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TOWARD A FORMAL COGNITIVE THEORY OF
HARMONIC PITCH STRUCTURE IN THE MUSIC OF
J.S. BACH

David Meredith

1. Pitch class simultaneity
representations and the aim of the
theory.

A. Pitch simultaneity representations.

A pitch simultaneity can be defined as a
segment of a score which has constant pitch
content throughout its extent and which differs
in pitch content from neighbouring segments.
A pitch simultaneity can be represented by a
pitch set and the location in the score at which
that pitch simultaneity begins. A score can
therefore be transformed by an effective
procedure into a pitch simultaneity
representation. Figure 1. (a) shows the pitch
simultaneity representation of the example in
Figure 1.(b).

B. Pitch class simultaneity representations.

A pitch class simultaneity can be defined as
a segment of a score which has constant pitch
class content throughout its extent and which
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differs in pitch class content from neighbouring
segments. A pitch class simultaneity can be
represented as a pitch class set and the location
in the score at which the pitch class
simultaneity begins. The pitch class
simultaneity representation of a score can be
derived by an effective procedure from the
pitch simultaneity representation by unifying
any adjacent pitch simultaneities with the same
pitch class content. Figure 2.(a) shows the
pitch class simultaneity representation of the
example in Figure 2.(b).

C. The aim of the theory.

The aim of the theory is to devise a formal
rule system capable of describing the pitch
class simultaneity representations of all and
only well-formed Bach Chorales. If this can be
achieved, the rule system will constitute a
formal theory of pitch class structure in Bach
Chorales. If this has really been achieved, it
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Figure 1. Pitch simultaneity representations.
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Figure 2. Pitch class simultaneity representations.
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will be possible to embody the theory in two

computer programs:

1. a program capable of analysing any real
Chorale in such a way as to show how it is
accountable for by the formal rule system
for pitch class simultaneity structure; and

2. a program capable of generating all and
only well-formed pitch class simultaneity
structures of the Chorale type.

II. Path-type pitch class sets.

A. Thirds space.

Thirds space is a two-dimensional space
best conceived as covering the surface of a
torus. There are 12 discrete points in this space
corresponding to the 12 octave equivalence
pitch classes in a 12-fold equal-tempered pitch
system. Each point in the space has four other
points which are proximal to it in the space.
For a pitch class, p, these four points represent
the pitch classes, (p + 4) mod 12, (p - 4) mod
12, (p + 3) mod 12 and (p - 3) mod 12. Thirds
space is isomorphic to the direct product of the
two cyclic groups, C3 and C4 (Balzano,
1980).

B. Definition of path-type pitch class sets.

Pitch class sets in thirds space can be
conceived in two different ways - one
“dynamic” and one “static”.

The “static” conception involves describing
regions or areas of the space which contain all
the pitch classes in the set which it is necessary
to represent. This leads to the representation of
the diatonic set as a “most compact region” of
the space containing seven different pitch
classes (Balzano, 1980). When this mode of
conception is adopted, the diatonic set has
unique properties which it does not share with
any other seven-member pitch class set.

The “dynamic” mode of conception
involves moving through the space collecting
pitch classes. When this mode of representation
is adopted, a special type of seven-member
pitch class set can be defined. If a path is taken
through thirds space such that:

1. exactly one complete circuit is made around
the major circumference of the torus;

2. exactly one complete circuit is made around
the minor circumference of the torus; and

3. no pitch class is passed through more than
once until the starting pitch class is again
reached on completion of both circuits

described in 1 and 2;
then only four distinct transpositional
equivalence types of pitch class set are
generated and only three distinct inversional
and transpositional equivalence types of pitch
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class set are generated. Pitch class sets which
fall into these categories are called path-type
sets in this study.

The minor harmonic, minor melodic
ascending and major scales represent three of
the four transpositional equivalence path-type
sets and all of the inversional and
transpositional equivalence path-type sets. The
fourth transposmonal equlvalence type set can
be represented by a “major harmonic” scale,
(0 2,4,5,7,8,11), or as an inversion of the
minor harmomc scale.

This would therefore seem to provide a
formal definition of the category of pitch class
sets which can provide the pitch class substrate
of all the standard tonal scales which have
emerged in music theory from an intuitive
study.of tonal music.

C. Path-type pitch class sets as pitch class
simultaneity transition supersets.

There is no formal or computable theory of
how “scales” are manifested in the structure of
tonal music although many partial “theories”
have emerged (for example, Rameau, 1771%
Schenker, 1935/79; Lerdahl and Jackendof
1983). On studying the pitch class simultaneity
representations of several Bach Chorales it has
been possible to posit two hypotheses
concerning the manner in which path-type pitch
class sets appear to constrain the pitch structure
of the style of music represented by the Chorale
genre.

If sets S1, S2, S3 and S4 are the sets
corresponding to the first four pitch class
simultaneities in a piece then for each pitch
class simultaneity transition,

Sn'>a*_1_, ‘S]\%-)

a pitch class 51mu1tanclty transition set can be
defined, oy
TSn@Sn & SI'H-].'

Each pitch class simultaneity, Sp, will be
involved in two such transitions (unless it is the
first or last simultaneity in the piece), TS, and
TSn-1. The first path-type set structure
hypothesis is that for each pitch class
simultaneity, Sy, at least one of TSy, TS;.; will
be a subset of at least one path-type set. The
second path-type set structure hypothesis is that
it is possible to interpret the path-type set
structure of a well-formed Chorale in such a
way that it is never necessary to change the
operational path-type set by more than one
pitch class.
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III. Harmonic cores and their roots.

A. Well-formed harmonic cores and their roots.

It is useful to define a well-formed
harmonic core type set as a set which is
transpositionally or inversionally equivalent to
the pitch class set (C,E flat, G) - that is, all
major and minor triads. It is also useful to
define the root of an harmonic core so that in
the transpositional equivalence classes
represented by the sets, (0,3,7) and (0,4,7) the
root in each case is 0.

B. Three levels of pitch class simultaneity

superset.

It is useful to define three levels of pitch
class simultaneity superset:

1. the pitch class simultaneity set itself
(simultaneity set, S);

2. the smallest connected region along the
operational path-type set which contains the
pitch class simultaneity set (smallest
connected superset, SCS); and

3. if the SCS contains less than two harmonic
cores, a number of implied supersets
forming connected regions along the
operational path-type set which are
formable from the SCS by extension of it
by only one member along the operational
path-type set in either direction and only
then if by doing so, the number of
harmonic cores in the new set is greater
than in the SCS (extended connected
superset, ECS).

C. The implied harmonic cores of a pitch class
simultaneity set.

For each level of pitch class simultaneity
superset, a number of implied harmonic cores
can be defined. These are those core-type
subsets of the pitch class simultaneity superset
at any one of the three levels. A loose
hypothesis can be formulated as follows: that
the “stability” of a pitch class simultaneity is
inversely related to the number of harmonic
cores which are strongly implied by the pitch
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class simultaneity set. Another loose
hypothesis can be formulated as follows: that
for a given S, the harmonic cores implied by
the S are more strongly implied than those
implied by the possible SCSs which are in turn
more strongly implied than those implied by the
possible ECSs.

D. The need for well-formedness rules for the
harmonic core structure of Bach Chorales.

It is my belief that the foregoing path-type
set structure theory needs to be supplemented
by a system of rules constraining the harmonic
core root structure of a Chorale in order that the
aim of the theory may be achieved. I have
devised several such rule systems and tested
them on real Chorales with varying success. In
two cases, a complete harmonic core root
structure theory has been formulated which in
combination with the foregoing path-type set
structure theory is capable of providing a
complete generative pathway to the pitch class
simultaneity structure of all the test Chorales.
However, earlier stages in this generative
pathway do not seem to give rise necessarily to
perceptually more salient aspects of the
structure and so I have found it necessary to
discard these theories and continue the search
for a rule system capable of describing the
harmonic core root structure of the Chorale
type pitch class simultaneity representation.
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