
Exact Cover Problem in Milton Babbitt’s
All-Partition Array

Brian Bemman and David Meredith(B)

Department of Architecture, Design and Media Technology, Aalborg University,
Rendsburggade 14, Aalborg, Denmark

{bb,dave}@create.aau.dk
http://www.create.aau.dk

Abstract. One aspect of analyzing Milton Babbitt’s (1916–2011) all-
partition arrays requires finding a sequence of distinct, non-overlapping
aggregate regions that completely and exactly covers an irregular matrix
of pitch class integers. This is an example of the so-called exact cover
problem. Given a set, A, and a collection of distinct subsets of this set,
S, then a subset of S is an exact cover of A if it exhaustively and exclu-
sively partitions A. We provide a backtracking algorithm for solving this
problem in an all-partition array and compare the output of this algo-
rithm with an analysis produced manually.

Keywords: Babbitt · Knuth · All-partition array · Exact cover · Com-
putational music analysis

1 Introduction

The exact cover problem is a constraint satisfaction problem known to be NP-
complete [5, p. 2]. It is defined as follows: given a collection of subsets, S, of a
set, A, an exact cover of A is a sub-collection, s, of S that exhaustively and
exclusively partitions A. The classic example of such a problem was provided by
Scott and Trotter in 1958 [7]. They found all ways to cover a chessboard with the
12 distinct, non-overlapping pentaminoes while leaving the center four squares
uncovered (see Fig. 1).

Following our definition above, the chessboard in Fig. 1 would be A, the
collection of 63 distinct pentaminoes would be S, and the 12 distinct pentaminoes
selected to cover the chessboard would be s.

The exact cover problem is typically solved using a greedy backtracking algo-
rithm that performs a depth-first search of the solution space [5, p. 2]. The back-
tracking process finds a complete solution to a problem by accumulating partial
solutions to a set of constraints. It selects the first of these partial solutions until
a complete solution is found, or, in the event that the constraints are no longer
satisfied by the currently selected partial solution, it returns to the previous
point and selects the next partial solution. It continues this process until either
a solution is found or it fails.
c© Springer International Publishing Switzerland 2015
T. Collins et al. (Eds.): MCM 2015, LNAI 9110, pp. 237–242, 2015.
DOI: 10.1007/978-3-319-20603-5 25



238 B. Bemman and D. Meredith

Fig. 1. An exact covering of part of a chessboard using 12 pentaminoes while leaving
the center four squares uncovered. As taken from [5, p. 2].

Fig. 2. The beginning of the projection of Babbitt’s Sheer Pluck.

2 All-Partition Array as Exact Cover

A significant number of Milton Babbitt’s (1916–2011) works are based on the
all-partition array [6], which is a sequence of distinct, non-overlapping aggregate-
forming regions that completely and exactly partition a matrix of pitch classes
called a projection. Construction of a six-part all-partition array results in an
irregular projection of six rows and 696 pitch classes that can be partitioned into
58 aggregate regions. Figure 2 shows the beginning of the projection of Babbitt’s
Sheer Pluck. A projection is not the musical surface but, rather, a framework
upon which the surface is based. Figure 3 illustrates the process of defining the
first three aggregate regions in this projection.

Note in Fig. 3(b) that the first region contains an aggregate represented as
a collection of row segments (from top to bottom) of length 3, 2, 1, 3, 1, and
2. We define an integer partition, denoted by IntPart(s1, s2, ..., sk), to be a
representation of an integer n =

∑k
i=1 si, as an unordered sum of k positive

integers. For example, if n = 12 and k = 6, then one possible integer par-
tition is IntPart(3, 3, 2, 2, 1, 1). We define an integer composition, denoted by
IntComp(s1, s2, ..., sk), to be a representation of an integer n =

∑k
i=1 si, as

(a) Area needing to
be covered.

(b) 1st aggregate
region.

(c) 2nd aggregate
region (dashed
lines).

(d) 3rd aggre-
gate region (dashed
lines). Area covered
completely.

Fig. 3. Process of forming a sequence of three aggregate regions in an excerpt from the
projection shown in Fig. 2.



Exact Cover Problem in Milton Babbitt’s All-Partition Array 239

an ordered sum of k positive integers. For example, if n = 12 and k = 6,
then IntComp(3, 3, 2, 2, 1, 1) �= IntComp(3, 2, 1, 3, 2, 1). We define a weak inte-
ger composition, WIntComp(s1, s2, ..., sk), to be a representation of an integer,
n =

∑k
i=1 si, as an ordered sum of k non-negative integers. For example, if

n = 12 and k = 6, then WIntComp(6, 6, 0, 0, 0, 0) is a weak integer composi-
tion. Thus, the first aggregate region in Sheer Pluck, shown in Fig. 3(b), repre-
sents the integer partition, IntPart(3, 3, 2, 2, 1, 1), and the integer composition,
IntComp(3, 2, 1, 3, 1, 2). We further define two relations, partitionally equivalent
and partitionally distinct. Two integer compositions, c and d, are partitionally
equivalent if and only if [c] = [d], where [c] and [d] denote the partitions con-
taining the compositions. Two integer compositions, c and d, are partitionally
distinct if and only if [c] �= [d].

Using our definitions above, the problem we pose with respect to the all-
partition array as an exact cover asks, “Given a universe of integer compositions
(when n = 12 and k = 6), denoted by S, and a projection of 696 pitch classes in
six rows, denoted by A, does there exist a sequence of 58 partitionally distinct,
and aggregate-forming integer compositions, s, that exactly covers A?” We call
this the projection cover problem. Our efforts to answer this question continue
work started by Bazelow and Brickle [2, pp. 282–283], that asked a similar ques-
tion of all-partition arrays in four parts. However, where their research sought
to construct a projection, this paper begins with a completed projection and, as
a method for musical analysis, seeks to efficiently reveal its all-partition array
structure by discovering how (or if) it can be partitioned.

3 Solving the Projection Cover Problem

Our proposed solution to the projection cover problem posed above, is the back-
tracking algorithm, BacktrackingBabbitt, shown in Fig. 4. This algorithm
takes a projection as input and returns a list of 58 partitionally distinct compo-
sitions chosen as partial solutions.

The algorithm begins in line 1 by computing a 6, 188 × 6 list of compositions
(in six parts), denoted by compositions. Lines 2–4 initialize cList[cnt ] to be an
empty list of 58 lists, position to be a 1× 6 vector of indices (one for each row in
projection), and cnt to be 1 (using 1-based indexing). Line 5 begins a while loop
where cnt is less than or equal to the number of required compositions, 58. First,
it checks to see whether cList[cnt ] has been computed (line 6). cList contains can-
didate compositions at each cnt . Candidate compositions are those compositions
that satisfy the constraints of a partial solution (i.e., are partitionally distinct and
form a region containing an aggregate).

If cList[cnt ] is empty (line 6), it has not been previously computed and so
it calls ParseProjection, which returns cList and currentComp (line 7).
currentComp is initialized by ParseProjection to be the first composition
in cList[cnt ] if cList[cnt ] is not returned empty. If, after ParseProjection,
cList[cnt ] remains empty, there are no candidate compositions at this cnt . It
must then backtrack, removing the previous composition from partialSolutions



240 B. Bemman and D. Meredith

Fig. 4. Pseudocode for implementation of BacktrackingBabbitt.

(lines 8–11). partialSolutions is a 58×6 list of candidate compositions at each
cnt selected by the algorithm to be a partial solution. If cList[cnt ] is not empty
(line 12), then the algorithm has found at least one candidate composition at this
cnt . The currentComp is stored in partialSolutions[cnt ] and both position
and cnt are incremented (lines 13–15). position is equivalent to counting from
1 a distance equal to the summation of like parts from each composition in
partialSolutions from 1 to cnt − 1. position is incremented at each cnt by
currentComp. In Fig. 3(d), partialSolutions currently holds 〈3, 2, 1, 3, 1, 2〉
and 〈3, 3, 3, 3, 0, 0〉 and so position would be 〈7, 6, 5, 7, 2, 3〉.

If the first check for whether cList is empty (line 6) returns false, cList[cnt ]
has already been computed. This means the algorithm has backtracked at some
point (line 16). It then attempts to select the next composition in cList[cnt ] by
incrementing the index of currentComp (line 17). If there is not a next com-
position here because this index exceeds the size of cList[cnt ] (line 18), it must
backtrack (lines 19–21). However, if there is another composition, it can proceed
(lines 23–25). It continues this until it returns a complete partialSolutions or
fails (line 26).

Figure 5 shows pseudocode for the ParseProjection function called in line
7 of BacktrackingBabbitt. ParseProjection begins by creating a copy
of compositions called comps (line 1). Next, it removes from comps com-
positions partitionally equivalent to those already selected as partial solutions
(line 2). It then loops through the rows and columns of comps (lines 4–6)
and initializes aggregate to be an empty set (line 5). Next, it finds jth row
segments in projection parsed by comps[i][j] using the distance measured
from position[j] to the sum of position[j] and comps[i][j]− 1. It stores these



Exact Cover Problem in Milton Babbitt’s All-Partition Array 241

Fig. 5. The ParseProjection function.

segments in aggregate (lines 7–8). After removing any duplicate integers from
aggregate (line 10), if aggregate is complete, it has found a candidate compo-
sition and saves this composition in cList[cnt ][k] (lines 10–12). The algorithm
then assigns currentComp to be the first composition in cList[cnt ] and returns
cList and currentComp (lines 13–14).

We conclude this section by providing the results of analyzing one of Babbitt’s
projections from both BacktrackingBabbitt and those found by a human
analyst. Figure 6(a) first shows the sequence of compositions found by a human
analyst to partition the projection shown in Fig. 2. For comparison, Fig. 6(b)
shows one of several sequences returned by BacktrackingBabbitt.

Fig. 6. Distinct sequences of compositions that partition the projection shown in Fig. 2
as found by a human analyst in (a) and returned by BacktrackingBabbitt in (b).
Note asterisks (*) indicate where the sequences differ.



242 B. Bemman and D. Meredith

4 Conclusion

In this paper we suggest that analyzing Milton Babbitt’s all-partition arrays
represents a special case of a constraint satisfaction problem called an exact
cover. We provide a backtracking algorithm called BacktrackingBabbitt as
a solution to this problem. This algorithm finds a sequence of 58 partitionally
distinct and aggregate-forming integer compositions that exactly covers a given
projection of 696 pitch class integers. We believe this algorithm is not only a more
efficient way (when compared to a human analyst) to perform this analytical task
for a work based on the all-partition array, but that it can be used to discover
alternative analyses to those offered previously by theorists.

Acknowledgments. The work reported in this paper was carried out as part of
the EC-funded collaborative project, “Learning to Create” (Lrn2Cre8). The Lrn2Cre8
project acknowledges the financial support of the Future and Emerging Technologies
(FET) programme within the Seventh Framework Programme for Research of the
European Commission, under FET grant number 610859.

References

1. Babbitt, M.: Set structure as a compositional determinant. J. Music Theor. 5, 72–94
(1987)

2. Bazelow, A.R., Brickle, F.: A partition problem posed by Milton Babbitt. Perspect.
New Music 14(2), 280–293 (1976)

3. Bemman, B., Meredith, D.: From analysis to surface: generating the surface of
Milton Babbitt’s Sheer Pluck from a parsimonious encoding of an analysis of its
pitch-class structure. In: The Music Encoding Conference, Charlottesville, VA, 20–
23 May 2014

4. Eger, S.: Restricted weighted integer compositions and extended binomial coeffi-
cients. J. Integer Seq. 16(13.1.3), 1–25 (1997)

5. Donald, K.: Dancing links. 22 February 2000. http://www-cs-faculty.stanford.edu/
uno/musings.html

6. Mead, A.: An Introduction to the Music of Milton Babbitt. Princeton University
Press, Princeton (1994)

7. Scott, D.S.: Programming a combinatorial puzzle. Technical report No. 1, Princeton
University Department of Electrical Engineering, Princeton, NJ, 10 June 1958


