�

� � � �

� �

� �

�

� �

�

××××

××
× ××

�
�
�
��

�
�

�
��

�
�
�
��

�
�

�
��

�
�
�
��

�
�

�
��

�
�
�
��

�
�

�
��

�
�
�
��

�
�

�
��

�
�
�
��

�
�

�
��

∆t

∆p

HIGH OVERLAP LOW OVERLAP DENSITY

OVERLAP = 3×3
6

= 1.5 OVERLAP = 3×3
9

= 1 TEMP. DENS = 3
∆t

NOTE DENS. (TIME) = 3/8

NOTE DENS. (TIME & PITCH) = 3/4

Possible heuristics for finding “theme-like” patterns:

1. Frequency of occurrence.

2. Size of pattern.

3. Overlap.

4. Density

(a) Temporal density.

(b) Note density. “Region spanned by pattern” can be defined as

time interval (segment) spanned by pattern, bounding-box,

convex hull etc.

11. Isolating significant repetitions (2)

1. So, let’s say we want to isolate ‘theme-like’ patterns—the sort of thing you might find
in a musical thematic index like Barlow & Morgenstern 1983.

2. One approach would be to compute for each pattern a numerical value that’s intended
to reflect how “theme-like” the pattern is.

3. Here’s a list of some of the heuristics that I’ve experimented with for doing this:

(a) FREQUENCY OF OCCURRENCE The more frequently a pattern is repeated,
the better.

(b) PATTERN SIZE The larger a pattern, the better.

(c) OVERLAP The fewer the number of notes shared between separate occurrences
of the pattern, the better. This reflects the intuition that for a pattern to be
perceived as being an individual unit, it must not share notes with repetitions of
itself. [SEE EXAMPLE ON SLIDE.]

(d) Cambouropoulos also uses these three quantities to select repeated patterns in
his GCTMS.

(e) Density The denser or more compact the pattern, the better. There are various
ways in which one could define the density of a pattern:

i. Temporal density Divide the number of notes in the pattern by the time
interval spanned by it.

ii. Note density Divide the number of notes in the pattern by the number of
notes in region of the piece spanned by the pattern. There are a number of
possible ways to define the “region spanned by a pattern”. For example, this
could be the time interval spanned by the pattern or the bounding box or
convex hull of the pattern within its multidimensional representation.

12. Some preliminary results

&

?

c

c

≈

œ œ œ œ
œ œ

œ

œ

œ œ œ

Ó ≈ œ œ œ œ
œ œ

œ

œ

œ œ œ œ
œ œ

œ

œ

œ œ œ

œ

œ

Œ ≈

œ œ œ œ
œ œ

œ

œ

œ œ œ œ
œ œ

œ œ œ œ œ œ
œ œ

œ

œ œ œ œ œ

œ œ œ

&

?

4

œ œ œ œ œ
œ œ

œ œ œ œ œ œ#
œ œ

œ

œ

œ œ# œ œ œ œ

œ

œ

.œ œ
œ œ œ œ# œ

œ œ
œ

œ

œ œ œ# œ
œ œ

œ

œ

œ œ œ

12. Some preliminary results

1. Although we’ve now run SIA and SIATEC on some quite large datasets representing
complete pieces of music, we’re still at the early stages of experimenting with heuristics
to isolate perceptually significant patterns.

2. However, when I tried out the heuristics I’ve just described on some quite small
datasets representing passages of music containing less than 200 notes, the results
were quite encouraging.

3. For example, when I run SIATEC on the first five bars of this Bach Two-part Invention,
857 maximal translatable patterns are generated and the pattern that is judged to
be the most “theme-like” using the heuristics I described on the previous slide is the
seven-note subject of the Invention itself.

4. Here’s what the passage sounds like with the occurrences of this pattern emphasized:
[PLAY INVENTION-C.MID.]

5. [PUT ON SLIDE 2.]

6. When I ran the program on this passage from the beginning of Barber’s Piano Sonata,
this repeated bass figure is amongst those patterns that are evaluated to be the most
“theme-like”.

7. [PUT ON SLIDE 3.]

8. Similarly, when I run the program on the first 6 bars of the Rachmaninoff Prelude
in C sharp minor this descending motif is one of the patterns judged to be most
“theme-like”.

13. SIA(M)ESE: Pattern matching in
multidimensional datasets

�

�0

1

2

3

0 1 2 3 4

×

×

×

×

×
e

f

g

h

i

y

x

�

�0

1

0 1 2 3
×

×

×

×
a

b

c

dy

x

i = 〈4, 2〉
h = 〈3, 3〉
g = 〈3, 1〉
f = 〈2, 2〉
e = 〈1, 1〉

〈4, 2〉
〈3, 3〉
〈3, 1〉
〈2, 2〉
〈1, 1〉

〈3, 1〉
〈2, 2〉
〈2, 0〉
〈1, 1〉
〈0, 0〉

〈2, 2〉
〈1, 3〉
〈1, 1〉
〈0, 2〉
〈−1, 1〉

〈1, 1〉
〈0, 2〉
〈0, 0〉
〈−1, 1〉
〈−2, 0〉

〈0, 0〉 〈1, 1〉 〈2, 0〉 〈3, 1〉
a b c d

� � � �

From

To

〈−2, 0〉
〈−1, 1〉
〈−1, 1〉
〈0, 0〉
〈0, 0〉
〈0, 2〉
〈0, 2〉
〈1, 1〉
〈1, 1〉
〈1, 1〉
〈1, 1〉
〈1, 3〉
〈2, 0〉
〈2, 2〉
〈2, 2〉
〈2, 2〉
〈3, 1〉
〈3, 1〉
〈3, 3〉
〈4, 2〉

〈3, 1〉
〈2, 0〉
〈3, 1〉
〈1, 1〉
〈3, 1〉
〈2, 0〉
〈3, 1〉
〈0, 0〉
〈1, 1〉
〈2, 0〉
〈3, 1〉
〈2, 0〉
〈1, 1〉
〈0, 0〉
〈1, 1〉
〈2, 0〉
〈0, 0〉
〈1, 1〉
〈0, 0〉
〈0, 0〉

VECTOR DATAPOINT

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

13. SIA(M)ESE: Pattern matching in multidimensional datasets

1. As I mentioned at the beginning, we’ve also developed a pattern-matching algorithm
based on SIA which we call SIA(M)ESE. I’ll now briefly describe how this algorithm
works.

2. SIA(M)ESE takes a multidimensional query pattern and a multidimensional dataset as
input and finds all exact complete and partial matches of the query pattern in the
dataset.

3. For example, let’s imagine that we give this pattern and this dataset as input to
SIA(M)ESE [SHOW ON SLIDE].

4. In this case, SIA(M)ESE will tell us, for instance, that the the complete query pattern
{a, b, c, d} can be matched to the pattern {e, f, g, i} in the dataset. It will also tell
us that the three point pattern {a, b, c} in the query can be matched to the pattern
{f, h, i} in the dataset, that the points {c, d} can be matched to {e, f} and {f, h}
and so on.

5. It works in essentially the same way as SIA.

6. We begin by sorting the points in the query and the points in the dataset and then
we construct a vector table like this one here.

7. Each entry in this table gives the vector from the query datapoint at the head of the
colum in which the entry occurs to the dataset point at the head of the row in which
the entry occurs. [GIVE EXAMPLE ON SLIDE].

8. Note that as in SIA, each vector in the vector table has a pointer that points back to
the query pattern datapoint at the head of the column in which it occurs.

9. Having constructed this table, we then simply sort all the vectors in it to give a list
like this one here.

10. This list gives us all the vectors that we can translate the query pattern by to give a
non-empty match in the dataset.

11. The fact that each of these vectors still has a pointer to the query pattern datapoint at
the head of its column in the vector table means that, for each vector, we can simply
read off the points in the query pattern that have matches in the dataset when the
query pattern is translated by that vector.

12. For example, if we look at the query pattern datapoints that are pointed to by vectors
with the value 〈1, 1〉 we find that all four of the points in the query pattern are
matched which tells us that a complete occurrence of the query pattern occurs at a
displacement of 〈1, 1〉.

13. Similarly, if we look at the datapoints attached to the consecutive occurrences of the
vector 〈2, 2〉 in this list, we find that the points {a, b, c} are matched when the query
is translated by this vector.

14. The most expensive step in this process is sorting the vectors in the vector table
to give this list here. Using a comparison sort such as merge sort, this step can be
achieved in a worst-case running time of O(knm log2(mn)) for a k-dimensional query
pattern of size m and a k-dimensional dataset of size n.

14. Possible directions for further work

• Versions of SIA and SIATEC that discover approximate repeti-

tions.

• Algorithms (possibly based on SIA) for discovering repetitions

where the patterns are related by rotation, reflection or dilata-

tion (enlargement).

• Improving running time of SIA and SIATEC by using word par-

allelism or by designing PRAM versions of the algorithms.

• Developing heuristics and algorithms for isolating various classes

of perceptually significant repetition.

• Analysing in detail the difference between the types of repeti-

tion that can be discovered using SIA and those that can be

discovered using string-based approaches.

• Developing applications:

– SIA and SIATEC:

∗ Data compression.

∗ Database indexing.

∗ Data mining.

– SIA(M)ESE:

∗ Information retrieval.

∗ Computer-based learning systems.

Further information: www.titanmusic.com

Algorithms are the subject of a patent submitted on 23 May 2001.

14. Possible directions for further work

1. Finally, I’d like to suggest some possible directions for further work in this area. [
USE SLIDE.]

Bibliography

Barlow, H. & Morgenstern, S. (1983), A Dictionary of Musical Themes, revised edn, Faber
and Faber, London.

Cambouropoulos, E. (1998), Towards a General Computational Theory of Musical Struc-
ture, PhD thesis, University of Edinburgh.

Conklin, D. & Anagnostopoulou, C. (2001), Representation and discovery of multiple
viewpoint patterns, in ‘Proceedings of the International Computer Music Conference,
2001, Havana Cuba’.

Crochemore, M. (1981), ‘An optimal algorithm for computing the repetitions in a word’,
Information Processing Letters 12(5), 244–250.

Hsu, J.-L., Liu, C.-C. & Chen, A. L. (1998), Efficient repeating pattern finding in music
databases, in ‘Proceedings of the 1998 ACM 7th International Conference on Informa-
tion and Knowledge Management’, Association of Computing Machinery, pp. 281–288.

Rolland, P.-Y. (1999), ‘Discovering patterns in musical sequences’, Journal of New Music
Research 28(4), 334–350.

35

