
CriticalEd: A Tool for Assisting with the Creation of Critical Commentaries

Caspar Mølholt Kjellberg
Aalborg University

mail@caspark.com

David Meredith
Aalborg University

dave@create.aau.dk

ABSTRACT

The best text method is commonly applied among music
scholars engaged in producing critical editions. In this
method, a comment list is compiled, consisting of variant
readings and editorial emendations. This list is maintained
by inserting the comments into a document as the changes
are made. Since the comments are not input sequentially,
with regard to position, but in arbitrary order, this list must
be sorted by copy/pasting the rows into place—an error-
prone and time-consuming process. Scholars who pro-
duce critical editions typically use off-the-shelf music no-
tation software such as Sibelius or Finale. It was hypothe-
sized that it would be possible to develop a Sibelius plug-
in, written in Manuscript 6, that would improve the criti-
cal editing work flow, but it was found that the capabili-
ties of this scripting language were insufficient. Instead,
a 3-part system was designed and built, consisting of a
Sibelius plug-in, a cross-platform application, called Crit-
icalEd, and a REST-based solution, which handles data
storage/retrieval. A prototype has been tested at the Dan-
ish Centre for Music Publication, and the results suggest
that the system could greatly improve the efficiency of the
critical editing work flow.

1. INTRODUCTION

The best text method [1] is commonly applied in the cre-
ation of critical music editions by publishers such as the
Danish Centre for Music Publication (DCM) 1 . In this
method, the editor selects a primary source from the avail-
able historic material, based on a judgement of relative
quality. Any necessary changes are implemented in the
final document using that source as base. A list of com-
ments is compiled by the editor, consisting of variant read-
ings and editorial emendations (see Figure 1). Currently,
this comment list is maintained manually by inserting the
respective comments into a separate text document as the
changes are made in the score. Since the comments are not
input sequentially, with regard to position in the score, but
in an arbitrary order, this comment list must be sorted by
bar number and part by copy/pasting the rows into place—

1 http://www.kb.dk/en/nb/dcm

Copyright: c©2014 Caspar Mølholt Kjellberg and David Mered-

ith. This is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

an error-prone and time-consuming process since a sub-
stantial score may require thousands of comments.

Figure 1. An excerpt from the comment list for DCM’s
edition of Carl Nielsen’s Symphony No. 1 (Op. 7). The
comments are sorted by bar and part. The part names can
be looked up in DCM’s official list of instrument name ab-
breviations. As an example, ‘vl.1’ corresponds to 1st vio-
lin. The letters in bold indicate the individual sources used
during the editing process.

Figure 2. A example of the comment list format that is
currently sent to the typesetting company.

These shortcomings in the current work flow motivated
the development of a software solution that would im-
prove the efficiency of the process of creating and editing
a critical commentary. In particular, the editors desired a
link between the notation software and the comment list,
making it possible to look up the individual comments in
the score, helping them determine whether the respective
changes have actually been implemented. In the future,
the architecture of the system will also be able to support
embedding the variant readings and emendations in MEI
format [2]. Since the development of MEI has been heav-
ily motivated by musical scholars who work with critical

mailto:mail@caspark.com
mailto:dave@create.aau.dk
http://www.kb.dk/en/nb/dcm
http://creativecommons.org/licenses/by/3.0/


editing, MEI includes many features relevant to the topic.
It is also an open format, and it is already used in DCM’s
MerMEId [3, 4], a system for storing metadata about musi-
cal works. By presenting this data accordingly, it would be
possible to take a step towards fully multidimensional, dig-
ital critical editions [5], in which the user is able to select
and even specify his or her own customized view on the
source material. In this paper, we present the design, de-
velopment and evaluation of our software solution, named
CriticalEd.

2. SYSTEM DESIGN AND DESIGN PARADIGM

Figure 3. The structure of the CriticalEd system.

As our primary purpose is to produce a tool that can
be used at DCM, our proposed solution to the problem
of creating and maintaining critical commentaries is a 3-
part system, consisting of a Sibelius [6] plug-in, written
in Manuscript 6; a helper application, named CriticalEd;
and a REST-based [7] solution for data storage/retrieval
(see Figure 3). It would not have been possible to con-
struct such a system using only Sibelius’ own scripting
system, Manuscript, since it has no support for event han-
dling. Luckily, Manuscript has support for basic file in-
put/output operations, making it possible to communicate
with other applications through a command protocol. This
led to the idea that by making the requirements for the no-
tation software plug-in lightweight, it may be possible to
support more than one notation editor (e.g. Finale [8]).
This is a significant point, since different scholars and pub-
lishers may use different notation software. In order to be
able to support other notation software, the respective soft-
ware’s scripting language must support gathering bar and
staff name information, writing and reading files and in-
serting graphics in the score. It also needs to provide a
way to associate values with the graphic objects, if it is to
be possible to look up comments in the score. In order to
be able to support as many platforms as possible (and, by
extension, as many potential users as possible) it was de-
cided that an open, cross-platform approach to the design
problem had to be taken.

The helper application, CriticalEd, was written in JUCE
[9], a C++ library that supports multiple platforms and has
an extensive feature set. Because of its open nature, ex-
tremely large function set and large user base, it was cho-
sen to develop the REST interface for storing/retrieving
data from the database in PHP, using a MySQL database.
The web interface is written in HTML5.

3. INTERFACE DESIGN

The interface design is divided into three significant parts,
Sibelius, CriticalEd and a web-based interface for viewing
and editing the comment list.

Sibelius allows for mapping plug-ins to user-defined key-
board shortcuts. This is utilized to achieve tight integra-
tion with Sibelius. When the defined keyboard shortcut is
pressed, the command file is changed, causing the respec-
tive dialogue to pop up in front of Sibelius. The user selects
a passage in the score, then clicks the keyboard shortcut.
This causes the “Add Comment” dialogue to pop up, with
bar and part information already filled in, as can be seen
in Figure 4. The interface for editing individual comments
in the score has a similar design. The web interface is de-

Figure 4. The dialogue presented when adding a com-
ment. Information about the affected instruments and the
position has been automatically filled in based on the cur-
rent selection in Sibelius.

signed to be as transparent as possible, and it is written
in HTML5. In order to make the system easier for users
to adapt to, the structural layout of the data is made to be
a tabular layout that resembles that of the documents cur-
rently used by the staff at DCM (see Figure 5). In the fu-
ture, a more sophisticated view on the data will be designed
and implemented in HTML5.

4. INTER-PROGRAM COMMUNICATION

Since the Manuscript scripting language has basic file in-
put/output capabilities, we decided to design a lightweight
communications protocol around this. A repository direc-
tory is created, in which a set of files are created, one for
each type of command. Using the cross-platform, open-
source FileWatcher library (http://sourceforge.
net/projects/fwutilities/), a process running
on another thread then watches the repository for file oper-
ations. When a file operation is detected (e.g. “addCom-
ment.cmd” was changed), a message is sent to CriticalEd’s

http://sourceforge.net/projects/fwutilities/
http://sourceforge.net/projects/fwutilities/


Figure 5. A screenshot of the comment list currently gen-
erated by the PHP script. The first column shows the bar
number, the second column the part name and the third
column the actual comment text.

CommandInterpreter, which then takes the appropriate ac-
tion (e.g. launch the “Add Comment” dialogue).

The file is then read, inserting each token-separated com-
mand parameter into a string array. Depending on the type
of command, the parameters are passed on as needed. For
an “Add Comment” operation, this includes bar and part
data gathered by the plug-in from the current selection.

For some operations, it is necessary to confirm whether
the comment was actually added to the database, in order
to ensure consistency between the comment list and the
score. This means that the software is locked by the plug-
in while the operation is carried out in CriticalEd, check-
ing for changes to the response.cmd file. Upon finishing
the dialogue in CriticalEd, a corresponding message (e.g.
SUBMIT SUBMITTED, SUBMIT CANCELED or SUB-
MIT FAILED) is sent to Sibelius through response.cmd.
Before initiating the transaction, a check is made that a re-
sponse is not associated with the wrong command at any
time. The unique integer identifier of the comment is also
sent to Sibelius, which is added to the graphic objects used
for indication as a user parameter, which can later be used
to identify which comment indicators are associated with
which comments in the score.

5. PARSING DCM INSTRUMENT STRINGS

It is not possible to simply use the output from the plug-in
directly because DCM adhere to certain strict formatting
guidelines in their publications. The part string has to be
parsed and converted to an instrument abstraction in Criti-
calEd. An example of such a string could be “1 Clarinetto
(A) 2”, which is the data gathered from a staff containing
both the 1st and 2nd A clarinets in DCM’s edition of Peter
Heise’s Drot og Marsk [10]. More examples can be seen
in Figure 6. In total, four major instrument string variants
can be found in this particular work (see Table 1). Each
of these variants can also be found with additional infor-
mation added in parentheses, e.g. (Flauto piccolo) or (A),
indicating the transposition of the instrument.

In order to parse these strings, it is first determined which
of the four types the string belongs to by checking for
the conditions found in the second column of Table 1.
Then the string is checked for the “(” character, which

Figure 6. An example of some of the strings that were
output during the first prototype test at DCM.

would indicate that extra detail is also present in the string.
The length of the string between the parentheses is then
checked. If its length is only a single character, it is as-
sumed that it is transposition information. If it is longer,
the string is identified as an arbitrary detail string, such
as “Flauto piccolo”. Finally, all identified instruments per
staff are added. This is done for each staff.

Instrument(s) Identification Method
One numbered Last character is numeric.
Two numbered Numeric character at both ends.
One unnumbered No numeric characters present.
Two unnumbered Two concurrent space characters,

no numeric characters.

Table 1. The instrument string variants found in Drot og
Marsk [10].

6. IN-SCORE COMMENT INDICATION

The DCM staff desired clear visual in-score indication of
comments in Sibelius. It was discovered that it is possible
to add graphics to individual bars using Manuscript. This
is done by calling the AddGraphic method on the affected
bar object. The graphics must be in .TIFF format, and it is
possible to change the x- and y-offset and scaling factors.

In order to clearly indicate where comments have been in-
serted, sets of nine images are used, consisting of four cor-
ners and vertical and horizontal bar lines for the edges. An
example of a 2-by-2 comment can be seen in Figure 7. An
icon has also been designed for single bar comments. Sev-
eral sets of images have been generated, each in a different,
strong colour theme. If more than one comment begins at
a specific bar and part, the x-offset is changed, and another
image set is chosen. The indicators are inserted into the
score using a dynamic script, written in Manuscript 6.



Figure 7. A screenshot from Sibelius of the in-score in-
dicator graphics, here a 2-by-2 comment. Note that the
box is extended by vertical and horizontal lines if a larger
comment block is selected.

7. DATA STORAGE/RETRIEVAL

Data storage and retrieval is done using a REST-
based approach, meaning that all communication is done
with HTTP GET/POST/PUT/DELETE requests. The
comment-list data is stored in a MySQL database, with
storage and retrieval to and from this database being car-
ried out through a RESTful [7] interface written in PHP.
The MySQL database may very well be changed to an
XML-native database in a future revision, such as eXist-
db (http://www.exist-db.org). As both PHP and
JUCE have excellent facilities for processing XML, the
data is passed around in XML format to enable easy han-
dling. This is also done because, in future versions of the
software, we want to allow for the possibility of embed-
ding musical snippets into comments in MEI format.

8. EVALUATION

An ethnographic approach was taken during the evalua-
tion of the first prototype, which was used as a proof-of-
concept. The prototype was tested on the DCM staff, three
senior staff members and a student help. Everything was
recorded on audio for later transcription. The participants
were given the task of inserting 5 + 25 comments into the
score, using the CriticalEd system. The first five comments
were used for familiarizing the participant with the soft-
ware, the remaining 25 for the actual test. Initially, the
participant was given a short introduction to the control
scheme. Then, the participant was asked to begin inputting
the first five comments. Taking note of any annoyances
and comments expressed by the staff, the facilitator guided
the participant until the first five comments were input sat-
isfactory and then moved on to the larger set of comments.
The final stage was timed using a stopwatch.

The test resulted in a set of comments and observations
that could be interpreted to define a new set of require-
ments for the next prototype. Most of the changes were
fairly trivial, caused by the early stage of the software,
but there were also some important observations and com-
ments.

One participant noted that the instrument definitions were
messy and could be improved, a problem that was solved
by introducing parsing of the output strings from Sibelius.
Another user suggested that icons should be more visible,
in response to which the visual indication in Sibelius was
made larger and more colour-intensive. Another sugges-
tion was that the system could be used by music teach-
ers to evaluate and annotate written assignments involving
the writing of music. The potential of the system to be
used for this will be explored in future work. There were
also a number of comments from users that suggested that
the system was, broadly speaking, fulfilling its intended
purpose and could potentially improve work flow (e.g.,
“Marking scores works really well”, “Not a realistic repro-
duction of our work flow, but it is very exciting, and has
potential to improve our work flow.”)

9. CONCLUSIONS

Even though the system is currently at a rather immature
state, it was concluded, based on the test participants’ com-
ments from the first prototype test, that the taken approach
is indeed a valid way to tackle the problem of assuring
comment list consistency and improving the work flow
within teams of scholars creating critical music editions.
The information gathered at the next evaluation phase will
be used to improve the system further, leading, hopefully,
to deployment in the production process at the Danish Cen-
tre for Music Publication within the very near future. Hav-
ing achieved that goal, our next steps will be to (1) add sup-
port for other notation software packages (e.g., Finale), (2)
explore other possible applications of the software (e.g., as
an educational tool) and (3) work towards integrating Crit-
icalEd into a system for authoring fully multidimensional
critical editions.

Acknowledgements
David Meredith is partially funded by the EU FET
STREP collaborative project grant, “Learning to Create”
(Lrn2Cre8). The project Lrn2Cre8 acknowledges the fi-
nancial support of the Future and Emerging Technolo-
gies (FET) programme within the Seventh Framework Pro-
gramme for Research of the European Commission, under
FET grant number 610859.

10. REFERENCES

[1] J. Grier, The Critical Editing of Music: History,
Method and Practice. Cambridge: Cambridge Uni-
versity Press, 1996.

[2] MEI Council, “Music encoding initiative guide-
lines (release 2013, revision 2.1.0),” 2013, available
online at http://music-encoding.googlecode.com/files/
MEI Guidelines 2013 v2.1.0.pdf.

[3] S. Lundberg and A. T. Geertinger, “MerMEId: Meta-
data Editor and Repository for MEI Data,” 2013, http:
//labs.kb.dk/editor/. Accessed 1 April 2014.

http://www.exist-db.org
http://music-encoding.googlecode.com/files/MEI_Guidelines_2013_v2.1.0.pdf
http://music-encoding.googlecode.com/files/MEI_Guidelines_2013_v2.1.0.pdf
http://labs.kb.dk/editor/
http://labs.kb.dk/editor/


[4] A. T. Geertinger and L. Pugin, “MEI for bridging the
gap between music cataloguing and digital critical edi-
tion.” Die Tonkunst, vol. 5, no. 3, pp. 289–294, 2011.

[5] F. Wiering, T. Crawford, and D. Lewis, “Digital crit-
ical editions of music: A multidimensional model,”
in Modern Methods for Musicology: Prospects, Pro-
posals and Realities, T. Crawford and L. Gibson, Eds.
Farnham, UK: Ashgate, 2009, pp. 23–46.

[6] Avid, “Sibelius,” 2014, http://www.sibelius.com. Ac-
cessed 1 April 2014.

[7] R. Fielding, “Architectural styles and the design of
network-based software architectures,” Ph.D. disserta-
tion, University of California, Irvine, 2000.

[8] MakeMusic Inc., “Finale,” 2014, http://www.
finalemusic.com. Accessed 1 April 2014.

[9] J. Storer, “JUCE: Jules’ Utility Class Extensions,”
2014, http://www.juce.com. Accessed 1 April 2014.

[10] P. Heise, Drot og Marsk, N. B. Foltmann, P. Hauge,
N. Krabbe, and A. T. Geertinger, Eds. Copenhagen:
Edition·S/The Royal Library (Danish Centre for Music
Publication), 1878/2013, libretto by C. Richardt.

http://www.sibelius.com
http://www.finalemusic.com
http://www.finalemusic.com
http://www.juce.com

	 1. Introduction
	 2. System Design and Design Paradigm
	 3. Interface Design
	 4. Inter-program Communication
	 5. Parsing DCM instrument strings
	 6. In-score Comment Indication
	 7. Data storage/retrieval
	 8. Evaluation
	 9. Conclusions
	 10. References

