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1. OBJECTIVE
I Our aim is to generate the 12-tone composi-

tional structure developed by Milton Babbitt
known as an all-partition array.

I An all-partition array is a covering of an I×J
pitch-class matrix by a collection of subsets,
each containing an aggregate and each repre-
sented by a distinct integer partition of 12.

2. OUR METHOD
I We formulate the problem of generating

an all-partition array using integer pro-
gramming (IP), a powerful programming
paradigm in which problems are described
with discrete linear equations and/or in-
equalities.

I We introduce the use of overlaps between sub-
sets, instead of insertions, which allow us to
define the generation of an all-partition array
as a set-covering problem (SCP).

3. INTRODUCING OVERLAPS
I An all-partition array’s matrix contains

fewer elements than does its required collec-
tion of subsets. Therefore, additional pitch
classes must be found.

I Original construction:

Figure 1: Subsets represented by the integer parti-
tions [3, 3, 2, 2, 1, 1] and [3, 3, 3, 3]. Insertions of ad-
ditional pitch classes make the matrix irregular.

v.s.
I Our formulation:

Figure 2: These same subsets with overlaps allowing
for the matrix to remain regular.

4. SUBSETS Ck & CONSTRAINTS
I A binary variable xi,j,k indicates whether or

not (i, j) in the matrix belongs to a kth subset,
Ck.

I Ck is then the set of all (i, j) where xi,j,k = 1.

(a) kth subset. (b) All xi,j,k =
1 for kth subset.

(c) Ck.

Figure 3

Solution Constraints
1. Consecutiveness of row-elements in Ck.
2. Containment of 12 pitch classes in Ck.
3. Covering of all matrix elements by 58Ck.
4. Restrictions on overlaps in contiguous Ck.
5. Distinctness of Ck integer partitions.

5. IP FORMULATION
1. Consecutiveness

consecutive non-consecutive

The elements of Ck,i are found in a range
from a starting point sk to ending point ek:

∀i ∈ [1, I],∀k ∈ [1,K], 0 ≤ si,k ≤ ei,k ≤ J.

Any element of Ck,i is located to the lefthand
side of ei,k:

∀i ∈ [1, I],∀j ∈ [1, J ],∀k ∈ [1,K], j · xi,j,k ≤ ei,k,

Any element of Ck,i is located to the righthand
side of si,k:

∀i ∈ [1, I],∀j ∈ [1, J ],∀k ∈ [1,K], J − si,k ≥ (J + 1− j) · xi,j,k,

The length of Ck,i is exactly ei,k − si,k:

∀i ∈ [1, I],∀k ∈ [1,K],
J∑

j=1

xi,j,k = ei,k − si,k.

5. IP FORMULATION (CONT.)
2. Containment
Exactly 12 distinct pitch classes are contained in
Ck:

∀p ∈ [0, 11],∀k ∈ [1,K],
I∑

i=1

J∑
j=1

Bp
i,j · xi,j,k = 1,

where BP contains all (i, j) in the matrix corre-
sponding to pitch class, p.

3. Covering
Each element in the matrix is covered at least
once:

∀i ∈ [1, I],∀j ∈ [1, J ],

K∑
k=1

xi,j,k ≥ 1.

4. Restrictions on overlaps
Contiguous Ck subsets can not overlap by more
than one location in Ck,i:

∀i ∈ [1, I],∀k ∈ [2,K], ei,k−1 ≤ ei,k,

∀i ∈ [1, I],∀k ∈ [2,K], ei,k−1 − 1 ≤ si,k ≤ ei,k−1,

5. Distinctness
Variable yi,k,l allows us to convert the horizon-
tal lengths of Ck,i into column sums, where:

∀i ∈ [1, I],∀k ∈ [1,K], ei,k − si,k =

L∑
l=1

yi,k,l,

∀i ∈ [1, I],∀k ∈ [1,K],∀l ∈ [2, L], yi,k,l−1 ≥ yi,k,l,

such that ∀i ∈ [1, I], yi,k,l becomes Figure 3(b)
and

∑I
i=1 yi,k,l = [6, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0].

Pn,l (1 ≤ l ≤ L) specifies the shape of Ck as
these column sums. Binary variable zk,n indi-
cates whether Ck takes the shape Pn,l or not:

∀k ∈ [1,K],∀n ∈ [1, N ],∀l ∈ [1, L], Pn,l · zk,n ≤
I∑

i=1

yi,k,l.

All Ck correspond to a distinct integer partition:

∀n ∈ [1, N ],
K∑

k=1

zk,n = 1.

8. SOLVING SMALLER PROBLEMS

Solving for the entire problem (i.e., 6× 96 matrix and
58 subsets), proved too difficult. Therefore, we solved
for smaller problems consisting of the first J columns
of the original matrix, a number of subsets equal to
(J + 2)/2, and 12 overlaps.

Figure 4: Solving time for smaller problems.

The figure below shows one solution for a smaller ma-
trix (J = 12, 7 subsets). In future work, we hope to
combine such smaller solutions to form a complete
solution to the entire problem.
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