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1 Introduction 

Most people are capable of imagining music, and composers can even imagine novel music they 

have never heard before. This is known as musical imagery and can be distinguished from musical 

listening or music perception, where the music experienced results from physical sound energy 

being transmitted across the listener’s peripheral auditory system and then transduced in the inner 

ear into nerve signals that are propagated to higher centers of the brain. In both music perception 

and musical imagery, what is experienced is actually an encoding of musical information, created 

by the person’s brain. Alternatively, one could adopt a less dualist stance and say that experiencing 

music is the direct result of certain spatio-temporal patterns of neural firing that encode musical 

information. In listening, this encoding is generated from information about sound currently in the 

environment, combined with the person’s musical knowledge. In imagery, the encoding is 

constructed only from the person’s musical knowledge. Sound is thus just one particular medium 

for communicating musical information and is not a prerequisite for musical experience. Indeed, 

trained musicians can experience (i.e., “imagine”) music they have never previously heard while 
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silently reading a musical score. Musical imagery and perception therefore have a great deal in 

common – indeed, there are some brain centers (especially in the right temporal lobe) that are 

necessary for both (Halpern 2003).  

 Both the way that one perceives and understands music as well as the music that one is 

capable of imagining are therefore largely determined by one’s musical knowledge that is gained 

through passive exposure to music, active learning of musical skills, and/or study of music theory 

and analysis. It has been proposed in psychology, information theory, and computer science that 

knowledge acquisition – that is, learning – is essentially data compression (Chater 1996; Vitányi 

and Li 2000): on being exposed to new data, a learning system attempts to encode this data as 

parsimoniously as possible by removing redundancy in the data and relating it to what it already 

knows. If a learning system can describe the new data in a compressed manner, then the total 

amount of space used to store all the system’s knowledge increases by only a small amount. The 

less extra space required to encode the new data, the better this new data is “understood” by the 

system. 

 In this chapter, I focus on how the musical knowledge that underpins both music perception 

and musical imagery can be acquired by compressing musical information. In particular, my 

concern is with how it might be possible to find the best ways of understanding musical works 

simply by compressing as much as possible the information that they contain. The ideas presented 

in this chapter are founded on the assumption that the goal of music analysis is to find the best 

possible explanations for the structures of musical “objects,” where such objects are typically 

individual works or movements but could be extracts from works (e.g., phrases, chords, voices, 

even individual notes) or collections of works (e.g., all the pieces by a composer or in a particular 

genre). This assumption begs the following question: given two analyses of the same musical 

object (i.e., two different explanations for the object or ways of understanding it), how are we 

supposed to decide which of the two is the “better” one? 
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 Musicologists and music analysts who adopt a humanistic approach generally do not use 

objective criteria for deciding which of two possible analyses of the same musical object is 

preferable. Typically, such scholars prefer analyses that provide what they individually consider to 

be “more satisfying” readings of a work – that is, the ones that make them feel as though they have 

a better understanding of a work or repertoire. Analysts, then, traditionally evaluate musical 

analyses on subjective grounds. However, claiming that one analysis of a piece of music is “better 

than” another one for the same piece is considered here to be meaningless, unless one specifies 

objectively evaluable tasks that the first analysis allows one to perform more successfully. If such 

tasks are specified, then one can then meaningfully aim to find those analyses that are the best for 

carrying out those tasks. Such tasks could include: 

 memorizing a piece in order, for example, to be able to perform it without a score; 

 identifying errors in a score or performance of an analyzed piece or other related pieces; 

 correctly identifying the composer, place of composition, genre, form, and so on of an 

analyzed piece or other related pieces; 

 predicting what occurs in one part of a piece, having analyzed another part of the same 

piece or other related pieces; or 

 transcribing a performance of a piece from an audio recording or MIDI representation to 

staff notation. 

 Of course, it may be the case that there is no single way of understanding a piece or set of 

pieces that allows for optimal performance on all such tasks. For example, the best way of 

understanding a piece in order to be able to detect errors in a performance may not be the best way 

of understanding that piece in order to determine if some other, previously unheard, piece is by the 

same composer. There may also be several different ways of understanding a given piece or set of 

pieces that are equally effective for carrying out a given task. Nevertheless, it will often be the case 

that understanding a piece in certain ways will allow one to carry out certain objectively evaluable 
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tasks more effectively than understanding the piece in certain other ways; to this extent, one can 

speak of some analyses as being “better than” others for carrying out specific, objectively 

evaluable tasks. The goal of the work presented in this chapter is therefore that of finding those 

ways of understanding musical objects that allow us to most effectively carry out the musical tasks 

that we want to accomplish. The approach adopted is based on the hypothesis that the best possible 

explanations for the structure of a given musical object are those that 

1. are as simple as possible; 

2. account for as much of the detailed structure of the object as possible; and 

3. set the object in as broad a context as possible (i.e., describe the object as being part of as 

large a body of music as possible). 

 Clearly, these goals often conflict: accounting for the structure of a piece in more detail or 

in a way that relates the piece to all the music in some larger context can often entail making one’s 

explanation (i.e., analysis) more complex. 

 This hypothesis, which forms the foundation for the work reported in this chapter, is a form 

of the well-known principle of parsimony. This principle can be traced back to antiquity1 and is 

known in common parlance as “Ockham’s razor,” after the medieval English philosopher, William 

of Ockham (ca. 1287–1347), who made several statements to the effect that, when presented with 

two or more possible explanations that account for some set of observations, one should prefer the 

simplest of these explanations. 

 In more recent times, the parsimony principle has been formalized in various ways, 

including Rissanen’s (1978) minimum description length (MDL) principle, Solomonoff’s (1964a; 

1964b) theory of inductive inference and Kolmogorov’s concept of a minimal algorithmic 

sufficient statistic2 (Li and Vitányi 2008, 401ff; Vereshchagin and Vitányi 2004). The essential 

idea underpinning these concepts is that explanations for data (i.e., ways of understanding it) can 

be derived from it by compressing it – that is, by finding parsimonious ways of describing the data 
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by exploiting regularity in it and removing redundancy from it. Indeed, Vitányi and Li (2000, 446) 

have shown that “data compression is almost always the best strategy” both for model selection 

and prediction. 

 The basic hypothesis that drives the research presented in this chapter is thus that the more 

parsimoniously one can describe an object without losing information about it, the better one 

explains the object being described, suggesting the possibility of automatically deriving 

explanatory descriptions of objects (in our case, musical objects) simply by the lossless 

compression of ‘in extenso’ descriptions of them. In the case of music, such an in extenso 

description might, for example, be a list of the properties of the notes in a piece (e.g., the pitch, 

onset, and duration of each note), such as can be found in a MIDI file. Alternatively, it could be a 

list of sample values describing the audio signal of a musical performance, such as can be found in 

a PCM audio file. The defining characteristic of an in extenso description of an object is that it 

explicitly specifies the properties of each atomic component of the object (e.g., a MIDI event in a 

MIDI file or an audio sample in a PCM audio file), without grouping these atoms together into 

larger constituents and without specifying any structural relationships between components of the 

object.3 In contrast, an explanation for the structure of an object, such as an analysis of a musical 

object, will group atomic components together into larger constituents (e.g., notes grouped into 

phrases and chords or audio samples grouped together into musical events), specify structural 

relationships between components (e.g., “theme B is an inversion of theme A”), and classify 

constituents into categories (e.g., “chords X and Y are tonic chords in root position,” “bars 1–4 and 

16–19 are occurrences of the same theme”). Throughout this chapter, I assume that an analysis is a 

losslessly compressed encoding of an in extenso description of a musical object, even though most 

musical analyses to date have typically been lossy, in that they only focus on certain aspects of the 

structure of an object (e.g., harmony, voice-leading, thematic structure, etc.). Such lossily 

compressed encodings of an object can also provide useful ways of understanding it, but, because 
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information in the original object is lost in such encodings, they do not (at least individually) 

explain all of the detailed structure of the object. In particular, such lossy encodings do not provide 

enough information for the original object to be exactly reconstructed. Thus, if one is interested, 

for example, in learning enough about a corpus of pieces in order to compose new pieces of the 

same type, then such lossy analytical methods would not be sufficient. 

 In the remainder of this chapter, it is proposed that a musical analysis can fruitfully be 

conceived of as being an algorithm (possibly implemented as a computer program) that, when 

executed, outputs an in extenso description of the musical object being analyzed, and thus serves as 

a hypothesis about the nature of the process that gave rise to that musical object. Moreover, it is 

hypothesized that, if one has two algorithms or programs that each generate the same musical 

object, then the shorter of these (i.e., the one that can be encoded using fewer bits of information) 

will represent the better way of understanding that object for any task that requires or benefits from 

musical understanding. 

 A model of music perception and learning will be sketched later on in this chapter, that is 

based on the idea of accounting for the structure of a newly experienced piece of music by 

minimally modifying a compressed encoding of previously encountered pieces. Some recent work 

will then be reviewed in which these ideas have been put into practice by devising compression 

algorithms that acquire musical knowledge that can then be applied in automatically carrying out a 

variety of advanced musicological tasks. 

 

2 Encodings, decoders, and two-part codes 

In this chapter, a musical analysis is conceived of as an effective procedure (i.e., algorithm), 

possibly implemented as a working computer program, that, when executed, generates as its only 

output an in extenso description of the music to be explained. Typically, the description of this 
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program may be shorter than its output. A basic claim of this chapter is that such a description (in 

the form of a program) becomes an explanation for the structure of the object being described as 

soon as it is shorter than the in extenso description of the object that it generates. In other words, a 

compressed encoding of an in extenso description of an object can be considered a candidate 

explanation (not necessarily a “correct” one) for the structure of that object because it serves as a 

hypothesis as to the nature of the process that gave rise to the object. 

 Moreover, it is hypothesized that the more parsimoniously one can describe an object on 

some given level of detail, the better that description explains the structure of the object on that 

level of detail. As discussed above, this is an application of Ockham’s razor or the minimum 

description length (MDL) principle (Rissanen 1978). 

  

 

FIGURE 1. A set of 12, two-dimensional points in a Euclidean integer lattice. 

 

The following simple example serves to illustrate the foregoing ideas. Consider the 

problem of describing the set of 12 points shown in figure 1. One could do this by explicitly giving 

the co-ordinates of all 12 points, thus: 

P(p(0,0),p(0,1),p(1,0),p(1,1),p(2,0),p(2,1),p(2,2),p(2,3),p(3,0),p(3,1),p(3,2),p(3,3)) . (1) 

 In this encoding, a set of points, {p1, p2,… pn}, is denoted by P(p1, p2,… pn) and each point 

within such a set is denoted by p(x,y), where x and y are the x- and y-co-ordinates of the point 
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respectively. The encoding in (1) can be thought of as being a program that computes the set of 

points in figure 1 simply by specifying each point individually. Representing this set of points in 

this way requires one to write down 24 integer co-ordinate values. Moreover, the encoding does 

not represent any groupings of the points into larger constituents, nor does it represent any 

structural relationships between the points. In other words, this description is an in extenso 

description that does not represent any of the structure in the point set and therefore cannot be said 

to offer any explanation for it. One could go even further and say that expression (1) represents the 

data as though it were a random, meaningless arrangement of points with no order or regularity. 

 Note that, in order to actually generate the set of 12 points, the description (1) needs to be 

decoded. An algorithm that carries out this decoding is called a decoder. In this case, such a 

decoder only needs to know about the meanings of the P(·) and p(x,y) formalisms. 

 One can obtain a shorter encoding of the point set in figure 1 by exploiting the fact that it 

consists of three copies, at different spatial positions, of the square configuration of points,  

P(p(0,0),p(0,1),p(1,0),p(1,1)) .       (2) 

One could represent this description of the point set as follows: 

T(P(p(0,0),p(0,1),p(1,0),p(1,1)),V(v(2,0),v(2,2))) ,     (3) 

where T(P(p1, p2,… pn),V(v1, v2,… vm)) denotes the union of the point set, {p1, p2,… pn}, and the 

point sets that result by translating {p1, p2,… pn} by the vectors, {v1, v2,… vm}, where each vector 

is denoted by v(x,y), x and y being the x- and y-co-ordinates, respectively, of the vector. Note that 

description (3) fully specifies the point set in figure 1 using only 12 integer values – that is, half the 

number required to explicitly list the co-ordinates of the points in the in extenso description in (1). 

Description (3) is thus a losslessly compressed encoding of description (1). Description (3) thus 

qualifies as an explanation for the structure of the point set in figure 1, precisely because it 

represents some of the structural regularity in this point set. If one perceives the point set in 

figure 1 in the way represented by description (3), then the 12 points are no longer perceived to be 
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arranged in a random, meaningless manner – they are now seen as resulting from the occurrence of 

three identical squares. Moreover, it is precisely because expression (3) captures this structure that 

it manages to convey all the information in (1) while being only roughly half the length of (1). 

 On the other hand, in order to generate the actual point set in figure 1 from the expression 

in (3), the decoder now needs to be able to interpret not only the operators P(·) and p(x,y), but also 

the operators T(·), V(·) and v(x,y). The decoder required to decode description (3) is therefore 

itself longer and more complex to describe than the decoder required to decode expression (1). The 

crucial question is therefore whether we save enough on the length of the encoding to warrant the 

resulting increase in length of the decoder. If the set of 12 points in figure 1 were the only data that 

we ever had to understand and the operators T(·), V(·) and v(x,y) were only of any use on this 

particular dataset, then the increase in the length of the decoder required to implement these extra 

operators would probably exceed the decrease in the length of the encoding that these operators 

make possible. Consequently, in this case, the parsimony principle would not predict that 

description (3) represented a better way of understanding the point set in figure 1 – the new 

encoding would just replace the specification of 8 random points in (1) with two random vectors in 

(3) and three randomly chosen new operators to be encoded in the decoder. However, the concepts 

of a vector, a vector set, and the operation of translation can be used to formulate compressed 

encodings of an infinite and commonly occurring class of point sets – those containing subsets 

related by translation. If we encode a sufficiently large sample of such point sets using translation-

invariance as a compression strategy, then the saving in the lengths of the resulting encodings will 

more than offset the increase in the length of the decoder required to make it capable of handling 

translation of point sets. This illustrates that interpreting the point set in figure 1 as being 

composed of three identical square configurations of four points only makes sense if one is 

interpreting this point set in the broad context of a large (in this case, infinite) class of point sets, of 

which the set of points in figure 1 is an example. 
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 The foregoing example illustrates that what we are really interested in is not just the length 

of an encoding but the sum of the length of the encoding and the length of the decoder required to 

generate the in extenso description of the encoded object from the encoding. We therefore think 

about descriptions of objects as being two-part codes in which the first part (the decoder) 

represents all the structural regularity in the object that it shares with all the members of a 

(typically large) set of other objects and the second part represents what is unique to the object and 

random relative to the decoder.4  This is why we would not, for example, be interested in a 

“decoder” that itself consists solely of an in extenso description of the point set in figure 1 and 

generates this point set every time it is run with no input. In this case, the “encoding” of the data 

would be of length zero but, because the decoder would be of length at least equal to that of the 

uncompressed in extenso description of the point set, we would have no net compression and, 

consequently, no explanation. 

3 Music analysis and data compression 

 If the best explanations are the shortest descriptions that account for as much data as 

possible in as much detail as possible, then this suggests that the goal of music analysis should be 

to find the shortest – but most detailed – description of as much music as possible. To illustrate 

this, let us consider a close musical analogue of the point-set example in figure 1 discussed above. 

 

FIGURE 2. The opening notes from J. S. Bach’s Prelude in C minor (BWV 871) from the second 

book of Das Wohltemperierte Klavier (1742). Patterns A, B, and C correspond, respectively, to the 

patterns with the same labels in figure 3 (from Meredith et al. 2002). 
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 Figure 2 shows the beginning of J. S. Bach’s Prelude in C minor (BWV 871) from the 

second book of Das Wohltemperierte Klavier (1742) and figure 3 shows a point-set representing 

this music, in which the horizontal dimension represents time in semiquavers and the vertical 

dimension represents morphetic pitch, an integer that encodes the pitch letter name (A–G) and 

octave of a note but not its alteration (……), so that, for example, D4, D4 and D4 all 

have the same morphetic pitch of 24 (Meredith 2006; 2007). The union of the three, 4-note 

patterns, A, B, and C, in Figure 3 could be described in an in extenso manner, on an analogy with 

description (1), as follows: 

 P(p(1,27),p(2,26),p(3,27),p(4,28),p(5,26),p(6,25), 

     p(7,26),p(8,27),p(9,25),p(10,24),p(11,25),p(12,26)) .   (4) 

 This would require one to write down 24 integer co-ordinates. Alternatively, on an analogy 

with description (3), one could exploit the fact that the set consists of three occurrences of the same 

pattern at different (modal) transpositions, and describe it more parsimoniously as follows: 

 T(P(p(1,27),p(2,26),p(3,27),p(4,28)),V(v(4,-1),v(8,-2))) .    (5) 

 This expression not only requires one to write down only half as many integers but also 

encodes some of the analytically important structural regularity in the music – namely, that the 12 

points consist of three, 4-note patterns at different transpositions. Thus, by seeking a compressed 

encoding of the data, we have succeeded in finding a representation that gives us important 

information about the structural regularities in that data. 
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FIGURE 3. A point-set representation of the music in figure 2. The horizontal dimension 

represents time in semiquavers; the vertical dimension represents morphetic pitch (Meredith 2006, 

2007). Patterns A, B, and C correspond, respectively, to the patterns with the same labels in figure 

2. See text for further explanation (from Meredith et al. 2002). 

 

 In the particular case of figure 3, we can get an even more compact description by 

recognizing that the vector mapping A onto B is the same as that mapping B onto C. This means 

that one could represent the vector set V(v(4,-1),v(8,-2)) in description 5 as a vector sequence 

consisting of two consecutive occurrences of the vector v(4,-1), where the result of translating 

pattern A by the first vector in the sequence is itself translated by the second vector in the 

sequence. For example, this could be encoded as V(2v(4,-1)), where the emboldened V operator 

indicates that what follows is a sequence or ordered set, not an unordered set; and where we denote 

k consecutive occurrences of a vector, v(x,y), by kv(x,y). This would, of course, require a 

modification of the decoder so that it could process both vector sequences and the shorthand 

notation for sequences consisting of multiple occurrences of the same vector. As discussed above, 

whether or not adding this functionality to the decoder would be worthwhile depends on whether 

the new functionality allows for a sufficient reduction in encoding length over the whole class of 

musical objects that we are interested in explaining. In this particular case, since the device of 
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musical sequence, exemplified by the excerpt in figure 2, is commonly used throughout Western 

music, it would almost certainly be a good strategy to allow for the encoding of this type of 

structure in a compact manner. It is therefore not surprising that most psychological coding 

languages that have been designed for representing musical structure allow for multiple 

consecutive occurrences of the same interval or vector to be encoded in such a compact form 

(Deutsch and Feroe 1981; Meredith 2012b; Restle 1970; Simon and Sumner 1968; 1993). 

 

4 Music-theoretical concepts that promote compact encodings of musical objects 

There are a number of basic music-theoretical concepts and practices that help Western musicians 

and composers to encode tonal music parsimoniously and reduce the cognitive load required to 

process musical information. 

 One example of such a concept is that of a voice. The strategy of conceiving of music as 

being organized into voices substantially reduces the amount of information about note durations 

that has to be communicated and remembered by musicians. For the vast majority of notes in a 

piece of polyphonic Western music, the duration is equal to the within-voice, inter-onset interval – 

that is, most notes are held until the onset of the next note in the same voice. This means that, for 

most notes, provided we know the voice to which it belongs, we do not have to explicitly encode 

its duration – we only need to do so if there is a rest between it and the next note in the same voice. 

Grouping notes together into sequences that represent voices therefore considerably reduces the 

amount of information about note durations that needs to be explicitly encoded, remembered, and 

communicated. 

 The way in which pitch information is encoded in standard Western staff notation also 

helps to make scores more parsimonious. Key signatures, for example, remove the need to 

explicitly state the accidental for every note in a piece. Instead, accidentals only have to be placed 



Music analysis and data compression  David Meredith 

Page 14 of 39 

before notes whose pitches are outside the diatonic set indicated by the key signature. Since most 

of the notes within a single piece of Western tonal music occur within a small number of closely 

related diatonic sets (i.e., within a relatively limited range on the line of fifths), accidentals are 

typically only necessary for a small proportion of the notes in a score. Key signatures, therefore, 

provide a mechanism for parsimoniously encoding information about pitch names in Western tonal 

music. 

 Also, typically, Western music based on the major–minor system (or the diatonic modes) is 

organized into consecutive temporal segments in which each note is understood to have one of 

seven different basic tonal functions within the key in operation at the point where the note occurs. 

For example, in the major–minor system, these basic tonal functions would be {tonic, supertonic, 

mediant … leading note} and each could be modified or qualified by being considered flattened or 

sharpened relative to a diatonic major or minor scale. Staff notation capitalizes on this by 

providing only 7 different vertical positions at which notes can be positioned within each octave, 

rather than the 12 different positions that would be necessary if the pitch of each note were 

represented chromatically rather than in terms of its role within a seven-note scale. Again, this 

strategy allows for pitch information to be encoded more parsimoniously, leading to a reduction in 

the cognitive load on a musician reading the score. 

 This pitch-naming strategy leads to more parsimonious encodings by assigning simpler 

(shorter) encodings to pitches that are more likely to occur in the music. Time signatures similarly 

define a hierarchy of “probability” over the whole range of possible temporal positions at which a 

note may start within a measure. Specifically, notes are more likely to start on stronger beats.5 In 

Western classical and popular music, this results in only very few possible positions within a bar 

being probable positions for the start (or end) of a note and the notation is designed to make it 

easier to notate and read notes that start at more probable positions (i.e., on stronger beats). In data 

compression, variable-length codes, such as the Huffman code (Huffman 1952; Cormen et al. 
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2009, 431–435) or Shannon–Fano code (Shannon 1948a; 1948b; Fano 1949), work in a closely 

analogous way by assigning shorter codes (i.e., simpler encodings) to more probable symbols or 

symbol strings. Huffman coding, in particular, assigns more frequent symbols to nodes closer to 

the root in a binary tree, which is closely analogous to tree-based representations of musical meter 

that assign stronger beats to higher levels in a tree structure (Lerdahl and Jackendoff 1983; 

Temperley 2001; 2004; 2007; Martin 1972; Meredith 1996, 214–219). 

 It thus seems that several features of Western staff notation and certain music-theoretical 

concepts have evolved in order to allow for Western tonal music to be encoded more 

parsimoniously. 

 

5 Kolmogorov complexity 

The work presented in this chapter is based on the central thesis that explanation is compression. 

The more compressible an object is, the less random it is, the simpler it is and the more explicable 

it is. This basic thesis was formalized by information theorists during the 1960s and encapsulated 

in the concept of Kolmogorov complexity. The Kolmogorov complexity of an object is a measure of 

the amount of intrinsic information in the object (Chaitin 1966; Kolmogorov 1965; Solomonoff 

1964a; 1964b; Li and Vitányi 2008). It differs from the Shannon information content of an object, 

which is the amount of information that has to be transmitted in order to uniquely specify the 

object within some pre-defined set of possible objects. The Kolmogorov complexity of an object is 

the length in bits of the shortest possible effective (i.e., computable) description of an object, where 

an effective description can be thought of as being a computer program that takes no input and 

computes the object as its only output. In other words, the Kolmogorov complexity of an object is 

a measure of the complexity of the simplest process that can give rise to the object. The more 
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structural regularity there is in an object, the shorter its shortest possible description and the lower 

its Kolmogorov complexity. 

 Unfortunately, it is not generally possible to determine the Kolmogorov complexity of an 

object, as it is usually impossible to prove that any given description of the object is the shortest 

possible. Nevertheless, the theory of Kolmogorov complexity supports the notion of using the 

length of a description as a measure of its complexity and it supports the idea that the shorter the 

description of a given object, the more structural regularity that description captures. The theory 

has also been used to show formally that data compression is almost always the best strategy for 

both model selection and prediction (Vitányi and Li 2000). For some further comments on the 

relationship between music analysis and Kolmogorov complexity, see Meredith (2012a). 

 

6 Music analysis and perceptual coding 

As stated at the outset, the work presented here is based on the assumption that the goal of music 

analysis is to find the best possible explanations for musical works. This could be recast in the 

language of psychology by saying that music analysis aims to find the most successful perceptual 

organizations that are consistent with a given musical surface (Lerdahl and Jackendoff 1983). 

 Most theories of perceptual organization have been founded on one of two principles: the 

likelihood principle (Helmholtz 1867), which proposes that the perceptual system prefers 

organizations that are the most probable in the world; and the simplicity principle (Koffka 1935), 

which states that the perceptual system prefers the simplest perceptual organizations. 

 For many years, psychologists considered the simplicity and likelihood principles to be in 

conflict until Chater (1996), drawing upon the theory of Kolmogorov complexity, pointed out that 

the two principles are mathematically equivalent. However, Vitányi and Li (2000) showed that, 

strictly speaking, the predictions of the likelihood principle (which corresponds to Bayesian 
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inference) and the simplicity principle (which corresponds to what they call the “ideal MDL 

principle”) are only expected to converge for individually random objects in computable 

distributions (Vitányi and Li 2000, 446). They state that “if the contemplated objects are 

nonrandom or the distributions are not computable then MDL [i.e., the simplicity principle] and 

Bayes’s rule [i.e., the likelihood principle] may part company.” 

 Musical objects are typically highly regular and not at all random, at least in the sense that 

randomness is defined within algorithmic information theory (Li and Vitányi 2008, 49ff.). Vitányi 

and Li’s conclusions therefore seem to cast doubt on whether approaches based on the likelihood 

principle, commonly applied in Bayesian and probabilistic approaches to musical analysis such as 

those proposed by Meyer (1956), Huron (2006), Pearce and Wiggins (2012), and Temperley 

(2007), can ever successfully be used to discover certain types of structural regularity in musical 

objects such as thematic transformations or parsimonious generative definitions of scales or 

chords. 

 The approach presented in this chapter is therefore more closely aligned with models of 

perceptual organization based on the simplicity principle – in particular, theories of perceptual 

organization in the tradition of Gestalt psychology (Koffka 1935) that take the form of coding 

languages designed to represent the structures of patterns in particular domains. Theories of this 

type predict that sensory input is more likely to be perceived to be organized in ways that 

correspond to shorter descriptions in a particular coding language. Coding theories of this type 

have been proposed for serial patterns (Simon 1972), visual patterns (Leeuwenberg 1971), and, 

indeed, musical patterns (Deutsch and Feroe 1981; Meredith 2012b; Povel and Essens 1985; Restle 

1970; Simon and Sumner 1968; 1993). 
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7 A sketch of a compression-based model of musical learning 

Let us define a musical object to be any quantity of music, ranging from a single note through to a 

complete work or even a collection of works. A musical object is typically interpreted by a listener 

or an analyst in the context of some larger object that contains it (see figure 4). In essence, the 

model of musical learning presented here is as follows.6  The analyst or listener explicitly or 

implicitly tries to find the shortest program that computes the in extenso descriptions of a set of 

musical objects containing: 

 the object to be explained (the explanandum); and 

 other objects, related to the explanandum, defining a context within which the explanandum 

is to be interpreted. 

 This idea is illustrated in figure 5. 

 

 

FIGURE 4. A Venn diagram illustrating various contexts in which a musical object might be 

interpreted. A phrase (P) could be interpreted within the context of a section (S), which could be 

interpreted within the context of a work (W), and so on. C = works by the same composer; F = 

works in the same form or genre; I = works for the same instrumentation; T = tonal music; M = all 

music. 
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 The analyst and listener differ in the degree of freedom that they have to choose the context 

within which they interpret an object. The analyst can explicitly choose a context of closely related 

objects, such as other music in the same genre or by the same composer. In general, the more 

similar the explanandum is to the other objects in the context, the shorter its description can be, 

relative to that context. The listener, on the other hand, is forced to interpret the explanandum in 

the context of their largely implicit understanding of all the previous music they have encountered. 

 

FIGURE 5. The analyst’s or listener’s understanding of a musical object (in red) is modeled as a 

program, P, that computes a set of musical objects containing the one to be explained along with 

other related objects (in yellow) forming a context within which the explanandum is interpreted. 

 

 Figure 6 illustrates the idea that, when the listener hears a new piece (in red), the existing 

explanation (i.e., program) (P) for all the music previously heard (in yellow) is minimally modified 

to produce a new program (P') to account for the new piece in addition to all previously 

encountered music. This is achieved by discovering the simplest way of interpreting as much of the 

material in the new piece in terms of what is already known. The perceived structure of the newly 

encountered musical object is then represented by the specific way in which P' computes that 

object. Note that P' may also generate the previously heard pieces in a way that differs from that in 
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which P generates these pieces, reflecting the fact that hearing a new piece may change the way 

that one interprets pieces that one has heard before. 

 

 

FIGURE 6. When the listener hears a new piece (in red), the existing explanation (i.e., “program”) 

(P) for all the music previously heard is minimally modified to produce a new program (P') to 

account for the new piece in addition to all previously encountered music. This might be achieved 

by discovering the simplest way of interpreting as much of the material in the new piece in terms 

of what is already known. 

 

 One can speculate that P' is produced in a two-stage process. In the first stage, an attempt is 

made to interpret as much of the new, unfamiliar piece as possible by re-using elements and 

transformations that have previously been used to encode (i.e., understand) music. This will 

typically lead to a compact encoding of the new piece if it contains material that is related to that in 

previously encountered music. However, after this first stage, the global interpretation of all pieces 

known to the listener/analyst (including the most recently interpreted piece) may no longer be as 

close to optimal as it could be. In a second stage, therefore, the brain of the listener or analyst 

might carry out a more computationally expensive “knowledge consolidation” process in which an 

attempt is made to find a globally more efficient encoding of all music known to the individual. 

This might, for example, occur during sleep (see Tononi and Cirelli 2014) and might consist of a 
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randomized process of seeking alternative encodings of individual pieces that help to produce a 

more efficient global interpretation of the music known to the individual. 

 On this view, music analysis, perception, and learning essentially reduce to the process of 

compressing musical objects. This is, of course, an idealized model: for example, in practice, a 

listener will not have internalized a model that can account in detail for all the music they have 

previously heard. In other words, in reality, this learning process would probably be based on 

rather lossy compression. 

 However, it is important to stress that, even though both the analyst and the listener aim to 

find the shortest possible encodings of the music they encounter, they both usually fail to achieve 

this. As Chater (1996) points out, “the perceptual system cannot, in general, maximize simplicity 

(or likelihood) over all perceptual organizations…It is, nonetheless, entirely possible that the 

perceptual system chooses the simplest (or most probable) organization that it is able to construct” 

(578). This is largely a result of the limited processing and memory resources available to the 

perceptual system. For example, we typically describe the structure of a piece of music in terms of 

motives, themes, and sections, all of which are temporally compact segments, meaning that they 

are patterns that contain all the events that occur within a particular time span. It could well be 

that, for some pieces, a more parsimonious description (corresponding to a better explanation) 

might be possible in terms of patterns containing notes and events that are dispersed widely 

throughout the piece. However, listeners would normally fail to discover such patterns because 

their limited memories and attention spans constrain them to focus on patterns that are temporally 

compact (see also, Collins et al. 2011). 
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8 Using the model to explain individual differences 

The model just sketched can be applied to understanding the emergence of differences between the 

ways that individuals understand the same piece. The model proposed in the previous section 

consists essentially of a greedy algorithm7 that is used to construct an interpretation for a newly 

encountered piece that minimally modifies an existing ‘program’ that generates descriptions of all 

the pieces in a particular context set. It was proposed that this greedy approach might be 

supplemented by a computationally more expensive process of consolidation that attempts to find a 

globally more efficient encoding. Nevertheless, because such a consolidation process will not 

generally be capable of consistently discovering a globally optimal encoding, the way that an 

individual understands a given piece will generally depend not only on which pieces they already 

know, but also on the order in which these pieces were encountered. This implication could fairly 

straightforwardly be tested empirically. 

 A rather crude version of the foregoing model has been implemented in an algorithm called 

SIATECLearn. The SIATECLearn algorithm is based on the geometric pattern discovery 

algorithm, SIATEC, proposed by Meredith and colleagues (2002). The SIATEC algorithm takes as 

input a set of points called a dataset and automatically discovers all the translationally related 

occurrences of maximal repeated patterns in the dataset. If the dataset represents a piece of music, 

with each point representing a note in pitch-time space, then two patterns in this space related by 

translation correspond to two statements of the same musical pattern, possibly with transposition. 

We say a pattern P is translatable within a dataset D if there exists a vector, v, such that P 

translated by v gives a pattern that is also in D. A translatable pattern is maximal for a given vector, 

v, in a dataset D, if it contains all the points in the dataset that can be mapped by translation by v 

onto other points in the dataset. The maximal translatable pattern (MTP) for a vector v in a dataset 

D, which we can denote by 𝑀𝑇𝑃(𝑣, 𝐷), can also be thought of as being the intersection of the 

dataset D and the dataset D translated by –v. That is, 
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 𝑀𝑇𝑃(𝑣, 𝐷) = 𝐷 ∩ (𝐷 − 𝑣). (6) 

For each (non-empty) maximal translatable pattern, P, in a dataset, SIATEC finds all the 

occurrences of P, and outputs this occurrence set of P. Such an occurrence set is called the 

translational equivalence class (TEC) of P in D, denoted by 𝑇𝐸𝐶(𝑃, 𝐷), because it contains all the 

patterns in the dataset that are translationally equivalent to P. That is, 

 𝑇𝐸𝐶(𝑃, 𝐷) = {𝑄 | 𝑄 ⊆ 𝐷 ∧ (∃𝑣|𝑄 = 𝑃 + 𝑣)}. (7) 

SIATEC therefore takes a dataset as input and outputs a collection of TECs, such that each TEC 

contains all the occurrences of a particular maximal translatable pattern. 

 An algorithm called SIATECCompress (Meredith 2013b; 2015; 2016) runs SIATEC on a 

dataset, then sorts the found TECs into decreasing order of “quality.” Given two TECs, the one that 

results in the better compression (in the sense of expressions (4) and (5) above) is deemed superior. 

If both TECs give the same degree of compression, then the one whose pattern is spatially more 

compact is considered superior. SIATECCompress then scans this list of occurrence sets and 

computes an encoding of the input dataset in the form of a set of TECs that, taken together, 

account for or cover the entire input dataset. 

 SIATECLearn runs SIATECCompress, but also stores the patterns it finds on each run and 

will preferably re-use these patterns rather than newly found ones on subsequent runs of the 

algorithm. Thus, when SIATECLearn is run on the 12-point pattern on the left in figure 7, it 

“interprets” the dataset as being constructed from three occurrences of the square pattern shown. 

This square pattern is therefore stored in its “long-term” memory. When the algorithm is 

subsequently run on the 10-point dataset on the right, it prefers to use the stored square pattern 

rather than any of the patterns that it finds in this newly encountered dataset; it interprets the new 

dataset as containing two occurrences of the square pattern along with two extra points. 
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FIGURE 7. Output of SIATECLearn when presented first with the dataset on the left and then with 

the dataset on the right. 

 

 Conversely, when SIATECLearn is first presented with the 10-point dataset, it interprets 

the dataset as being composed from 5 occurrences of the two-point vertical line configuration 

shown on the left in figure 8. This pattern is then stored in long-term memory, so that, when the 

algorithm is subsequently presented with the 12-point dataset, it interprets this set as consisting of 

6 occurrences of this vertical line rather than 3 occurrences of the square pattern. This very simple 

example illustrates how the way in which objects are interpreted can depend on the order in which 

they are presented. 
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FIGURE 8. Output of SIATECLearn when presented first with the dataset on the left and then with 

the dataset on the right. 

 

<1>COSIATEC: Music analysis by point-set compression 

Given the concept of a TEC, as defined in (7) above, we can define the covered set, 𝐶𝑆(𝑇), of a 

TEC T to be the union of all the patterns in T. That is 

 𝐶𝑆(𝑇) = ⋃ 𝑃௉∈் . (8) 

 COSIATEC (Meredith et al. 2003; Meredith 2013b; 2015; 2016) is a greedy compression 

algorithm based on SIATEC. The algorithm takes a dataset as input and computes a set of TECs 

that collectively cover this dataset in such a way that none of the TECs’ covered sets intersect. It 

also attempts to choose this set of TECs so that it minimizes the length of the output encoding. The 

basic idea behind the algorithm is sketched in the pseudo-code in figure 9. 

 

 

FIGURE 9. The COSIATEC algorithm. 
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 As shown in figure 9, the COSIATEC algorithm first finds the “best” TEC in the output of 

SIATEC for the input dataset, S. The best TEC is the one that produces the best compression. This 

means that it is the one that has the best compression factor, which is the ratio of the number of 

points in its covered set (as defined in (8)) to the sum of the number of points in one occurrence of 

the TEC’s pattern and the number of occurrences minus 1. The reasoning behind this is that a TEC 

can be compactly encoded as an ordered pair, (P,V), where P is one occurrence in the TEC and V is 

the set of vectors that map P onto all the other occurrences of P in the dataset. The number of 

vectors in V is therefore equal to the number of occurrences of P minus 1. The length of an in 

extenso encoding of a TEC’s covered set in terms of points is simply |𝐶𝑆(𝑇)| as defined in (8). 

Each vector in V has approximately the same information content as a point in P, so the length of 

an ordered pair encoding of a TEC, (P,V), in terms of points is approximately |P|+|V|. The 

compression factor is the ratio of the length of the in extenso encoding to the length of the 

compressed encoding. Thus, the compression factor of a TEC, T = (P,V), denoted CF(T), can be 

defined as 

𝐶𝐹(𝑇) =
|𝐶𝑆(𝑇)|

|𝑃| + |𝑉|
. 

 

 If two TECs have the same compression factor, then COSIATEC chooses the TEC in 

which the first occurrence of the pattern is the more compact: the compactness of a pattern is the 

ratio of the number of points in the pattern to the number of dataset points in the bounding box of 

the pattern. The rationale behind this heuristic is that patterns are more likely to be noticeable if the 

region of pitch-time space that they span does not also contain many ‘distractor’ points that are not 

in the pattern. These heuristics for evaluating the quality of a TEC are discussed in more detail by 

Meredith and colleagues (2002), Meredith (2015), and Collins and co-authors (2011). 

 As shown in figure 9, once the best TEC, T, has been found for the input dataset, S, this 

TEC is added to the encoding (E) and the covered set of T, CS(T), is removed from S. Once the 
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covered set of T has been removed from S, the process is repeated, with SIATEC being run on the 

new S. The procedure is repeated until S is empty, at which point E contains a set of TECs that 

collectively cover the entire input dataset. Moreover, because the TEC that gives the best 

compression factor is selected on each iteration, E is typically a compact or compressed encoding 

of S. COSIATEC typically produces encodings that are more compact than those produced by 

SIATECCompress. 

 

 

FIGURE 10. The set of TECs computed by COSIATEC for a short Dutch folk song, “Daar zou er 

en maagdje vroeg opstaan” (file number NLB015569 from the Nederlandse Liederen Bank, 

http://www.liederenbank.nl). Courtesy of Peter van Kranenburg. 

 

 Figure 10 shows the output of COSIATEC for a short Dutch folk song. The complete piece 

can be encoded as the union of the covered sets of 5 TECs. In figure 10, each TEC is drawn in a 

different color. The first TEC, drawn in red, consists of the occurrences of a three-note, lower-

neighbor-note figure. This TEC has the best compression factor of any TEC for a maximal 

translatable pattern in this dataset. After these three-note patterns have been removed from the 

piece, the next best TEC is the one drawn in light green in figure 10, namely the two occurrences 

of the four-note, rising scale segment. The fifth TEC consists of the 14 occurrences of a single 

unconnected point in figure 10. These are the points (notes) that are left over after removing the 

sets of repeated patterns that give the best compression factor. This final set of “residual” points, 
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which cannot be compressed by the algorithm, is essentially seen by the algorithm as being random 

“noise” that it cannot “explain.” 

 

 

FIGURE 11. Analysis generated by COSIATEC of J. S. Bach’s Prelude in C minor (BWV 871) 

from the second book of Das Wohltemperierte Klavier (1742). All the occurrences of a given 

pattern are drawn in a single color. The first TEC generated, in red, is the one that has the highest 

compression factor over the whole dataset. The overall compression factor of this analysis is 2.3 

and the residual point set, containing notes that the algorithm does not re-express in a compact 

form, contains 3.61% of the notes in the piece (corresponding to 25 out of 692 notes). 

 

 Figure 11 shows the analysis generated by COSIATEC for a more complex piece of music, 

the Prelude in C minor (BWV 871) from book 2 of J. S. Bach’s Das Wohltemperierte Klavier. 

Note that the first TEC (in red) generated by COSIATEC (i.e., the one that results in the most 

compression over the whole dataset) is precisely the four-note pattern shown in figure 2 above. 

 

9 Evaluating music analysis algorithms 

In the introduction to this chapter, it was proposed that, when given two or more different analyses 

of the same piece of music (or, more generally, musical object), it may be possible to determine 

which of the analyses is the best for carrying out certain objectively evaluable tasks. It is similarly 
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possible to evaluate algorithms that compute analyses by comparing how well the generated 

analyses allow certain tasks to be performed. 

 In a recent paper (Meredith 2015), the point-set compression algorithms, COSIATEC and 

SIATECCompress, were compared on a number of different tasks with a third greedy compression 

algorithm proposed by Forth and Wiggins (2009) and Forth (2012). The algorithms were evaluated 

on three tasks: folk song classification, discovery of repeated themes and sections, and discovery 

of fugal subject and counter-subject entries. Although no obvious correlation was found between 

compression factor and performance on these tasks, COSIATEC achieved both the best 

compression factor (around 1.6) and the best classification success rate (84%) on the folk-song 

classification task. The pattern-discovery task on which the algorithms compared in this study were 

evaluated consisted of finding the repeated themes and sections identified in the JKU Patterns 

Development Database, a collection of five pieces of classical and baroque music, each 

accompanied by “ground-truth” analyses by expert musicologists (Collins 2013). The output of 

each algorithm was compared with these analyses. I have argued (Meredith 2015, 263–265) that 

these “ground-truth” analyses are not satisfactory for at least two reasons: first, the musicologists 

on whose work the ground-truth analyses are based did not consistently identify all occurrences of 

the patterns that they considered to be worth mentioning; and second, there are patterns that are 

noticeable and important that the musicologists who created the ground-truth analyses failed to 

mention. Indeed, the tested algorithms discovered not only structurally salient patterns that the 

analysts omitted to mention but also exact occurrences of the ground-truth patterns that are not 

recorded in the ground-truth analyses. Figure 12 shows some examples of structurally important 

patterns in a fugue by J. S. Bach that were not recorded in the “ground-truth” analyses used for 

evaluation. 
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FIGURE 12. Examples of noticeable and/or important patterns in Bach’s Fugue in A minor (BWV 

889), that were discovered by the algorithms tested by Meredith (2015) but were not recorded in 

the “ground-truth” analyses in the JKU Patterns Development Database used for evaluation. 

Patterns (a), (b), and (d) were discovered by COSIATEC. Patterns (c) and (d) were discovered by 

SIATECCompress. 

 

 Notwithstanding the foregoing methodological issues with this task, it was found that 

SIATECCompress performed best on average, achieving an average F1 score of about 50% over 

the five pieces in the corpus. However, COSIATEC, achieved F1 scores of 71% and 60% on the 

pieces by Beethoven and Mozart, respectively; and Forth’s algorithm performed substantially 

better than the other algorithms on a fugue by Bach. There was therefore no algorithm that 

consistently performed best on this task. 

 On the fugal analysis task, the algorithms performed rather less well than on the other 

evaluation tasks. COSIATEC and SIATECCompress achieved a mean recall of around 60% over 

the 24 fugues in the first book of J. S. Bach’s Das Wohltemperierte Klavier. However, 

COSIATEC’s precision on this task was much lower (around 10%). Overall, the best performing 

algorithm was SIATECCompress that achieved an F1 score of around 30% on this fugal analysis 

task. 
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 In the study just discussed, the performance of the SIA-based compression algorithms on 

the folk-song classification task was compared with that of the general-purpose text compression 

algorithm, bzip2 (Seward 2010). On this task, bzip2 achieved a much higher average compression 

factor (3.5) but a much lower classification success rate (12.5%) than the SIA-based algorithms. At 

first sight, this might be interpreted as evidence against the basic hypothesis that shorter 

descriptions correspond to better explanations. In a later study, Corentin Louboutin and I therefore 

explored in more depth whether general-purpose compression algorithms could be used for music 

analysis, by comparing three general-purpose compression algorithms with COSIATEC on two 

music-analytical tasks (Louboutin and Meredith 2016). The general-purpose algorithms compared 

included the Burrows–Wheeler algorithm (Burrows and Wheeler 1994), Lempel–Ziv-77 (LZ77) 

(Ziv and Lempel 1977) and Lempel–Ziv-78 (LZ78) (Ziv and Lempel 1978). This study confirmed 

that, in order to achieve good results, the type of representation used for the music has to be 

appropriate for the compression algorithm used. Thus, COSIATEC, which discovers maximal 

repeated patterns in point sets, was unaffected by the order in which the notes were sorted in the 

input files. However, LZ77 discovers repeated substrings in a sequence of symbols and these 

substrings, consisting of sequences of contiguous symbols in the original string representation, 

only correspond to sequences of contiguous notes in a voice when the notes in the music are 

presented to the algorithm a voice at a time. If the notes are presented a chord at a time (i.e., 

sorting the notes first by pitch and then by onset), then we should not expect LZ77 to be capable of 

finding repeated melodic themes. Our results confirmed this; when the algorithms were used on the 

fugal analysis task described above, the F1 score for the LZ77 algorithm doubled when the notes 

were first sorted so that the algorithm was presented with the music a voice at a time rather than a 

chord at a time. On this task, we also found a strong correlation between compression factor and F1 

score, supporting the general notion that shorter descriptions represent better explanations. 
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 On the folk-song classification task, we were able to improve on the performance of 

COSIATEC by using 8 different representations in combination, with LZ77 being used to calculate 

normalized compression distances for seven of these and COSIATEC being used for the last one. 

In this way, we succeeded in achieving a classification success rate of over 94% using an 8-

nearest-neighbor classification algorithm, compared with 85% for COSIATEC alone.  

 

10 Applying a compression-driven approach to the analysis of musical audio 

The main concern in this chapter has been with explaining “musical objects” by discovering 

losslessly compressed descriptions of these objects. The basic scheme is that one takes an in 

extenso encoding of such an object and then attempts to find a short algorithm that generates that 

in extenso encoding as its only output. The encoding could be on any level of granularity and could 

represent any quantity of music in any possible domain in which a musical object might be 

manifested – for example, an image of a score, a symbolic encoding of a score, an audio recording 

or a video recording. In the examples and evaluations presented above, the focus has been on 

musical objects that are symbolic encodings of scores. In such cases, one can realistically hope to 

be able to produce losslessly compressed descriptions in which we are required to consider only a 

very small proportion of the information in the object to be “random” or “noise.” On the other 

hand, if one were concerned with explaining the structure of a digital audio recording of a 

performance of a piece produced by human performers playing from a score, then one would 

expect the compression factors achievable to be lower and one would expect to have to be satisfied 

with considering a larger proportion of the information in the object as being “noise.” This is 

because the detailed structure of such a recording depends not only on the score from which the 

players are performing, but also many other factors that are perhaps harder to model, such as the 

acoustics of the space in which the recording was made, the precise nature of the instruments used 



Music analysis and data compression  David Meredith 

Page 33 of 39 

and, most importantly, the players themselves and their own particular ways of interpreting the 

score. 

 

11 Summary 

In this chapter, I have proposed that the goal of music analysis should be to find the “best” ways of 

understanding musical objects and that two different analyses of the same musical object can be 

compared objectively by determining whether one of them allows us to more effectively perform 

some specific set of tasks. I have also explored the hypothesis that, for all tasks that require an 

understanding of how a musical object is constructed, the best ways of understanding that object 

are those that are represented by the shortest possible descriptions of the object. I have briefly 

outlined how this hypothesis relates to the theory of Kolmogorov complexity and to coding theory 

models of perception. I have also briefly sketched how these ideas can form the basis of a theory of 

musical learning that can potentially explain aspects of music cognition such as individual 

differences. Finally, I briefly described the COSIATEC point-set compression algorithm and 

reviewed the results of some experiments in which it and other related algorithms have been used 

to automatically carry out musical tasks such as folk-song classification and thematic analysis. The 

results achieved in these experiments generally support the idea that the knowledge necessary to be 

able to successfully carry out advanced musicological tasks can largely be acquired simply by 

compressing in extenso representations of musical objects. Moreover, some of the results clearly 

indicate a correlation between compression factor and success on musicological tasks. However, 

these experiments also show that performance on such tasks depends heavily both on the specific 

types of redundancy exploited by the compression algorithm used to generate the compressed 

encodings and on the precise form of the in extenso representations used as input to these 

compression-based learning methods. 



Music analysis and data compression  David Meredith 

Page 34 of 39 

 

12 Acknowledgements 

The work reported in this chapter was carried out as part of the EU collaborative project, “Learning 

to Create” (Lrn2Cre8). The project Lrn2Cre8 acknowledges the financial support of the Future and 

Emerging Technologies (FET) programme within the Seventh Framework Programme for 

Research of the European Commission, under FET grant number 610859. 

 

 

13 References 

Bouchier, E. S. 1901. Aristotle’s Posterior Analytics. Oxford: Oxford University Press. 

Burrows, M., and D. J. Wheeler. 1994. A Block-Sorting Lossless Data Compression Algorithm. 

Palo Alto, CA.: Digital Systems Research Center (now HP Labs). Technical Report SRC 124. 

Chaitin, G. J. 1966. On the Length of Programs for Computing Finite Binary Sequences. Journal 

of the Association for Computing Machinery 13 (4): 547–569. 

Chater, N. 1996. Reconciling Simplicity and Likelihood Principles in Perceptual Organization. 

Psychological Review 103 (3): 566–581. 

Collins, T. 2013. JKU Patterns Development Database. 

https://dl.dropbox.com/u/11997856/JKU/JKUPDD-Aug2013.zip. Accessed January 21, 2016. 

Collins, T., R. Laney, A. Willis, and P. H. Garthwaite. 2011. Modeling Pattern Importance in 

Chopin’s Mazurkas. Music Perception 28 (4): 387–414. 

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein. 2009. Introduction to Algorithms. 3rd 

edition. Cambridge, MA.: MIT Press. 



Music analysis and data compression  David Meredith 

Page 35 of 39 

Deutsch, D., and J. Feroe. 1981. The Internal Representation of Pitch Sequences in Tonal Music. 

Psychological Review 88 (6): 503–522. 

Fano, R. M. 1949. The Transmission of Information. Technical report no. 65 March 17. 

Cambridge, MA.: Research Laboratory of Electronics, MIT. 

Forth, J. C. 2012. Cognitively-Motivated Geometric Methods of Pattern Discovery and Models of 

Similarity in Music. PhD thesis. Department of Computing, Goldsmiths, University of London, 

UK. 

Forth, J., and G. A. Wiggins. 2009. An Approach for Identifying Salient Repetition in 

Multidimensional Representations of Polyphonic Music. In London Algorithmics 2008: Theory 

and Practice, edited by J. Chan, J. W. Daykin, and M. S. Rahman, 44–58. London: College 

Publications. 

Halpern, A. R. 2003. Cerebral Substrates of Musical Imagery. In The Cognitive Neuroscience of 

Music, edited by I. Peretz and R. J. Zatorre, Chapter 15. Oxford: Oxford University Press. DOI: 

10.1093/acprof:oso/9780198525202.001.0001. 

Helmholtz, H. L. F. 1867. Handbuch der physiologischen Optik. Leipzig: Leopold Voss. 

Huffman, D. A. 1952. A Method for the Construction of Minimum-Redundancy Codes. 

Proceedings of the IRE, September: 1098–1101. 

Huron, D. 2006. Sweet Anticipation: Music and the Psychology of Expectation. Cambridge, MA.: 

MIT Press. 

Koffka, K. 1935. Principles of Gestalt Psychology. New York: Harcourt Brace. 

Kolmogorov, A. N. 1965. Three Approaches to the Quantitative Definition of Information. 

Problems of Information Transmission 1 (1): 1–7. 

Leeuwenberg, E. L. J. 1971. A Perceptual Coding Language for Visual and Auditory Patterns. 

American Journal of Psychology 84 (3): 307–349. 



Music analysis and data compression  David Meredith 

Page 36 of 39 

Lerdahl, R., and R. Jackendoff. 1983. A Generative Theory of Tonal Music. Cambridge, MA.: MIT 

Press. 

Li, M., and P. M. B. Vitányi. 2008. An Introduction to Kolmogorov Complexity and Its 

Applications. 3rd edition. New York: Springer. 

Louboutin, C., and Meredith, D. 2016. Using General-Purpose Compression Algorithms for Music 

Analysis. Journal of New Music Research 45 (1): 1–16. 

Martin, J. G. 1972. Rhythmic (hierarchical) versus Serial Structure in Speech and Other Behavior. 

Psychological Review 79 (6): 487–509. 

Meredith, D. 1996. The Logical Structure of an Algorithmic Theory of Tonal Music. Unpublished 

thesis. http://www.titanmusic.com/papers/public/thesis1996.pdf. Accessed May 15, 2017. 

Meredith, D. 2006. The ps13 Pitch Spelling Algorithm. Journal of New Music Research 35 (2): 

121–159. 

Meredith, D. 2007. Computing Pitch Names in Tonal Music: A Comparative Analysis of Pitch 

Spelling Algorithms. PhD thesis. University of Oxford. 

Meredith, D. 2012a. Music Analysis and Kolmogorov Complexity. Proceedings of the 19th 

Colloquio d’Informatica Musicale (XIX CIM), Trieste, Italy. 

Meredith, D. 2012b. A Geometric Language for Representing Structure in Polyphonic Music. In 

Proceedings of the 13th International Society for Music Information Retrieval Conference (ISMIR 

2012), Porto, Portugal: 133–138. 

Meredith, D. 2012c. A Compression-Based Model of Musical Learning. DMRN+7: Digital Music 

Research Network One-day Workshop 2012, December 18, Queen Mary University of London. 

Meredith, D. 2013a. Analysis by Compression: Automatic Generation of Compact Geometric 

Encodings of Musical Objects. The Music Encoding Conference 2013. May 22–24, Mainz 

Academy for Literature and Sciences, Mainz, Germany. 



Music analysis and data compression  David Meredith 

Page 37 of 39 

Meredith, D. 2013b. COSIATEC and SIATECCompress: Pattern Discovery by Geometric 

Compression. Music Information Retrieval Evaluation Exchange (Competition on “Discovery of 

Repeated Themes & Sections”) (MIREX), Curitiba, Brazil. 

Meredith, D. 2015. Music Analysis and Point-Set Compression. Journal of New Music Research 

44 (3): 245–270. 

Meredith, D. 2016. Analysing Music with Point-Set Compression Algorithms. In Computational 

Music Analysis, edited by D. Meredith, 335–366. Cham, Switzerland: Springer.  

Meredith, D., K. Lemström, and G. A. Wiggins. 2002. Algorithms for Discovering Repeated 

Patterns in Multidimensional Representations of Polyphonic Music. Journal of New Music 

Research 31 (4): 321–345. 

Meredith, D., K. Lemström, and G. A. Wiggins. 2003. Algorithms for Discovering Repeated 

Patterns in Multidimensional Representations of Polyphonic Music. Proceedings of the Cambridge 

Music Colloquium, University of Cambridge. 

Meyer, L. B. 1956. Emotion and Meaning in Music. Chicago: Chicago University Press. 

Pearce, M., and G. A. Wiggins. 2012. Auditory Expectation: The Information Dynamics of Music 

Perception and Cognition. Topics in Cognitive Science 4: 625–652. 

Povel, D.-J., and P. Essens. 1985. Perception of Temporal Patterns. Music Perception 2 (4): 411–

440. 

Restle, F. 1970. Theory of Serial Pattern Learning: Structural trees. Psychological Review 77 (6): 

481–495. 

Rissanen, J. 1978. Modeling by Shortest Data Description. Automatica 14: 465–471. 

Seward, J. 2010. bzip2 version 1.0.6, released 20 September 2010. http://www.bzip.org. Accessed 

April 19, 2014. 

Shannon, C. E. 1948a. A Mathematical Theory of Communication. The Bell System Technical 

Journal 27 (3): 379–423. 



Music analysis and data compression  David Meredith 

Page 38 of 39 

Shannon, C. E. 1948b. A Mathematical Theory of Communication. The Bell System Technical 

Journal 27 (4): 623–656. 

Simon, H. A. 1972. Complexity and the Representation of Patterned Sequences of Symbols. 

Psychological Review 79 (5): 369–382. 

Simon, H. A., and R. K. Sumner. 1968. Pattern in Music. In Formal Representation of Human 

Judgment, edited by B. Kleinmuntz. New York: Wiley. 

Simon, H. A., and R. K. Sumner 1993. Pattern in music. In Machine Models of Music, edited by S. 

M. Schwanauer and D. A. Levitt, 83–110. Cambridge, MA.: MIT Press. 

Solomonoff, R. J. 1964a. A Formal Theory of Inductive Inference, part I. Information and Control 

7 (1): 1–22. 

Solomonoff, R. J. 1964b. A Formal Theory of Inductive Inference, part II. Information and 

Control 7 (2): 224–254. 

Temperley, D. 2001. The Cognition of Basic Musical Structures. Cambridge, MA.: MIT Press. 

Temperley, D. 2004. An Evaluation System for Metrical Models. Computer Music Journal 28 (3): 

28–44. 

Temperley, D. 2007. Music and Probability. Cambridge, MA.: MIT Press. 

Tononi, G., and C. Cirelli. 2014. Sleep and the Price of Plasticity: From Synaptic and Cellular 

Homeostasis to Memory Consolidation and Integration. Neuron 81 (1): 12–34. 

Vereshchagin, N. K., and P. M. B. Vitányi. 2004. Kolmogorov’s Structure Functions and Model 

Selection. IEEE Transactions on Information Theory 50 (12): 3265–3290. 

Vitányi, P. M. B., and M. Li. 2000. Minimum Description Length Induction, Bayesianism, and 

Kolmogorov complexity. IEEE Transactions on Information Theory 46 (2): 446–464. 

Ziv, J., and A. Lempel. 1977. A Universal Algorithm for Sequential Data Compression. IEEE 

Transactions on Information Theory 23 (3): 337–343. 



Music analysis and data compression  David Meredith 

Page 39 of 39 

Ziv, J., and A. Lempel. 1978. Compression of Individual Sequences via Variable-Rate Coding. 

IEEE Transactions on Information Theory 24 (5): 530–536. 

                                                

1 See, for example, Chap. XXV of Book 1 of Aristotle’s Posterior Analytics (Bouchier 1901, 66). 

2 Kolmogorov introduced the field of non-probabilistic statistics at a conference in Tallinn, 

Estonia, in 1973 and in a talk at the Moscow Mathematical Society in 1974 (Li and Vitányi 2008, 

405). Unfortunately, these talks were never published in written form. 

3 See Simon and Sumner (1968, 1993) for a similar use of the term 'in extenso' in the context of 

music representations. 

4 For a more technical discussion of two-part codes, see Vitányi and Li (2000, 447). 

5 See Temperley (2007, chapter 3) for a model of rhythm and meter perception based on the idea 

that simpler meters are more probable and events are more likely to occur on stronger beats. 

6 This model was originally described by Meredith (2012c, 2013a). 

7 A greedy algorithm attempts to solve an optimization problem by always choosing the locally 

best option at each decision point in the construction of a solution. This does not always produce a 

globally optimal solution, but for some problems it does (e.g., activity selection, the construction of 

a Huffman code). For more details, see Cormen et al. (2009, 414–450). 


