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Summary
We propose a method for music classification based on the use of convolutional models on
symbolic pitch–time representations (i.e. piano-rolls).

Background:
• Similar principles of perceptual organization operate in both vision and hearing [3].
• Studies suggest direct interaction between visual and auditory processing in the

brain[4, 10, 6].
•Convolutional models have been used to model the physiology and neurology of visual

perception [2], [9]. Filters perform tasks like contrast enhancement or edge detection.
•Visually motivated features generated from spectrograms have been successfully used

for music classification (see [12, 1]).
The proposed method: is based on the analysis of texture in 2D pitch–time representations.
• Parsing of the music into separate voices is not required,
•Extraction of any other predefined features is not required.

Findings: We show that:
• Filtering significantly improves recognition.
•The results of the experiments suggest that the method is robust to encoding, transpo-

sition and amount of information.
•Our best classifier reaches state-of-the-art performance on discriminating between

Haydn and Mozart string quartet movements.
Applications: Recommendation systems, music database indexing, music generation and
systems as an aid in resolving issues of spurious authorship attribution.

Method

Figure 1: Overview of the method. Music, represented symbolically, is first sampled to 2D
images of piano-rolls. Then, various transformations or processing steps are applied to the
images, including convolution with predefined filters (Gaussian and Morlet). The order of
applying these transformations is from left to right. These transformations are applied in
order to find a suitable normalization (i.e., alignment between the images) before classifi-
cation, and to test the robustness of the method to transformations. Finally, the images are
classified with an SVM.

Figure 2: Piano-roll (p400n) morphetic pitch representation (top) of Haydn’s String Quartet in E-flat Major Opus
1, No. 0 and its transformations filtered by the Morlet wavelet at a scale of 2 pixels oriented of 90 degrees
(second image), and by a Gaussian filter of size 9 × 9 pixels with σ = 3 (third image). p400n and its filtered
versions are each 56× 560 pixels

Experiments
Task: Composer recognition.
Dataset: 54 string quartet movements by Haydn and 53 movements by Mozart, en-
coded as **kern files, same dataset as in [11].
Evaluation: Method’s classification accuracy under different transformations in
leave-one-out cross-validation:

• encoding (MIDI Note Numbers (MNN) vs. morphetic pitch),

• transposition (not centering vs. centering with Cb (Pitch range centering) or Cm
(Center of mass centering)) and

• amount of information (p70qn (first 70 qn of each piece) vs. P400n (first 400 notes
of each piece)).

Results
•At 5% significance level, filtering significantly improves recognition (Wilcoxon rank sum = 194.5,

p = 0.0107, n = 12, with Morlet wavelet), (Wilcoxon rank sum = 203, p = 0.0024, n = 12, with Gaussian filter) (see Table 1).

•Excluding results withCm, the performance of the method under different transformations
is not significantly affected:
– MNN vs. morphetic pitch (Wilcoxon rank sum = 269.5, p = 0.8502, n = 16),

– not centering vs. pitch range centering Cb (Wilcoxon rank sum = 311.5, p = 0.0758, n = 16),

– p70qn vs. P400n (Wilcoxon rank sum = 242, p = 0.4166, n = 16) (see Table 1)

•There is no significant difference between the results obtained by van Kranenburg and
Backer [11] and our best classifier (Wilcoxon rank sum = 11449, p = 0.8661, n = 107) (see Table 2).
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p70qn 65.4 58.9 57.9 53.3 68.2 58.9

Cb(p70qn) 65.4 60.7 47.7 57.9 63.6 51.4

Cm(p70qn) 53.3 60.7 52.3 64.5 59.8 56.1

p400n 67.3 80.4 57.0 63.6 72.9 55.1

Cb(p400n) 62.6 72.9 54.2 61.7 66.4 53.3

Cm(p400n) 65.4 65.4 55.1 66.4 70.1 53.3
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p70qn 64.5 67.3 66.4 62.6 66.4 64.5

Cb(p70qn) 70.1 61.7 63.6 67.3 61.7 61.7

Cm(p70qn) 63.6 57.9 57.0 66.4 56.1 54.2

p400n 66.4 69.2 64.5 65.4 63.6 64.5

Cb(p400n) 54.2 64.5 52.3 58.9 58.9 49.5

Cm(p400n) 53.3 62.6 42.1 56.1 63.6 44.9

Table 1: Haydn and Mozart String Quartet classification accuracies in leave-one-out cross
validation for different configurations of classifiers (NF = no filtering).

Method Accuracy

Proposed best classifier 80.4
Van Kranenburg and Backer (2004) [11] 79.4

Herlands et al. (2014) [5]* 80.0
Hillewaere et al. (2010) [7]* 75.4
Hontanilla et al. (2013) [8]* 74.7

Table 2: Classification accuracies achieved by previous computational approaches on the
Haydn/Mozart discrimination task. * indicates that a different dataset was used from that
used in the experiments reported here.

Future work
• In preliminary experiments, we have seen that diverse configurations of classifiers (i.e.

different filter types, orientations, centering, etc.) seem to provide complementary infor-
mation, potentially for ensembling

•Also in preliminary experiments, we have observed that the method can be applied to
synthetic audio files and audio recordings. In this case, audio files are sampled to spec-
trograms.

•We are optimistic that our proposed method can perform similarly on symbolic and audio
data, and might be used successfully for other style discrimination tasks such as genre,
period, origin, or performer recognition.
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