
ANALYSIS BY COMPRESSION: AUTOMATIC GENERATION
OF COMPACT GEOMETRIC ENCODINGS OF MUSICAL

OBJECTS

 David Meredith
 Aalborg University, Denmark

dave@create.aau.dk

ABSTRACT

MEL is a geometric music encoding language designed to
allow for musical objects to be encoded parsimoniously
as sets of points in pitch-time space, generated by per-
forming geometric transformations on component pat-
terns. MEL has been implemented in Java and coupled
with the SIATEC pattern discovery algorithm to allow for
compact encodings to be generated automatically from in
extenso note lists. The MEL-SIATEC system is founded
on the belief that music analysis and music perception
can be modelled as the compression of in extenso descrip-
tions of musical objects.

1. INTRODUCTION

Let a musical object be any quantity of music, whether it
be a motiv, a phrase, a voice, a chord, a movement, a
work, a corpus or even some very large quantity of music
such as “all Western tonal music” or even “all music”.
The activities of music analysis and listening to music
share the common goal of finding the best possible ex-
planations for musical objects. The work presented here
is founded upon the belief that this goal is equivalent to
that of compressing musical objects as much as possible.
Indeed, the view adopted here is that the field of music
theory can be characterised as the search for concepts that
allow for as much music as possible to be described as
parsimoniously as possible.

On this view, music analysis and musical listening can
each be modelled as a process that takes an in extenso
representation or description of a musical object as input
and outputs a compact encoding that can be used to gen-
erate or reconstruct the input object: the more compact
the encoding, the better the musical object has been un-
derstood or explained. Both the input and the output of
such a process are descriptions, but if the output is shorter
than the input, then it constitutes at least a partial expla-
nation of the input, since, in order to achieve any com-
pression of the input, some structure needs to have been
recognized in it. Algorithmic information theory [1] tells
us that, if there is no structure in the input (i.e., the input
is algorithmically random), then no compression is possi-
ble. Conversely, the more structure there is in the input,
the more compactly it can be described.

The brains of music analysts and listeners are not per-
fect compressors, so they are typically unable to find the
most compact encodings possible for any given input. In
fact, algorithmic information theory tells us that, in gen-
eral, it is impossible to confirm that a given encoding of
an object is the shortest possible, since the algorithmic
(or Kolmogorov) complexity of an object is not computa-
ble [1]. Moreover, the actual encoding generated by an
individual’s brain for a given musical object will depend
upon what previous objects that individual’s brain has
encoded (i.e., compressed) and even the order in which
those objects were processed. This is because recognizing
a relationship between a part, X, of an input and a part, Y,
of an encoding of some previously processed input allows
X to be described simply by encoding the relationship that
maps Y onto X, which can often lead to a compressed rep-
resentation of X. It seems plausible that this greedy strat-
egy that prefers to represent a new input in terms of ele-
ments of encodings of previous inputs, is adopted by the
brain when it analyses or listens to music. It is easy to see
how such a mechanism would result in the differences
that arise between the ways that individual listeners and
analysts understand the same musical objects.

2. MEL: A GEOMETRIC MUSIC ENCODING
LANGUAGE

The work presented here relates closely to psychological
coding theories of perceptual organization that employ
the minimum or simplicity principle [2]. In the coding
theory approach, a coding language is devised to repre-
sent the possible structures of patterns in a particular do-
main. The preferred organizations (i.e., the ones that the
theory predicts will be perceived) are then the ones that
have the shortest encodings in the language. Coding theo-
ries of this type have been proposed to explain the per-
ception of serial patterns, visual patterns and musical pat-
terns [3]. MEL, the language proposed here, generalises
and extends the music coding language of Deutsch and
Feroe [3] by adopting a geometric approach, along the
lines of that proposed by Meredith et al. [4]. In MEL, a
passage of polyphonic music is represented as a set of
multidimensional points, generated by performing geo-
metric transformations on component patterns. The lan-
guage introduces the concept of a periodic mask, a gener-

alisation of Deutsch and Feroe’s notion of a pitch alpha-
bet. Such masks can be applied to the time dimension to
represent parsimoniously the hierarchical structures of
rhythms and metres. In the pitch dimension, masks can be
applied in an identical fashion to represent the hierar-
chical structures of “pitch alphabets” such as scales and
chords.

Figure 1 The right-hand of the first bar of Chopin’s
Étude in G flat major, Op. 10, No. 1.

Figure 2 A graphical representation of the structure en-
coded in Figure 3. The vertical lines with tick marks on
the left and the horizontal lines with tick marks under
the graph represent masks in pitch and time.

Figure 3 An encoding in MEL of the musical object in
Figure 1.

Figure 3 shows an encoding in MEL of the musical
fragment in Figure 1. Figure 2 represents graphically how
the set of notes in Figure 1 is generated by multiple trans-
lations of component patterns within “masked spaces”.
The encoding in Figure 3 is not particularly short because
it includes definitions of rhythms, metres and pitch al-
phabets that could be re-used to produce a parsimonious
encoding of a much larger set of tonal musical objects.

3. AUTOMATIC GENERATION OF SHORT
ENCODINGS USING SIATEC

The MEL language has been implemented in Java and
incorporates an efficient implementation of an adaptation
of Meredith et al.’s SIATEC pattern discovery algorithm
[4]. This algorithm takes as input an in extenso MEL en-
coding of a musical object in which all the notes are ex-
plicitly stated and compresses it to produce a compact
encoding in terms of translational equivalence classes
(TECs) of maximal translatable patterns (MTPs) (see
[4]). The TECs selected are those that produce the best
compression of the input and that contain patterns that
have high “compactness” (i.e., their bounding boxes do
not contain many non-pattern notes). As an example,
Figure 4 shows the best TEC found by the MEL imple-
mentation of SIATEC for a fugue by J. S. Bach.

4. REFERENCES

[1] M. Li and P. Vitányi: An Introduction to
Kolmogorov Complexity and Its Applications. (3rd
Edition), Springer: Berlin, 2008.

[2] J. R. Pomerantz and M. Kubovy: “Theoretical
approaches to perceptual organization: Simplicity
and likelihood principles,” in: K. R. Boff, L.
Kaufman, & J. P. Thomas (Eds.), Handbook of
perception and human performance: Volume II,
Chapter 36. Wiley: New York, 1986.

[3] D. Deutsch and J. Feroe: “The internal
representation of pitch sequences in tonal music,”
Psych. Rev., Vol. 88, No. 6, pp. 503–522, 1981.

[4] D. Meredith, K. Lemström, and G. A. Wiggins:
“Algorithms for discovering repeated patterns in
multidimensional representations of polyphonic
music,” J. of New Music Res., Vol. 31, No. 4, pp.
321–345, 2002.

Figure 4 A graphical representation of the best TEC (indicated in red boxes) found by the version of SIATEC implemented in
MEL for the Fugue in C minor from Book 1 (BWV 847) of J. S. Bach’s Das Wohltemperirte Clavier. This TEC is the one that
achieves the best compression ratio over the notes covered by it. It also has a maximally compact pattern (i.e., the bounding
box of the first occurrence of the pattern does not contain any non-pattern points).

AGeometricLanguage forRepresenting

Structure inPolyphonicMusic

David Meredith
dave@create.aau.dk

Assumptions, Goals and Claims

• A minimal-length description of a musical object is a representation of one of the simplest explanations for its structure (when considered

in isolation).

• The goals of music analysis and music perception are to find minimal-length descriptions of musical objects (particularly musical corpora).

• The goal here is to design an encoding language capable of expressing minimal-length descriptions of musical objects.

• This encoding language must be capable of expressing the types of equivalence relations that occur in music, since descriptions can be shortened

by recognizing equivalences between parts of an object.

• The most important type of equivalence in music is translational equivalence within pitch-time space.

• Musical translation is different from Euclidean geometric translation because pitch-time space can be transformed by pitch alphabets and

rhythms.

• Pitch alphabets and rhythms can be represented by periodic masks, organised into hierarchical mask sequences.

MEL: A Music Encoding Language

note(t,p) In MEL, a musical object is represented as a set of notes.

Each note has an onset time, t, in tatums and a pitch, p, in terms

of MIDI note number. A note is a point in note space.

vector(t,p,Mt,Mp) A vector in MEL can be used to translate a note.

A vector has a time component, t, a pitch component, p, and two

mask sequences, Mt and Mp, that define the space in which the

vector is defined.

mask(o,s) A mask defines a periodic repeating pattern on the integers.

The mask has an offset, o, and a structure, s, which is a sequence

of integers called intervals. A mask maps a subset of the integers

onto the complete set of integers, as shown below.

Applying the mask sequence, hh3, h2, 2, 1, 2, 2, 2, 1ii, h4, h2, 2, 3iii

maskSequence(m1,m2,...) A mask sequence is a sequence of masks.

The output of one mask can be given as the input to another,

as shown below left. Mask sequences can be used to define

hierarchically-related pitch alphabets or metrical structures or

rhythms.

space(Mt,Mp) A space is defined by two mask sequences, Mt and Mp,

which are applied to the time and pitch dimensions, respectively.

vectorSum(v1,v2,...) Represents the sum of two or more vectors that

may not be in the same space. A vector in a masked space is not

in general equal to a unique vector in note space. A sum of two or

more vectors is therefore not necessarily equal to a unique vector in

any space. It therefore has to be expressed explicitly as a vector

sum.

product(X1,X2,...) Returns the Cartesian product of its arguments.

Each argument must be a collection of vectors or vector sums or a

sequence of such collections. Corresponds to Deutsch and Feroe’s

"prime" operator.

translate(N,V) Translates the note or note set, N, by the collection of

vectors or vector sums, V.

An Example MEL Encoding

Foreground

Middleground

Background

MEL25;

n1 = note(0,90); //First note

p = coords(1,-1); //Corresponds to p ("previous") operator in Deutsch and Feroe

n = coords(1,1); //Corresponds to n ("next") operator in Deutsch and Feroe

ms1 = maskStructure(2,2,3); //Triad mask structure

s1 = mask(6,2,2,3,2,3); //Background scale: Gb pentatonic

s2 = mask(6,2,2,1,2,2,2,1); //Gb major scale

T1 = maskSequence(mask(0,4,2,6)); //Background rhythm

T2 = maskSequence(mask(0,1)); //Tatum time mask sequence

T3 = maskSequence(mask(0,2)); //Time mask sequence for alternate semiquavers

P1 = maskSequence(s2,mask(3,ms1)); //Subdominant triad in Gb major

P2 = maskSequence(s1); //Pitch mask sequence for background (Gb pentatonic)

P3 = maskSequence(s2,mask(0,ms1)); //Tonic triad in Gb major

S1 = space(T1,P2); //Background space

S2 = space(T2,P3); //Space for first four semiquavers

S3 = space(T2,P1); //Space for vector v4

S4 = space(T3,P3); //Space for vector v2

v1 = vector(p,S1); // \

v2 = vector(p,S4); // | Vectors - see figure ->

v3 = vector(n,S2); // |

v4 = vector(n,S3); // /

Q1 = repeat(2,v1); //Sequence of 2 v1 vectors in background space

Q2 = repeat(2,v2); //Sequence of 2 v2 vectors in middleground space

R1 = product(v2,v3); //Cartesian product of v2 and v3

R2 = product(Q2,v3); //Cartesian product of Q2 = <v2,v2> and v3

add(translate(n1,

product(Q1, //<v1,v1>

sequence(R1, //v2 x v3

vectorSumSet(v4), //v4

R2)))); //<v2,v2> x v3

print(); //Prints to the console

draw(); //Draws a graph in a window

play(100); //Plays resulting note set, with tatum = 100ms

Reference

Deutsch, D. and Feroe, J. (1981). The internal representation of pitch

sequences in tonal music. Psychological Review, 88(6):503–522.

Code and further information

MEL Java code at http://chromamorph.googlecode.com

Full paper at http://www.titanmusic.com/papers.php

AGeometricLanguage forRepresenting

Structure inPolyphonicMusic

David Meredith
dave@create.aau.dk

Assumptions, Goals and Claims

• A minimal-length description of a musical object is a representation of one of the simplest explanations for its structure (when considered

in isolation).

• The goals of music analysis and music perception are to find minimal-length descriptions of musical objects (particularly musical corpora).

• The goal here is to design an encoding language capable of expressing minimal-length descriptions of musical objects.

• This encoding language must be capable of expressing the types of equivalence relations that occur in music, since descriptions can be shortened

by recognizing equivalences between parts of an object.

• The most important type of equivalence in music is translational equivalence within pitch-time space.

• Musical translation is different from Euclidean geometric translation because pitch-time space can be transformed by pitch alphabets and

rhythms.

• Pitch alphabets and rhythms can be represented by periodic masks, organised into hierarchical mask sequences.

MEL: A Music Encoding Language

note(t,p) In MEL, a musical object is represented as a set of notes.

Each note has an onset time, t, in tatums and a pitch, p, in terms

of MIDI note number. A note is a point in note space.

vector(t,p,Mt,Mp) A vector in MEL can be used to translate a note.

A vector has a time component, t, a pitch component, p, and two

mask sequences, Mt and Mp, that define the space in which the

vector is defined.

mask(o,s) A mask defines a periodic repeating pattern on the integers.

The mask has an offset, o, and a structure, s, which is a sequence

of integers called intervals. A mask maps a subset of the integers

onto the complete set of integers, as shown below.

Applying the mask sequence, hh3, h2, 2, 1, 2, 2, 2, 1ii, h4, h2, 2, 3iii

maskSequence(m1,m2,...) A mask sequence is a sequence of masks.

The output of one mask can be given as the input to another,

as shown below left. Mask sequences can be used to define

hierarchically-related pitch alphabets or metrical structures or

rhythms.

space(Mt,Mp) A space is defined by two mask sequences, Mt and Mp,

which are applied to the time and pitch dimensions, respectively.

vectorSum(v1,v2,...) Represents the sum of two or more vectors that

may not be in the same space. A vector in a masked space is not

in general equal to a unique vector in note space. A sum of two or

more vectors is therefore not necessarily equal to a unique vector in

any space. It therefore has to be expressed explicitly as a vector

sum.

product(X1,X2,...) Returns the Cartesian product of its arguments.

Each argument must be a collection of vectors or vector sums or a

sequence of such collections. Corresponds to Deutsch and Feroe’s

"prime" operator.

translate(N,V) Translates the note or note set, N, by the collection of

vectors or vector sums, V.

An Example MEL Encoding

Foreground

Middleground

Background

MEL25;

n1 = note(0,90); //First note

p = coords(1,-1); //Corresponds to p ("previous") operator in Deutsch and Feroe

n = coords(1,1); //Corresponds to n ("next") operator in Deutsch and Feroe

ms1 = maskStructure(2,2,3); //Triad mask structure

s1 = mask(6,2,2,3,2,3); //Background scale: Gb pentatonic

s2 = mask(6,2,2,1,2,2,2,1); //Gb major scale

T1 = maskSequence(mask(0,4,2,6)); //Background rhythm

T2 = maskSequence(mask(0,1)); //Tatum time mask sequence

T3 = maskSequence(mask(0,2)); //Time mask sequence for alternate semiquavers

P1 = maskSequence(s2,mask(3,ms1)); //Subdominant triad in Gb major

P2 = maskSequence(s1); //Pitch mask sequence for background (Gb pentatonic)

P3 = maskSequence(s2,mask(0,ms1)); //Tonic triad in Gb major

S1 = space(T1,P2); //Background space

S2 = space(T2,P3); //Space for first four semiquavers

S3 = space(T2,P1); //Space for vector v4

S4 = space(T3,P3); //Space for vector v2

v1 = vector(p,S1); // \

v2 = vector(p,S4); // | Vectors - see figure ->

v3 = vector(n,S2); // |

v4 = vector(n,S3); // /

Q1 = repeat(2,v1); //Sequence of 2 v1 vectors in background space

Q2 = repeat(2,v2); //Sequence of 2 v2 vectors in middleground space

R1 = product(v2,v3); //Cartesian product of v2 and v3

R2 = product(Q2,v3); //Cartesian product of Q2 = <v2,v2> and v3

add(translate(n1,

product(Q1, //<v1,v1>

sequence(R1, //v2 x v3

vectorSumSet(v4), //v4

R2)))); //<v2,v2> x v3

print(); //Prints to the console

draw(); //Draws a graph in a window

play(100); //Plays resulting note set, with tatum = 100ms

Reference

Deutsch, D. and Feroe, J. (1981). The internal representation of pitch

sequences in tonal music. Psychological Review, 88(6):503–522.

Code and further information

MEL Java code at http://chromamorph.googlecode.com

Full paper at http://www.titanmusic.com/papers.php

