
A GEOMETRIC LANGUAGE FOR REPRESENTING STRUCTURE IN
POLYPHONIC MUSIC

David Meredith
Aalborg University, Denmark
dave@create.aau.dk

ABSTRACT

In 1981, Deutsch and Feroe proposed a formal language
for representing melodic pitch structure that employed the
powerful concept of hierarchically-related pitch alphabets.
However, neither rhythmic structure nor pitch structure in
polyphonic music can be adequately represented using this
language. A new language is proposed here that incorpo-
rates certain features of Deutsch and Feroe’s model but ex-
tends and generalises it to allow for the representation of
both rhythm and pitch structure in polyphonic music. The
new language adopts a geometric approach in which a pas-
sage of polyphonic music is represented as a set of multi-
dimensional points, generated by performing transforma-
tions on component patterns. The language introduces the
concept of a periodic mask, a generalisation of Deutsch
and Feroe’s notion of a pitch alphabet, that can be applied
to any dimension of a geometric representation, allowing
for both rhythms and pitch collections to be represented
parsimoniously in a uniform way.

1. INTRODUCTION

The problem addressed here is that of designing a formal
coding language [9, p. 155] for precisely and parsimo-
niously describing structure in polyphonic music. In gen-
eral, there are various ways in which a musical pattern can
be perceived to be constructed, and a music coding lan-
guage should be capable of representing these different in-
terpretations. Moreover, it should be possible to compare
and evaluate encodings of the different ways of interpret-
ing a musical pattern. The various methods that have been
proposed for carrying out such comparisons and evalua-
tions fall into two categories: those based on the likelihood
principle of preferring the most probable interpretations;
and those based on the minimum principle of preferring
the simplest interpretations [9, p. 152]. Typically, statis-
tical approaches to musical structure analysis (e.g., [8])
apply the likelihood principle, whereas approaches in the
tradition of Gestalt psychology (e.g., [1]) apply the min-
imum principle. Indeed, van der Helm and Leeuwenberg

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2012 International Society for Music Information Retrieval.

[9, p. 153] suggest that the fundamental principle of Gestalt
psychology, Koffka’s [2] law of Prägnanz, which favours
the simplest and most stable interpretation, can be seen as
an “ancestor” of the minimum principle.

The language proposed here is in the tradition of the
Gestalt-based coding languages for music proposed by Si-
mon and Sumner [7], Restle [5] and Deutsch and Feroe [1].
It attempts to generalise and extend earlier languages by
adopting a geometric approach, along the lines of that pro-
posed by Meredith et al. [4]. A passage of polyphonic mu-
sic is represented in the proposed language as a set of mul-
tidimensional points, generated by performing geometric
transformations on component patterns. The language in-
troduces the concept of a periodic mask, a generalisation
of Deutsch and Feroe’s notion of a pitch alphabet, that can
be applied to any dimension of a geometric representation,
allowing for both rhythms and pitch collections to be rep-
resented parsimoniously in a uniform way.

A coding language of the type proposed here could be
used in music information retrieval to allow for the discov-
ery of patterns in a database that relate to a query pattern
on a deeper structural level than the surface. For example,
two patterns might be perceived to be related because they
have a similar structure but use different pitch alphabets
(e.g., where a melody is repeated in a different mode) or
because they have the same pitch interval structure but dif-
ferent rhythms. If the music is first encoded in a way that
represents these structures, then such relationships can be
automatically discovered more efficiently.

2. BACKGROUND

The earliest coding language for music was proposed in
1968 by Simon and Sumner [7]. Simon and Sumner rec-
ognized that music is multidimensional and aimed to allow
for the description of patterns in melody, harmony, rhythm
and form. Their language treats each of these dimensions
as an independent series of symbols, chosen from alpha-
bets, for which a compact representation can be derived in
terms of certain basic element operators, such as SAME
and NEXT. Simon and Sumner defined the notion of a
cyclic alphabet and recognized the usual tonal scales and
chords as “common” pitch alphabets that are “ordered sets
already defined in the culture”.

In his experiments on serial pattern learning, Restle [5]
found that subjects are particularly good at identifying
“runs” (e.g., (2 3 4 5)) and “trills” (e.g., (5 4 5 4)) and

tend to use these to segment a series of symbols. Res-
tle explained this by proposing that runs and trills allow
for particularly simple generative descriptions. He pre-
sented an “E-I theory” wherein a rule consists of a set E
of “events” (roughly equivalent to an alphabet) and a set I
of “intervals” (in the musical sense). Runs are then the set
of products of E-I rule systems in which I contains only
one interval. Restle’s language uses the sequence opera-
tors M (for mirror), T (for transposition) and R (for repeat)
for producing compact descriptions of sequences. For ex-
ample, if the numbers 1 to 6 represent a row of 6 lights that
can either be on or off, then the sequence (1 2 1 2 2 3 2 3
6 5 6 5 5 4 5 4) can be encoded as M(T(R(T(1)))). Restle
represented structures in his language as hierarchical trees
and presented an analysis of the theme of Bach’s first Two-
part Invention (BWV 772) which describes its tonal and
motivic structure.

Deutsch and Feroe’s [1] model is in the tradition of the
serial pattern languages proposed by Restle [5], Leeuwen-
berg [3] and Simon [6]. The language can be used to
encode arhythmic monophonic sequences of pitches (i.e.,
neither polyphony nor rhythm can be encoded). Structures
are defined to be sequences of the elementary operators
‘same’ (s), ‘next’ (n) and ‘predecessor’ (p), that operate
over alphabets, which are linearly ordered sets of symbols.
Structures are decoupled from alphabets. A sequence,
{S;α}, is the application of a structure S to an alphabet, α;
and a “sequence of notes” (actually a sequence of pitches)
can be generated by applying a sequence to a reference
element. Compound sequences can be built up from se-
quences by using the sequence operators, ‘prime’ (pr), ‘ret-
rograde’ (ret), ‘inversion’ (inv) and ‘alternation’ (alt). Al-
phabets can be defined as sequences and ‘stacked’ hierar-
chically. For example, the C major scale would be defined
as a subset of the chromatic scale (denoted by ‘Cr’), using
the expression C = {{(∗, 2n2, n, 3n2, n);Cr}; c} and the
C major triad could be defined relative to the C major scale
by the expression {{(∗, 2n2, n3);C}; 1}.

The music encoding language presented in the next sec-
tion extends and generalises these notions of structures and
alphabets by re-casting them in geometric terms.

3. A GEOMETRIC MUSIC ENCODING
LANGUAGE

In the language proposed here, a passage of music is rep-
resented as a set of notes. A note, n, is an ordered pair,
n = 〈t, p〉, where t = t(n) is the onset time of the note
in tatums and p = p(n) is the note’s MIDI note number.
A note is therefore a point in note space which is the two-
dimensional Euclidean integer lattice in which the x co-
ordinate represents time in tatums and the y co-ordinate
represents pitch in terms of MIDI note number.

A vector, v, is an ordered 4-tuple, v = 〈t, p,Mt,Mp〉,
where t = t(v) is the time component of v, p = p(v) is the
pitch component of v, Mt = Mt(v) is the time mask se-
quence of v and Mp = Mp(v) is the pitch mask sequence
of v. t(v) and p(v) are integers. Mt(v) and Mp(v) are
mask sequences.

m(m, i)
1 if i = nil return nil
2 j ← o(m), k ← 0
3 if i ≥ o(m)
4 while j < i
5 k ← k + 1
6 j ← j + s(m)[(k − 1) mod |s(m)|]
7 else
8 while j > i
9 k ← k − 1
10 j ← j − s(m)[k mod |s(m)|]
11 if j = i return k
12 return nil

Figure 1. The function m(m, i), where m is a mask and i
is an integer or nil.

u(m, i)
1 if i = nil return nil
2 j ← o(m), k ← 0
3 if i ≥ 0
4 while k < i
5 k ← k + 1
6 j ← j + s(m)[(k − 1) mod |s(m)|]
7 else
8 while k > i
9 k ← k − 1
10 j ← j − s(m)[k mod |s(m)|]
11 return j

Figure 2. The function u(m, i), where m is a mask and i
is an integer or nil.

A mask sequence, M, is an ordered set of masks,
M = 〈m1,m2, . . . ,mk〉. A mask, m, is an ordered pair,
m = 〈o, s〉, where o = o(m) is an integer called the off-
set of the mask and s = s(m) is an ordered set of integers
called the structure of the mask. Each integer in a mask
structure is called an interval. Ifm is a mask and i is an in-
teger, then the function m(m, i) (see Figure 1) returns the
masked value of i for the maskm; and the function u(m, i)
(see Figure 2) returns the unmasked value of i for the mask
m.

Figure 3 illustrates how a mask is used to map a subset
of the integers onto the complete set of integers. In the up-
per part of Figure 3, the mask 〈3, 〈2, 2, 1, 2, 2, 2, 1〉〉 is ap-
plied. The mask defines a periodic repeated pattern of in-
tervals on the number line such that successive elements in
the pattern are mapped onto successive integers. For exam-
ple, the mask offset, 3, is mapped onto 0. The next integer
that does not map onto nil is 5, which therefore maps onto
1, and so on. This particular mask, 〈3, 〈2, 2, 1, 2, 2, 2, 1〉〉,
can be used to represent the E[major scale; and the struc-
ture of this mask, 〈2, 2, 1, 2, 2, 2, 1〉, can be used to repre-
sent the class of all major scales.

Figure 3 also illustrates that the output of one mask can
be given as input to another. Thus we can take the range
of the mask 〈3, 〈2, 2, 1, 2, 2, 2, 1〉〉 and apply the function
in Figure 1 to these values with the mask 〈4, 〈2, 2, 3〉〉 to
give the result shown in the lower part of Figure 3. In

Figure 3. Applying the mask sequence,
〈〈3, 〈2, 2, 1, 2, 2, 2, 1〉〉, 〈4, 〈2, 2, 3〉〉〉.

(a)

(b)

(c)

Figure 4. (a) The right-hand part of the first bar of
Chopin’s Étude, Op. 10, No. 5. (b) A plausible rhythmic
reduction of (a). (c) A plausible rhythmic reduction of (b).

this particular case, the mask 〈4, 〈2, 2, 3〉〉 can be used to
represent a dominant triad in a seven-note scale. Apply-
ing this to the output of the mask 〈3, 〈2, 2, 1, 2, 2, 2, 1〉〉
therefore gives a representation of the dominant triad in
E[major—i.e., the B[major triad. If the topmost number
line in Figure 3 represents MIDI note number, then MIDI
pitch 10 maps onto 4 in the middle number line, represent-
ing the fact that 10 is the fifth scale degree in E[major.
The number 4 in the middle line is then mapped onto 0 in
the lowest number line, representing the fact that this scale
degree is now the root of the dominant triad. Thus, the
dominant triad in E[major can be represented by the mask
sequence, 〈〈3, 〈2, 2, 1, 2, 2, 2, 1〉〉, 〈4, 〈2, 2, 3〉〉〉. This ex-
ample demonstrates that a mask sequence can be used to
represent the notion of hierarchically related pitch alpha-
bets proposed by Deutsch and Feroe [1]. For example, the
mask sequence 〈〈3, 〈2, 2, 1, 2, 2, 2, 1〉〉, 〈4, 〈2, 2, 3〉〉〉 cor-
responds to Deutsch and Feroe’s alphabet,

{{(∗, 2n2, n3); {{(∗, 2n2, n, 3n2, n);Cr}; e[}}; 5} .

However, unlike Deutsch and Feroe’s pitch alphabets,
mask sequences can also be used to represent rhythmic and
metric structures. For example, the crotchet metric level in
a 4/4 bar in which the tatum is a semiquaver can be repre-
sented by the mask sequence 〈〈0, 〈2〉〉, 〈0, 〈2〉〉〉. Similarly,
the dotted crotchet metric level in a 6/8 bar where the tatum
is a semiquaver can be represented by 〈〈0, 〈2〉〉, 〈0, 〈3〉〉〉.

Figure 4 (a) shows the right-hand part of the first bar
of Chopin’s Étude, Op. 10, No. 5. Figure 4 (b) and
(c) show plausible rhythmic reductions of the surface in
Figure 4 (a). If we use the triplet semiquaver as the tatum
duration, then the rhythm of Figure 4 (b) can be repre-
sented by the mask sequence 〈〈0, 〈2〉〉〉; and the rhythm
of Figure 4 (c) could be represented by the mask sequence
〈〈0, 〈2〉〉, 〈0, 〈2, 1, 3〉〉〉 (or 〈〈0, 〈4, 2, 6〉〉〉).

If M is a mask sequence and i is an integer, then the
function m(M, i) (see Figure 5) returns the masked value
of i for the mask sequence M (i.e., the result of applying

m(M, i)
1 k ← i, j ← 0
2 while j < |M|
3 k ← m(M[j], k)
4 j ← j + 1
5 return k

Figure 5. The function m(M, i) where M is a mask se-
quence and i is an integer.

u(M, i)
1 k ← i, j ← |M| − 1
2 while j ≥ 0
3 k ← u(M[j], k)
4 j ← j − 1
5 return k

Figure 6. The function u(M, i) where M is a mask se-
quence and i is an integer.

each of the masks in M, in turn, with an initial input value
of i). Conversely, the function u(M, i) in Figure 6 returns
the unmasked value of i for the mask sequence M.

If v is a vector, then Mt(v) and Mp(v) together de-
fine the space, M(v) = 〈Mt(v),Mp(v)〉, in which v is
defined. If a vector, v, is in note space, then the vec-
tor can be written as an ordered pair, 〈t(v),p(v)〉, with-
out specifying the time and pitch mask sequences (e.g.,
〈2, 3〉 = 〈2, 3, 〈〈0, 〈1〉〉〉, 〈〈0, 〈1〉〉〉〉). Given a note n1 and
a vector v, then we can translate n1 by v to give a new
note, n2. In order to do this, n1 must first be mapped onto
a point, q1, in the spaceM(v). q1 is then translated by v in
the usual geometric way to another point, q2, inM(v). Fi-
nally, q2 is mapped back onto a note, n2, in note space. If
n is a note and v is a vector, then this process of translation
can be accomplished using the algorithm in Figure 7.

Note that, if v is a vector in any space other than note
space, then there will not, in general, be a unique vector
in note space to which v is equivalent. For example, if
v = 〈1, 1, 〈〈0, 〈2, 3〉〉〉, 〈〈0, 〈3, 2〉〉〉, then Figure 8 shows
that there are 4 distinct vectors in note space to which v
might be equivalent, depending on the note that is being
translated. A consequence of this is that, in general, there is
no unique vector in any space that is equivalent to the sum
of two or more vectors that are in different spaces. The

T(n, v)
1 x1 ← m(Mt(v), t(n))
2 y1 ← m(Mp(v), p(n))
3 x2 ← x1 + t(v)
4 y2 ← y1 + p(v)
5 t2 ← u(Mt(v), x2)
6 p2 ← u(Mp(v), y2)
7 return 〈t2, p2〉

Figure 7. The function T(n, v) where n is a note and v is
a vector.

Figure 8. Equivalent vectors in note space for the vector,
v = 〈1, 1, 〈〈0, 〈2, 3〉〉〉, 〈〈0, 〈3, 2〉〉〉.

resultant vector in note space of applying two vectors in
succession to a note depends on the note itself. This means
that vectors in the sense defined here cannot be added to-
gether in the normal way. Instead, if a note is to be trans-
lated by the sum of two or more vectors, the vector sum
has to be explicitly stated.

Since the sum of two or more vectors is not necessarily
equal to a unique vector in any space, it must be considered
a different type of object from a vector. We therefore de-
fine a special type of object called a vector sum to represent
a sum of vectors. A vector sum is an ordered set of vec-
tors, since vector addition in the sense defined here is not
commutative. If we want to denote the sum of the vectors
v1, v2, . . . vk, applied in that order, then we simply write
v1+v2+ . . .+vk. If w is the vector sum v1+v2+ . . .+vk,
then |w| = k, w[j] = vj+1 and w =

∑k
i=1 vi. If w1 and

w2 are vector sums such that w1 = v1,1+v1,2+ . . .+v1,m
and w2 = v2,1 + v2,2 + . . . + v2,n, then w1 + w2 =
v1,1 + v1,2 + . . . + v1,m + v2,1 + v2,2 + . . . + v2,n. If v
is a vector, then w(v) returns the vector sum that contains
just v. In other words, w(v) typecasts a vector to a vec-
tor sum. If w is a vector sum, then we define w(w) = w.
To simplify the notation, we allow for vector sums to be
added to vectors without explicit typecasting. Thus if v is
a vector and w is a vector sum, then v + w = w(v) + w
and w + v = w +w(v).

As an example, suppose we have three mask sequences
and two vectors as follows

M0 = 〈〈0, 〈1〉〉〉 ,
M1 = 〈〈0, 〈2, 2, 1, 2, 2, 2, 1〉〉〉 ,
M2 = 〈〈0, 〈2, 2, 1, 2, 2, 2, 1〉〉, 〈0, 〈2, 2, 3〉〉〉 ,
v1 = 〈1, 1,M0,M1〉 and
v2 = 〈1, 1,M0,M2〉 .

T(n,w)
1 n2 ← n
2 for i← 0 to |w| − 1
3 n2 ← T(n2, w[i])
4 return n2

Figure 9. The function T(n,w) where n is a note and w is
a vector sum.

S(V)
1 if V = 〈〉 return {}
2 w ← w(V[0])
3 W ← {w}
4 for i← 1 to |V| − 1
5 w ← w + V[i]
6 W ←W ∪ {w}
7 return W

Figure 10. Function for computing the equivalent vector
sum set, W , for V , where V is either a vector sequence or
a vector sum sequence.

If we now translate the note 〈0, 0〉 by v1, then we get the
note 〈1, 2〉, that is T(〈0, 0〉, v1) = 〈1, 2〉. However, we
cannot then translate 〈1, 2〉 by v2 because 〈1, 2〉 is not in
the space in which v2 is defined. If n is a note and w is a
vector sum, then the function T(n,w) in Figure 9 can be
used to compute the note that results when n is translated
by w. T(〈0, 0〉, v1 + v2) is therefore undefined, whereas
T(〈0, 0〉, v2 + v1) = 〈2, 5〉, illustrating the fact that vector
addition is not commutative in this context.

A vector sequence is an ordered set of vectors and a
vector sum sequence is an ordered set of vector sums. For
any given vector sequence or vector sum sequence there
exists an equivalent vector sum set which can be computed
using the function in Figure 10. Any run of k identical
vectors, v, in a vector sequence can be encoded as kv. For
example, 〈v1, 3v2, v3〉 = 〈v1, v2, v2, v2, v3〉. A run of k
identical vector sums, w, in a vector sum sequence can
similarly be encoded as kw.

If V is a vector set, vector sum set, vector sequence or
vector sum sequence, then the function W(V), defined in
Figure 11 returns the vector sum set that is equivalent to V .

W(V)
1 if V is a vector sequence or vector sum sequence
2 W ← S(V)
3 else if V is a vector set
4 W ← ∅
5 for each v ∈ V
6 W ←W ∪ {w(v)}
7 else
8 W ← V
9 return W

Figure 11. Function for computing the equivalent vector
sum set, W , for V , where V is a vector sequence, a vector
sum sequence, a vector set or a vector sum set.

T(n,V)
1 W ←W(V)
2 N ← ∅
3 for each w ∈W
4 N ← N ∪ {T(n,w)}
5 return N

Figure 12. Function for translating a note, n, by a vec-
tor set, vector sequence, vector sum set or vector sum se-
quence, V .

T(N,V)
1 N2 ← ∅
2 for each n ∈ N
3 N2 ← N2 ∪ T(n,V)
4 return N2

Figure 13. Function for translating a note set, N , by a
vector set, vector sequence, vector sum set or vector sum
sequence, V .

A single note, n, or a set of notes,N , can be used to gen-
erate a set of notes by translating it by a vector set, a vector
sum set, a vector sequence or a vector sum sequence. Fig-
ures 12 and 13 show functions for carrying out these types
of translation. A vector sum set therefore acts as a gener-
alisation of Deutsch and Feroe’s concept of a “structure”.
Moreover, the combination of a note and a vector sum set
to generate a set of notes is a generalisation of Deutsch and
Feroe’s notion of combining a structure with a reference
pitch to generate a sequence of pitches.

The function P(X), defined in Figure 14 is a general-
isation of Deutsch and Feroe’s “prime” sequence opera-
tor, “pr”. The single argument, X, is an ordered set in
which each element is a vector set, vector sum set, vector
sequence or vector sum sequence. The first step in P(X)
is to convert each element X[i] into its equivalent vector
sum set (lines 1–3). The zero vector sum is then included
in each vector sum set, Y[i] (lines 4–6). P(X) then re-
turns a set containing a vector sum for each element of
the n-ary Cartesian product of the vector sum sets in Y
(lines 7–14). Note that if A and B are sequences such
that A = 〈a1, a2, . . . , am〉 and B = 〈b1, b2, . . . , bn〉 then
A⊕B = 〈a1, a2, . . . , am, b1, b2, . . . , bn〉.

Deutsch and Feroe’s “ret” and “inv” sequence opera-
tors correspond to reflection in the geometric language pro-
posed here: “ret” corresponds to reflection in an axis par-
allel to the pitch axis, while “inv” corresponds to reflection
in an axis parallel to the time axis. The functions,

Rp(v) = 〈t(v),−p(v),Mt(v),Mp(v)〉 and

Rt(v) = 〈−t(v),p(v),Mt(v),Mp(v)〉

reflect vectors in the time axis and pitch axis, respectively.
The functions in Figure 15 can be used to reflect vector
sums and the functions in Figure 16 can be used to reflect
sequences or sets of vectors or vector sums. Note that
there is no necessity for a function analogous to Deutsch
and Feroe’s “alt”, because the music is represented as a

P(X)
1 Y ← 〈〉
2 for i← 0 to |X| − 1
3 Y ← Y ⊕ 〈W(X[i])〉
4 v0 ← 〈0, 0〉
5 for i← 0 to |Y| − 1
6 Y[i]← Y[i] ∪ {w(v0)}
7 W1 ← Y[0]
8 for i← 1 to |Y| − 1
9 W2 ← ∅
10 for each w1 ∈W1

11 for each w2 ∈ Y[i]
12 W2 ←W2 ∪ {w1 + w2}
13 W1 ←W2

14 return W1

Figure 14. The function P(X) where X is an ordered set
in which each element is a vector set, vector sum set, vector
sequence or vector sum sequence.

Rp(w)
1 w2 ← w(Rp(w[0]))
2 for i← 1 to |w| − 1
3 w2 ← w2 +Rp(w[i])
4 return w2

Rt(w)
1 w2 ← w(Rt(w[0]))
2 for i← 1 to |w| − 1
3 w2 ← w2 +Rt(w[i])
4 return w2

Figure 15. Functions for reflection. w is a vector sum.

set of geometrical points rather than a sequence of sym-
bols. There is also no need for a scaling function to repre-
sent augmentation or diminution, since this can be accom-
plished using appropriate time mask sequences.

4. EXAMPLES

Figure 17 shows one of the examples used by Deutsch and
Feroe [1, p. 504] to illustrate their model. This pattern can
be encoded as T(n1,P(〈3v1〉, 〈v2〉)) where

n1 = 〈1, 60〉 ,
v1 = 〈1, 1,M1,M2〉 ,
v2 = 〈−1,−1〉 ,

M1 = 〈〈1, 〈2〉〉, 〈0, 〈3〉〉〉 and
M2 = 〈〈0, 〈2, 2, 1, 2, 2, 2, 1〉〉, 〈0, 〈2, 2, 3〉〉〉 .

Given that the function, U(S1, S2, . . . Sk) returns the
union of sets S1, S2, . . . Sk, then the pattern in Figure 4
can be encoded as follows:

U(T(n1,P(〈v1〉, 〈v2〉)),T(n2,P(〈v3〉)),T(n3,P(〈2v1〉, 〈v2〉)))

Rp(V)
1 W1 ←W(V)
2 W2 ← ∅
3 for each w ∈W1

4 W2 ←W2 ∪ {Rp(w)}
5 return W2

Rt(V)
1 W1 ←W(V)
2 W2 ← ∅
3 for each w ∈W1

4 W2 ←W2 ∪ {Rt(w)}
5 return W2

Figure 16. Functions for reflection. V is a vector set, vec-
tor sum set, vector sequence or vector sum sequence.

Figure 17. Example pattern used by Deutsch and Feroe [1,
p. 504].

where

n1 = 〈0, 90〉 ,
n2 = 〈4, 87〉 ,
n3 = 〈6, 85〉 ,
v1 = 〈1,−1,M1,M2〉 ,
v2 = 〈1, 1,M3,M2〉 ,
v3 = 〈1, 1,M3,M4〉 ,

M1 = 〈〈0, 〈2〉〉〉 ,
M2 = 〈m1, 〈0, s1〉〉 ,
M3 = 〈〈0, 〈1〉〉〉 ,
M4 = 〈m1, 〈3, s1〉〉 ,
m1 = 〈6, 〈2, 2, 1, 2, 2, 2, 1〉〉 and
s1 = 〈2, 2, 3〉 .

Figure 18 shows bars 320–322 from the first movement
of Beethoven’s Sonata in E[, Op. 7. This passage can be
encoded as U(A,B) where

A = T(n1,P(〈2v1〉, 〈5v2〉)) ,
B = T(n2,P(〈17〈1, 0〉〉)) ,
n1 = 〈0, 65〉 ,
n2 = 〈0, 58〉 ,
v1 = 〈0, 1,M1,M2〉 ,
v2 = 〈1,−1,M1,M2〉 ,

M1 = 〈0, 〈3〉〉 and
M2 = 〈〈3, 〈2, 2, 1, 2, 2, 2, 1〉〉, 〈6, 〈2, 2, 3〉〉〉 .

Figure 18. Bars 320–322 of Beethoven’s Sonata in E[,
Op. 7, 1st. mvt.

5. CONCLUSIONS AND FUTURE WORK

This paper has introduced a geometric coding language
for describing musical structure that extends Deutsch and
Feroe’s [1] model and recasts it in geometrical terms, al-
lowing rhythmic and pitch structure in polyphonic music to
be expressed as transformations on sets of points. The lan-
guage introduces the concepts of masks, mask sequences
and masked spaces which generalise Deutsch and Feroe’s
notion of hierarchical alphabets to the time dimension, al-
lowing rhythms and pitch collections to be represented par-
simoniously in a uniform way. A Java implementation of
the language and some extended encoding examples are
freely available online. 1

The primary design goal of the language described here
is that it should allow for the formulation of minimal-
length descriptions of musical works. There are many
ways in which the language could be developed further.
For example, decoupling vector co-ordinate values from
spaces could permit repetitions of vector co-ordinate value
patterns in different spaces to be represented more parsi-
moniously. There are also cases where structure might be
expressed more compactly if pitch class were decoupled
from pitch height. Such decoupling of information types
and other potentially useful modifications will be explored
in the near future. Longer-term goals include

• to develop algorithms for automatically inferring en-
codings from note sets,

• to develop appropriate measures for description
length and

• to explore the relationship between such an encod-
ing language and the way that musical structure is
represented cognitively and neurologically.

6. REFERENCES

[1] D. Deutsch and J. Feroe. The internal representation of pitch se-
quences in tonal music. Psychol. Rev., 88(6):503–522, 1981.

[2] K. Koffka. Principles of Gestalt Psychology. Harcourt Brace, New
York, 1935.

[3] E. L. J. Leeuwenberg. A perceptual coding language for visual and
auditory patterns. Am. J. Psychol., 84(3):307–349, 1971.

[4] D. Meredith, K. Lemström, and G. A. Wiggins. Algorithms for dis-
covering repeated patterns in multidimensional representations of
polyphonic music. J. New Music Res., 31(4):321–345, 2002.

[5] F. Restle. Theory of serial pattern learning: Structural trees. Psychol.
Rev., 77(6):481–495, 1970.

[6] H. A. Simon. Complexity and the representation of patterned se-
quences of symbols. Psychol. Rev., 79(5):369–382, 1972.

[7] H. A. Simon and R. K. Sumner. Pattern in music. In B. Kleinmuntz,
editor, Formal representation of human judgment. Wiley, New York,
1968.

[8] D. Temperley. Music and Probability. MIT Press, Cambridge, MA.,
2007.

[9] P. A. van der Helm and E. L. J. Leeuwenberg. Accessibility: A cri-
terion for regularity and hierarchy in visual pattern codes. J. Math.
Psychol., 35:151–213, 1991.

1 Java code available at http://tinyurl.com/bl7rfgd, longer
examples available at http://tinyurl.com/blqkgmq.

