
MILTON BABBITT’S
COMPOSITIONAL PROCESS:
A COMPUTATIONAL MODEL

Brian M. Bemman MT Colloquium

Milton Babbitt (1916–2011)

¨  Avant-garde composer of twelve-tone, atonal and
serial music – “beyond” tonal repertoire of Bach,
Mozart, etc.

¨  Sought mathematical methods of composition –
continuation of practices developed by Schoenberg

¨  Third period of compositional style notable for the
creation of the all-partition array structure

Purpose

¨  Musical analysis – description of the structure of a
musical piece

¨  Most efforts (by human or machine) take as input
the musical surface (i.e. score) and produce some
analysis

¨  This research represents efforts to do the reverse –
take as input an encoding of an analysis (i.e. the
all-partition array) and produce the musical surface

Basic Terminology

¨  Pitch class = set of all musical pitches a whole
number of octaves apart – C2, C3, C4, C5 etc…

¨  Pitch classes can be represented as integers modulo
12 – C = 0, C# = 1, D = 2 etc…

¨  An aggregate is a collection of all twelve pitch
classes.

¨  A tone row is some ordered set of the aggregate –
<0,11,6,5,4,8,1,9,2,10,7,3>

Compositional Process

•  6x8 Pitch-class
GRID of 48
tone rows

PC GRID

•  PC GRID +
outer-
aggregate
repeated pcs

PROJECTION
•  PROJECTION +

inner-
aggregate
repeated pcs

MUSICAL
SURFACE

Compositional Process

•  6x8 Pitch-class
GRID of 48
tone rows

PC GRID

•  PC GRID +
outer-
aggregate
repeated pcs

PROJECTION
•  PROJECTION +

inner-
aggregate
repeated pcs

MUSICAL
SURFACE

Compositional Process

•  6x8 Pitch-class
GRID of 48
tone rows

PC GRID

•  PC GRID +
outer-
aggregate
repeated pcs

PROJECTION
•  PROJECTION +

inner-
aggregate
repeated pcs

MUSICAL
SURFACE Integer Partitions

Compositional Process

•  6x8 Pitch-class
GRID of 48
tone rows

PC GRID

•  PC GRID +
outer-
aggregate
repeated pcs

PROJECTION
•  PROJECTION +

inner-
aggregate
repeated pcs

MUSICAL
SURFACE

All-partition array

Integer Partitions

PC GRID

R1,1 R1,2 R1,3 R1,4 R1,5 R1,6 R1,7 R1,8

R2,1 R2,2 R2,3 R2,4 R2,5 R2,6 R2,7 R2,8

R3,1 R3,2 R3,3 R3,4 R3,5 R3,6 R3,7 R3,8

R4,1 R4,2 R4,3 R4,4 R4,5 R4,6 R4,7 R4,8

R5,1 R5,2 R5,3 R5,4 R5,5 R5,6 R5,7 R5,8

R6,1 R6,2 R6,3 R6,4 R6,5 R6,6 R6,7 R6,8

6x8 grid of 48 tone rows = 576 pcs

PC GRID

R1,1 R1,2 R1,3 R1,4 R1,5 R1,6 R1,7 R1,8

R2,1 R2,2 R2,3 R2,4 R2,5 R2,6 R2,7 R2,8

R3,1 R3,2 R3,3 R3,4 R3,5 R3,6 R3,7 R3,8

R4,1 R4,2 R4,3 R4,4 R4,5 R4,6 R4,7 R4,8

R5,1 R5,2 R5,3 R5,4 R5,5 R5,6 R5,7 R5,8

R6,1 R6,2 R6,3 R6,4 R6,5 R6,6 R6,7 R6,8

6x8 grid of 48 tone rows = 576 pcs

Column 1 of PC GRID

Integer Partition vs. Integer Composition

There are 58
such integer
partitions.

There are
6,188 such
integer
compositions.

An integer partition is a representation of an integer n, as an
unordered sum of k positive integers. If n = 12 and k = 6, one
possible integer partition is

An integer composition is a representation of an integer n, as
an ordered sum of k positive integers.

The role of integer partitions in the all-
partition array

¨  Integer partitions are used to parse the PC GRID
into a sequence of uniquely “shaped” vertical
aggregates

¨  Must use all 58 integer partitions
¨  58 partitions requires 696 pcs
¨  But… PC GRID contains only 576 pcs
¨  In order to go from PC GRID to PROJECTION we

must insert 120 extra pcs…outer-aggregate
repeated pcs

PC GRID to PROJECTION

Column 1 of PC GRID
Column 1 cross-section of
PROJECTION

Pcs in bold = outer-aggregate repeated pcs

PC GRID to PROJECTION

Column 1 of PC GRID
Column 1 cross-section of
PROJECTION

Pcs in bold = outer-aggregate repeated pcs

Insert outer-aggregate pcs: Simple
case
¨  <3,2,1,3,1,2> = complete

aggregate
¨  <3,3,3,3,0,0> =

incomplete aggregate
¨  Missing 7 and duplicated 8
¨  Look to last positions of

blue for missing 7 and last
positions of orange for
duplicated 8

¨  Insert 7 and push 8
¨  Second row – <0,2,8>

becomes <7,0,2>

Insert outer-aggregate pcs: Simple
case
¨  <3,2,1,3,1,2> = complete

aggregate
¨  <3,3,3,3,0,0> =

incomplete aggregate
¨  Missing 7 and duplicated 8
¨  Look to last positions of

blue for missing 7 and last
positions of orange for
duplicated 8

¨  Insert 7 and push 8
¨  Second row – <0,2,8>

becomes <7,0,2>

Insert outer-aggregate pcs: Simple
case
¨  <3,2,1,3,1,2> = complete

aggregate
¨  <3,3,3,3,0,0> =

incomplete aggregate
¨  Missing 7 and duplicated 8
¨  Look to last positions of

blue for missing 7 and last
positions of orange for
duplicated 8

¨  Insert 7 and push 8
¨  Second row – <0,2,8>

becomes <7,0,2>

Insert outer-aggregate pcs: Simple
case
¨  <3,2,1,3,1,2> = complete

aggregate
¨  <3,3,3,3,0,0> =

incomplete aggregate
¨  Missing 7 and duplicated 8
¨  Look to last positions of

blue for missing 7 and last
positions of orange for
duplicated 8

¨  Insert 7 and push 8
¨  Second row – <0,2,8>

becomes <7,0,2>

?

Insert outer-aggregate pcs: Simple
case
¨  <3,2,1,3,1,2> = complete

aggregate
¨  <3,3,3,3,0,0> =

incomplete aggregate
¨  Missing 7 and duplicated 8
¨  Look to last positions of

blue for missing 7 and last
positions of orange for
duplicated 8

¨  Insert 7 and push 8
¨  Second row – <0,2,8>

becomes <7,0,2>

Insert outer-aggregate pcs: Simple
case
¨  <3,2,1,3,1,2> = complete

aggregate
¨  <3,3,3,3,0,0> =

incomplete aggregate
¨  Missing 7 and duplicated 8
¨  Look to last positions of

blue for missing 7 and last
positions of orange for
duplicated 8

¨  Insert 7 and push 8
¨  Second row – <0,2,8>

becomes <7,0,2>

Complete aggregate

Insert outer-aggregate pcs: Complex
case
¨  <2,0,0,0,4,6> =

incomplete aggregate
¨  Missing 0 and

duplicated 4
¨  Insert 0 and now

missing 10
¨  Insert 10 and now

missing 8
¨  Insert 8 and push

duplicated 4

?

Insert outer-aggregate pcs: Complex
case
¨  <2,0,0,0,4,6> =

incomplete aggregate
¨  Missing 0 and

duplicated 4
¨  Insert 0 and now

missing 10
¨  Insert 10 and now

missing 8
¨  Insert 8 and push

duplicated 4

Insert outer-aggregate pcs: Complex
case
¨  <2,0,0,0,4,6> =

incomplete aggregate
¨  Missing 0 and

duplicated 4
¨  Insert 0 and now

missing 10
¨  Insert 10 and now

missing 8
¨  Insert 8 and push

duplicated 4

Insert outer-aggregate pcs: Complex
case
¨  <2,0,0,0,4,6> =

incomplete aggregate
¨  Missing 0 and

duplicated 4
¨  Insert 0 and now

missing 10
¨  Insert 10 and now

missing 8
¨  Insert 8 and push

duplicated 4
Complete aggregate

Backtracking Babbitt algorithm

¨  For this partition, compute compositions
that produce an aggregate with < 5
duplicates = compmat

¨  Select first unused. Insert pcs to
complete aggregate.

¨  If successful, move to next partition and
repeat.

¨  If not successful, select next unused
composition and insert pcs.

¨  If no compositions left, backtrack and
try next composition then repeat. Partitions vector

<{3,3,2,2,1,1}, {3,3,3,3,0,0}, {6,4,2,0,0,0,}, …, >
<3,3,1,2,1,2>
<3,2,1,3,1,2>

compmat

Backtracking Babbitt algorithm

¨  For this partition, compute compositions
that produce an aggregate with < 5
duplicates = compmat

¨  Select first unused. Insert pcs to
complete aggregate.

¨  If successful, move to next partition and
repeat.

¨  If not successful, select next unused
composition and insert pcs.

¨  If no compositions left, backtrack and
try next composition then repeat. Partitions vector

<{3,3,2,2,1,1}, {3,3,3,3,0,0}, {6,4,2,0,0,0,}, …, >
<3,3,1,2,1,2>
<3,2,1,3,1,2>

compmat

Backtracking Babbitt algorithm

¨  For this partition, compute compositions
that produce an aggregate with < 5
duplicates = compmat

¨  Select first unused. Insert pcs to
complete aggregate.

¨  If successful, move to next partition and
repeat.

¨  If not successful, select next unused
composition and insert pcs.

¨  If no compositions left, backtrack and
try next composition then repeat. Partitions vector

<{3,3,2,2,1,1}, {3,3,3,3,0,0}, {6,4,2,0,0,0,}, …, >
<3,3,1,2,1,2> compmat empty
<3,2,1,3,1,2>

compmat

Backtracking Babbitt algorithm

¨  For this partition, compute compositions
that produce an aggregate with < 5
duplicates = compmat

¨  Select first unused. Insert pcs to
complete aggregate.

¨  If successful, move to next partition and
repeat.

¨  If not successful, select next unused
composition and insert pcs.

¨  If no compositions left, backtrack and
try next composition then repeat. Partitions vector

<{3,3,2,2,1,1}, {3,3,3,3,0,0}, {6,4,2,0,0,0,}, …, >
<3,3,1,2,1,2> compmat empty
<3,2,1,3,1,2>

compmat

Backtracking Babbitt algorithm

¨  For this partition, compute compositions
that produce an aggregate with < 5
duplicates = compmat

¨  Select first unused. Insert pcs to
complete aggregate.

¨  If successful, move to next partition and
repeat.

¨  If not successful, select next unused
composition and insert pcs.

¨  If no compositions left, backtrack and
try next composition then repeat. Partitions vector

<{3,3,2,2,1,1}, {3,3,3,3,0,0}, {6,4,2,0,0,0,}, …, >
<3,3,1,2,1,2>
<3,2,1,3,1,2>

compmat

What might these compositions sound
like? <2,2,2,2,2,2>|<6,6,0,0,0,0>

Compositional Process

•  6x8 Pitch-class
GRID of 48
tone rows

PC GRID

•  PC GRID +
outer-
aggregate
repeated pcs

PROJECTION
•  PROJECTION +

inner-
aggregate
repeated pcs

MUSICAL
SURFACE

58% of pcs accounted for *Future research*

