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ABSTRACT 

A computational approach to music analysis is present-
ed, based on the compression of point-set representa-
tions of musical works. The approach relates closely to 
the theory of Kolmogorov complexity and to psycholog-
ical coding theories of perceptual organisation. A sketch 
of a model of musical learning based on this approach is 
given and it is shown how the model accounts in princi-
ple for differences between individuals in how pieces of 
music are understood. The approach is implemented in a 
greedy compression algorithm, called COSIATEC, 
which partitions a point-set into the covered sets of 
translational equivalence classes of maximal translatable 
patterns. The analyses generated by COSIATEC on five 
fugues by J. S. Bach are presented and discussed. These 
analyses demonstrate the potential of the approach for 
automatically discovering musical patterns of thematic 
and structural importance. 

1. INTRODUCTION 

The research presented in this paper is founded on the 
assumption that the goal of music analysis is to find the 
best possible explanations for musical works. This as-
sumption immediately begs an obvious question: given 
two analyses of the same work, how are we supposed to 
decide which of the two is “better”? If we are unable to 
specify how we are to make this decision, then one 
could argue that the goal of finding the “best possible” 
explanations is meaningless. 

Most musicologists and music analysts do not use an 
effective procedure or unambiguously defined algorithm 
for deciding which of two possible analyses they find to 
be superior: typically, an analyst will prefer an analysis 
that makes him or her feel that he or she has a better un-
derstanding of the piece under consideration. In other 
words, analysts traditionally evaluate musical analyses 
on subjective, even aesthetic grounds—much like the 
musical masterpieces that form the subjects of their 

analyses. 
However, I believe it is possible in principle to define 

reasonable, objective criteria for deciding which of two 
analyses of a given piece is the “better” one. I would 
like to suggest that one can reasonably define one analy-
sis of a piece to be “better than” another one of the same 
piece if the first allows one to more effectively and/or 
efficiently carry out objectively evaluable musical tasks 
such as: 
• memorising the piece, e.g., in order to be able to 

perform it without a score; 
• identifying errors in a score or performance of the 

piece or other related pieces; 
• correctly identifying the composer, place of com-

position, genre, form, etc. of the piece or other re-
lated pieces; or 

• predicting what will come next or what came be-
fore in a piece, having been presented with only 
part of it.  

To this extent, it therefore makes sense to suggest 
that one analysis of a given piece might be considered 
“better than” another, and that the goal of music analysis 
is to find the best possible explanations for pieces of 
music. 

Given this assumption concerning the goal of music 
analysis, the approach presented in this paper is based 
on the further hypothesis that the best possible explana-
tions for a given musical work are those that 
1. are as simple as possible; 
2. account for as much of the detailed structure of the 

work as possible; and 
3. set the work in as broad a context as possible. 

Clearly, these goals often conflict: accounting for the 
structure of a piece in more detail typically entails mak-
ing one’s explanation or analysis more complex; while 
accounting for a piece in a broader context may entail a 
less parsimonious description than if the piece is consid-
ered in isolation. 

In the remainder of this paper, I will explore the im-
plications of this hypothesis and relate it to the theory of 
Kolmogorov complexity [1,2] and to research in psy-
chological coding theories [3–6]. I will propose that a 
musical analysis can be modelled as an algorithm or 
computer program and that the length of this algorithmic 
representation can be used as an indication of the quality 
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of the analysis. I will also sketch a model of music per-
ception and learning based on the idea of accounting for 
the structure of a newly experienced musical “object” by 
minimally modifying an existing explanation of a col-
lection of previously encountered musical “objects”. Fi-
nally, I will briefly describe a greedy compression algo-
rithm that seems to successfully model certain aspects of 
the cognition of musical structure. 

2. REPRESENTING A MUSICAL ANALYSIS AS 
A COMPUTER PROGRAM 

I would like to propose that a musical analysis can fruit-
fully be represented or encoded as a computer program 
or algorithm that generates an in extenso representation 
or description of the music to be explained as its only 
output. Typically, such a program will be a compact, 
compressed or short encoding or description of its out-
put. A basic claim of this paper is that such a description 
(in the form of a program) becomes an explanation of 
the object being described, as soon as it is shorter than 
an in extenso description of that object. In other words, a 
compressed encoding of an in extenso description of an 
object can be considered an explanation of that object. 

Moreover, I would like to suggest that the more par-
simoniously one can describe an object on some given 
level of detail, the better that description explains the 
structure of the object on that level of detail. In other 
words, given two explanations (i.e., compressed descrip-
tions) of a (musical) object, the better explanation will 
in general be the shorter or simpler one. This is essen-
tially an application of “Occam’s razor”. This raises the 
problem of how exactly one should measure the 
“length” of an analysis (or a program representing an 
analysis) (see [7]). 

The following simple example should serve to illus-
trate the foregoing ideas. Consider the problem of de-
scribing the set of 12 points shown in Figure 1. One 
could do this by explicitly giving the co-ordinates of all 
12 points, thus: 

P(p(0,0),p(0,1),p(1,0),p(1,1), 
   p(2,0),p(2,1),p(2,2),p(2,3), 
   p(3,0),p(3,1),p(3,2),p(3,3)). (1) 

In this encoding, a set of points is denoted by P(·) and 
each point within such a set is denoted by p(x,y). This 
encoding can be thought of as being a program that 
computes the set of points in Figure 1 simply by speci-
fying each point individually. Representing this set of 
points in this way requires one to write 24 integers. 
Moreover, the encoding does not represent any group-
ings of the points into larger constituents, nor does it 
represent any structural relationships between the points. 
In other words, this description is an in extenso descrip-
tion that does not represent any of the structure in the 
point set and therefore cannot be said to offer any ex-
planation for it. 

Alternatively, one could obtain a shorter encoding of 
the point set in Figure 1 by exploiting the fact that it 
consists of three copies at different spatial positions of 
the square configuration of points,  

P(p(0,0),p(0,1),p(1,0),p(1,1)) . (2) 

One could encode this as follows: 

T(P(p(0,0),p(0,1),p(1,0),p(1,1)), 
   V(v(2,0),v(2,2))) (3) 

where T(P(·),V(·)) denotes the union of the point set, 
P(·), and the point sets that result by translating P(·) by 
the vectors in V(·), where v(x,y) denotes a vector. Note 
that expression (3) fully specifies the point set in Figure 
1 using only 12 integers—that is, half the number re-
quired to explicitly list the co-ordinates of the points in 
the in extenso description given in expression (1). I con-
tend that the description in (3) is an explanation of the 
point set in Figure 1 precisely because it represents 
some of the structural regularity in this point set. More-
over, it is precisely because it captures this structure that 
it manages to convey all the information in (1) (and 
more) while being only roughly half the length of (1). 
 

 

Figure 1. A set of 12, two-dimensional points on a Eu-
clidean integer lattice. 

3. KOLMOGOROV COMPLEXITY 

The Kolmogorov complexity of an object is a measure of 
the amount of intrinsic information in the object [1,2,8–
10]. Roughly speaking, it is the length in bits of the 
shortest program that takes no input and computes the 
object as its only output. The more structural regularity 
there is in an object, the shorter its shortest possible de-
scription and the lower its Kolmogorov complexity. Un-
fortunately, it is not generally possible to determine the 
Kolmogorov complexity of an object, as it is usually 
impossible to prove that any given description of the ob-
ject is the shortest possible. Nevertheless, the theory of 
Kolmogorov complexity supports the notion of using 
the length of a description as a measure of its complexi-
ty and it supports the idea that the shorter the description 



of a given object, the more structural regularity that de-
scription captures. The theory has also been used to 
show formally that data compression is almost always 
the best strategy for both model selection and prediction 
[11]. For further discussion of the relationship between 
music analysis and Kolmogorov complexity, see [7]. 

4. MUSIC ANALYSIS AND DATA 
COMPRESSION 

If the best explanations are the shortest descriptions, 
then that would seem to imply that the goal of music 
analysis is to compress as much information about as 
much music, as much as possible. To illustrate this, let 
us consider a close musical analogue of the point-set ex-
ample in Figure 1 discussed above. 

Figure 2 shows the beginning of J. S. Bach’s Prelude 
in C minor (BWV 847) from the first book of Das 
Wohltemperierte Klavier; and Figure 3 shows a point-
set representation of this music in which the horizontal 
dimension represents time in tatums and the vertical di-
mension represents morphetic pitch, which corresponds 
to the vertical position of a note-head on the staff [12–
14]. 

 

 

Figure 2. The opening notes from J. S. Bach’s Prelude 
in C minor (BWV 847) from the first book of Das 
Wohltemperierte Klavier. Patterns A, B and C corre-
spond, respectively, to the patterns with the same labels 
in Figure 3. (From [12].) 

The union of the patterns A, B and C could be speci-
fied by explicitly by listing the 12 points in this set, 
thus: 

P(p(1,27),p(2,26),p(3,27),p(4,28), 
   p(5,26),p(6,25),p(7,26),p(8,27), 
   p(9,25),p(10,24),p(11,25),p(12,26)) . (4) 

This would require one to write down 24 integers. Al-
ternatively, on an analogy with expression (3), one 
could exploit the fact that the set consists of three occur-
rences of the same pattern at different (modal) transposi-
tions, and describe it more parsimoniously as follows, 

T(P(p(1,27),p(2,26),p(3,27),p(4,28)), 
   V(v(4,-1),v(8,-2))) . (5) 

This expression not only requires one to write down on-
ly half as many numbers, but also encodes some of the 
analytically important structural regularity in the mu-
sic—namely, that the 12 points consist of three, 4-note 

patterns at different transpositions. Again, by seeking a 
compressed encoding of the data, we have succeeded in 
finding a representation that gives us important infor-
mation about the structural regularities in that data. 
 

 

Figure 3. A point-set representation of the music in 
Figure 2. The horizontal dimension represents time in 
tatums; the vertical dimension represents morphetic 
pitch (see [12–14]). Patterns A, B and C correspond, 
respectively, to the patterns with the same labels in 
Figure 2. (From [12]) 

5. MUSIC ANALYSIS AND PERCEPTUAL 
CODING 

As stated at the outset, the work presented here is based 
on the assumption that the goal of music analysis is to 
find the best possible explanations for musical works. 
This could be recast in the language of psychology by 
saying that music analysis aims to find the most satisfy-
ing perceptual organisations that are consistent with a 
given musical surface [15]. 

Most theories of perceptual organisation have been 
founded on one of two principles: the likelihood princi-
ple (due to Helmholtz [16]) that proposes that the per-
ceptual system prefers organisations that are the most 
probable in the world; and the simplicity principle [17], 
which states that the perceptual system prefers the sim-
plest perceptual organisations. For many years, these 
two approaches were seen as being in conflict. Howev-
er, Chater [3], drawing upon the theory of Kolmogorov 
complexity, proposed that the two principles are math-
ematically equivalent. In fact, Vitányi and Li [11] 
showed that this equivalence only strictly holds for data 
that is random. Since music is highly regular and not at 
all random, this result casts some doubt upon whether 
the likelihood principle, commonly applied in Bayesian 
and probabilistic approaches to musical analysis such as 
those proposed by Meyer [18], Huron [19] and Tem-
perley [20], can ever successfully be used to find struc-



tural regularities such as thematic relationships and 
transformations. 

The work presented here is therefore more akin to 
models of perceptual organisation based on the simplici-
ty principle than it is to probabilistic or Bayesian mod-
els. In particular, it relates closely to those theories in 
the tradition of Gestalt psychology [17] that make use of 
coding languages—languages designed to represent the 
structures of patterns in particular domains. Theories of 
this type predict that sensory input is more likely to be 
perceived to have organisations that correspond to 
shorter descriptions in a particular coding language. 
Coding theories of this type have been proposed for se-
rial patterns (e.g., [4]), visual patterns (e.g., [6]) and, in-
deed, musical patterns [5,21–23]. 

 

Figure 4. A Venn diagram illustrating the various pos-
sible contexts in which a musical object might be inter-
preted. A phrase (P) could be interpreted within the 
context of a section (S), which could be interpreted 
within the context of a work (W), and so on. C = works 
by the same composer; F = works in the same form or 
genre; I = works for the same instrumentation; T = to-
nal music; M = all music. 

6. A SKETCH OF A COMPRESSION-BASED 
MODEL OF MUSICAL LEARNING 

Let us define a musical object to be any quantity of mu-
sic, ranging from a chord or phrase, through to a com-
plete work or even a collection of works. A musical ob-
ject is typically interpreted by a listener or an analyst in 
the context of some larger object that contains it (see 
Figure 4). In essence, the model of musical learning 
proposed here is as follows. The analyst or listener ex-
plicitly or implicitly tries to find the shortest program 
that computes a set of in extenso descriptions of a set of 
musical objects containing 
• the object to be explained (the explanandum); and 

• other objects, related to the explanandum, defining 
a context within which the explanandum is to be 
interpreted. 

This idea is illustrated in Figure 5. 
 

 

Figure 5. The analyst’s or listener’s understanding of a 
musical object (in red) is modelled as a program, P, that 
computes a set of musical objects containing the one to 
be explained along with other related objects forming a 
context within which the explanandum is interpreted. 

The analyst and listener differ in the degree of free-
dom that they have to choose the context within which 
they interpret an object. The analyst can explicitly 
choose a context of closely related objects (e.g., music 
in the same genre or by the same composer) that permits 
a more parsimonious description of the explanandum. 
The listener, on the other hand, is forced to interpret the 
explanandum in the context of his or her largely implicit 
understanding of all the previous music he or she has 
encountered. 

 

 

Figure 6. When the listener hears a new piece (in red), 
the existing explanation (i.e., “program”) (P) for all the 
music previously heard is minimally modified to pro-
duce a new program (P') to account for the new piece in 
addition to all previously encountered music. 



Figure 6 illustrates the idea that when the listener 
hears a new piece (in red), the existing explanation (i.e., 
program) (P) for all the music previously heard (in yel-
low) is minimally modified to produce a new program 
(P') to account for the new piece in addition to all previ-
ously encountered music. The perceived structure of the 
newly encountered musical object is then represented by 
the specific way in which P' computes that object. On 
this view, music analysis, perception and learning essen-
tially reduce to the process of compressing musical ob-
jects. 

However, it is important to stress that, even though 
both the analyst and the listener aim to find the shortest 
possible encodings of the music they encounter, they 
both typically fail to do this in general. As Chater [3, 
pp. 578) points out,  

“the perceptual system cannot, in general, max-
imize simplicity (or likelihood) over all percep-
tual organizations…It is, nonetheless, entirely 
possible that the perceptual system chooses the 
simplest (or most probable) organization that it is 
able to construct.” 

This is largely a result of the limited processing and 
memory resources available to the perceptual system. 
For example, we typically describe the structure of a 
piece of music in terms of motives, themes and sections, 
all of which are temporally compact segments, meaning 
that they are patterns that contain all the events that oc-
cur within a particular time span. It could well be that 
for some pieces, a more parsimonious description (cor-
responding to a better explanation) might be possible in 
terms of patterns containing notes and events that are 
dispersed widely throughout the piece. However, the 
listener’s limited memory and attention span constrains 
him or her to focus on patterns that are temporally com-
pact (see also [24]). 

7. USING THE MODEL TO EXPLAIN 
INDIVIDUAL DIFFERENCES 

The model just sketched can be applied to understanding 
the emergence of differences between the ways that in-
dividuals understand the same piece. What I’ve just pro-
posed is that an essentially “greedy” algorithm is used to 
construct an interpretation for a newly encountered 
piece that minimally modifies an existing “program” 
that generates descriptions of all the pieces in a particu-
lar “context” set. This would imply that the way that an 
individual understands a given piece depends not only 
on which pieces he or she already knows, but also on the 
order in which these pieces were encountered. This im-
plication could fairly straightforwardly be tested empiri-
cally. 

A rather crude version of the foregoing model has 
been implemented in an algorithm called SIATECLearn. 
The SIATECLearn algorithm is based on the geometric 
pattern discovery algorithm, SIATEC, described by 

Meredith, Lemström and Wiggins [12]. The SIATEC 
algorithm takes as input a set of points and automatical-
ly discovers all the translationally equivalent occurrenc-
es of the maximal repeated (or translatable) patterns 
(MTPs) in the dataset. Note that SIATEC outputs a col-
lection of such occurrence sets, called translational 
equivalence classes or TECs, such that each occurrence 
set (TEC) contains all the occurrences of a particular 
pattern (a pattern being just a set of notes). An algorithm 
called SIATECCompress [25] runs SIATEC on a da-
taset, then sorts the found TECs into decreasing order of 
“quality”. Given two TECs, the one that results in the 
better compression (in the sense of expressions (4) and 
(5) above) is deemed superior. If both TECs give the 
same degree of compression, then the one whose pattern 
is spatially more compact is considered superior. SI-
ATECCompress then scans this list of occurrence sets 
and computes an encoding of the input dataset in the 
form of a set of TECs that, taken together, account for or 
cover the entire input dataset. 

 

 

Figure 7. Output of SIATECLearn when presented first 
with the dataset on the left and then with the dataset on 
the right. 

SIATECLearn runs SIATECCompress, but also 
stores the patterns it finds on each run and will prefera-
bly re-use these patterns rather than newly found ones 
on subsequent runs of the algorithm. Thus, when SI-
ATECLearn is run on the 12-point pattern on the left in 
Figure 7, it “interprets” the dataset as being constructed 
from three occurrences of the square pattern shown. 
This square pattern is therefore stored in its “long-term” 
memory. When the algorithm is subsequently run on the 
10-point dataset on the right, it prefers to use the stored 
square pattern than any of the patterns that it finds in 
this dataset, so it interprets the data as containing two 
occurrences of the square pattern along with two extra 
points. 

Conversely, when SIATECLearn is first presented 
with the 10-point dataset, it interprets the dataset as be-
ing composed from 5 occurrences of the two-point ver-
tical line configuration shown on the left in Figure 8. 
This pattern is then stored in long-term memory, so that 
when the algorithm is subsequently presented with the 
12-point dataset, it interprets this set as consisting of 6 
occurrences of this vertical line rather than 3 occurrenc-



es of the square pattern. This very simple example illus-
trates how the way in which objects are interpreted may 
depend on the order in which they are presented. 

 

 

Figure 8. Output of SIATECLearn when presented first 
with the dataset on the left and then with the dataset on 
the right. 

8. COSIATEC: MUSIC ANALYSIS BY POINT-
SET COMPRESSION 

COSIATEC [25–27] is a greedy compression algorithm 
based on SIATEC. The algorithm takes a dataset, S, as 
input and computes an exhaustive, exclusive partition of 
S such that S is equal to the union of the covered sets of 
a set of TECs. The basic idea behind the algorithm is 
sketched in the pseudo-code in Figure 9. 
 

 

Figure 9. The COSIATEC algorithm. 

As shown in Figure 9, the COSIATEC algorithm first 
finds the “best” TEC in the output of SIATEC for the 
input dataset, S. The best TEC is the one that has the 
best compression ratio, which is the ratio of the number 
of points in the union of the occurrences of the TEC to 
the sum of the number points in one occurrence of the 
TEC’s pattern and the number of occurrences (minus 
one, because one of the occurrences is explicitly encod-
ed in the pattern). That is, the compression ratio of a 
TEC, T, denoted CR(T), is given by 

𝐶𝑅(𝑇) =
𝑠!∈!

𝑝 + 𝑣 − 1
 

where the sets s are occurrences in T, p is one occur-
rence in T and v is the set of vectors that translate p onto 
the other occurrences in T. If two TECs have the same 
compression ratio, then COSIATEC chooses the TEC in 
which the first occurrence of the pattern is the more 
compact: the compactness of a pattern is the ratio of the 
number of points in the pattern to the number of dataset 

points in the bounding box of the pattern. These heuris-
tics for evaluating the quality of a TEC are discussed in 
more detail by Meredith et al. [12] and Collins et al. 
[24]. 

As shown in Figure 9, once the best TEC, T, has been 
found for the input dataset, S, this TEC is added to the 
encoding (E) and the set of points covered by T is re-
moved from S. The set of points covered by a TEC is 
simply the union of the occurrences in the TEC. Once 
the covered set of T has been removed from S, the pro-
cess is repeated, with SIATEC being run on the new 
(somewhat depleted) S. The procedure is repeated until 
S is empty, at which point E contains a list of TECs that 
cover S. Moreover, because the TECs that give the best 
compression ratio are selected on each iteration, E is 
typically a compact or compressed encoding of S. 
 

 

Figure 10. The set of TECs computed by COSIATEC 
for a short Dutch folk song, “Daar zou er en maagdje 
vroeg opstaan” (from the Nederlandse Liederen Bank, 
http://www.liederenbank.nl). Courtesy of Peter van 
Kranenburg.) 

Figure 10 shows the output of COSIATEC for a short 
Dutch folk song. The complete piece can be encoded as 
the union of the covered sets of 5 TECs, as shown. The 
first TEC, at the top of Figure 10, consists of the occur-
rences of the lower-neighbour-note figure. This TEC has 
the best compression ratio of any TEC for any maximal 
translatable pattern in the dataset. After these three-note 
sets have been removed from the piece, the next best 
TEC is the second one from the top in Figure 10, name-
ly the two occurrences of the four-note rising scale seg-
ment. The fifth TEC, at the bottom of the figure, con-
sists only of the 14 blue points inside the indicated 
bounding box. These are points that are left over after 
removing the sets of repeated patterns that give the best 
compression ratio. This final set of “residual” points, 
which cannot be compressed by the algorithm, is essen-
tially seen by the algorithm as being random “noise” 
that it cannot “explain”. 

9. ANALYSING FUGUES WITH COSIATEC 

I am currently exploring the extent to which 
COSIATEC can be used to automatically generate 
meaningful analyses of the first book of J. S. Bach’s 
Das Wohltemperierte Klavier (BWV 846–869). 
 



(a) Fugue in C major (BWV 846) 

 
 (b) Fugue in C minor (BWV 847) 

 
 (c) Fugue in C# major (BWV 848) 

 
 (d) Fugue in C# minor (BWV 849) 

 
 (e) Fugue in D major (BWV 850) 

 

Figure 11. The TEC computed on the first iteration of COSIATEC for each of five fugues from the first book of J. S. 
Bach’s Das Wohltemperierte Klavier. 

 



Figure 11 shows the first TEC discovered by 
COSIATEC for each of five fugues from this collection. 

Figure 11 (a) shows the first TEC computed for the 
Fugue in C major (BWV 846). As can be seen, this TEC 
contains occurrences of the main subject of the fugue. 
However, the first note of the subject is not included in 
the TEC’s pattern. The fact that this pattern occurs as 
the first TEC found by COSIATEC indicates that the 
shown pattern is a maximal translatable pattern for 
some particular vector (i.e., it contains all the points that 
can be translated by some vector onto other points in the 
dataset) and that no other pattern provides as good a 
compression ratio. If we interpret the degree of com-
pression achieved by a TEC as an indication of how 
“explanatory” that TEC is of the dataset’s structure, then 
we can suggest that no other pattern (according to the 
COSIATEC algorithm) is as “explanatory” of this piece 
as the one shown. 

Note that the bass entry of the subject at around 546 
tatums lacks the first note of the first entry. If the first 
note were included in this pattern, this would mean that 
the bass entry at 546 would not be included in the TEC, 
which would reduce the overall compression achieved. 

Figure 11 (b) shows the first TEC found by 
COSIATEC for the Fugue in C minor (BWV 847). Note 
that, again, the algorithm automatically identifies the 
subject of the fugue as being the structurally “most ex-
planatory” pattern (i.e., the one that allows the data to be 
most compressed). It is interesting to consider that this 
monophonic pattern that occurs entirely within one 
voice was discovered by the algorithm in a dataset that 
provides no information whatsoever about the voices to 
which the notes in the piece belong. This suggests that 
the approach embodied in COSIATEC might be useful 
in inferring voice-leading and contrapuntal structure 
from data in which this information is not encoded (e.g., 
single-channel MIDI data). Note that the tonal answers 
in BWV 847 are not included among the occurrences of 
this TEC: this is because COSIATEC only discovers 
occurrences of maximal patterns that are translationally 
exactly equivalent to the pattern. For a recent approach 
incorporating inexact matching in a geometric pattern 
discovery algorithm, see [28]. 

 

 

Figure 12. Bars 7–9 of the Fugue in C# major (BWV 
848), showing (in red boxes) the pattern of the first 
TEC computed by COSIATEC. The pattern consists of 
all 9 of the indicated notes. 

Figure 11 (c) shows the first TEC discovered by 
COSIATEC in the Fugue in C# major (BWV 848). This 
time, the first TEC does not correspond to the subject of 

the fugue. Figure 12 shows this pattern in context. As 
can be seen, it consists of three occurrences of a falling 
semiquaver arpeggio figure that together act as a kind of 
“fingerprint” for a sequential episode that recurs several 
times throughout the piece. Note that, again, the pattern 
occurs wholly within one voice, even though voice in-
formation is not provided in the input data. 

Figure 11 (d) shows the first TEC discovered by 
COSIATEC for the Fugue in C# minor (BWV 849). 
Again, the pattern does not correspond to the principal 
subject of this fugue. Instead, as shown in Figure 13, it 
corresponds to the segment of the second subject of this 
triple fugue that forms a counterpoint with the principal 
subject. 

 

 

Figure 13. Bars 37–40 of the Fugue in C# minor 
(BWV 849), showing (in red ellipses), the pattern of 
the first TEC computed by COSIATEC. The pattern 
consists of all 14 of the indicated notes. 

Finally, Figure 11 (e) shows the first TEC found by 
COSIATEC for the Fugue in D major (BWV 850). This 
TEC consists of all occurrences of the characteristic, 
demisemiquaver flourish that begins every entry of the 
main subject in this fugue. 

The foregoing discussion seems to suggest that the 
patterns discovered on the early iterations of 
COSIATEC often correspond (at least in contrapuntal 
music) to patterns of thematic and structural importance. 

10. CONCLUSIONS 

In this paper I have proposed a new computational ap-
proach to music analysis, based on the compression of 
point-set representations of musical objects. I have indi-
cated how this approach relates to both the theory of 
Kolmogorov complexity and psychological coding theo-
ries of perceptual organisation. I have also sketched a 
model of musical learning in which the process of gain-
ing an understanding of a new piece is modelled as the 
minimal modification of an existing compact encoding 
of a collection of known pieces so that that the modified 
encoding also includes a description of the new piece. 

Finally, I have presented an algorithm, COSIATEC, 
that implements this new, compression-based, geometric 
approach to music analysis, along with examples of 
analyses generated by this algorithm for some of the 
fugues from the first book of J. S. Bach’s Das Wohltem-
perierte Klavier. These analyses illustrate the potential 
of this approach for discovering patterns of thematic and 
structural importance in musical works. 
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