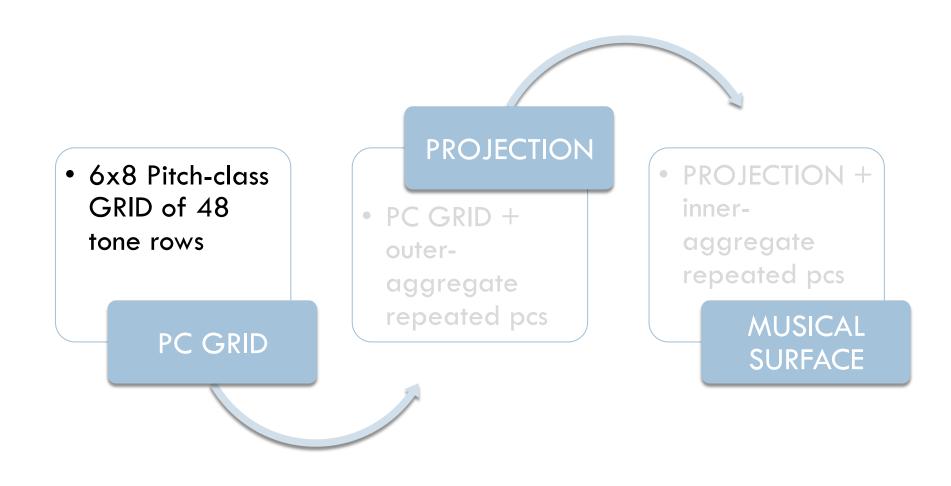
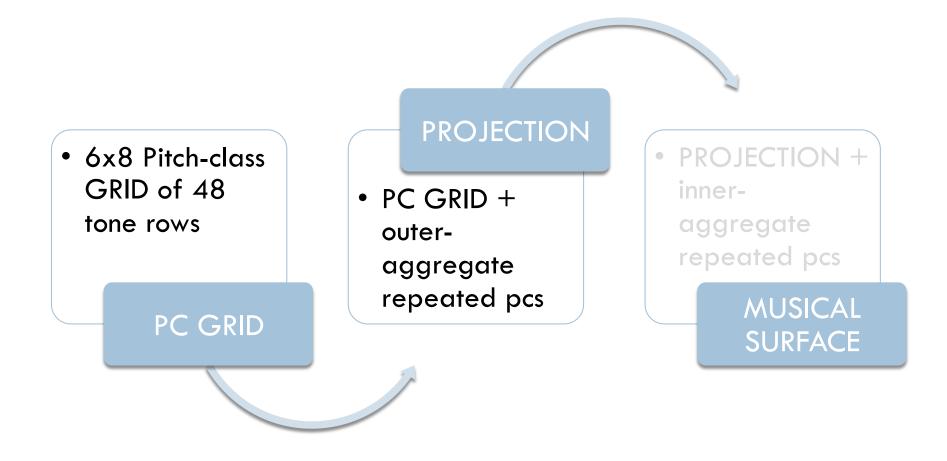
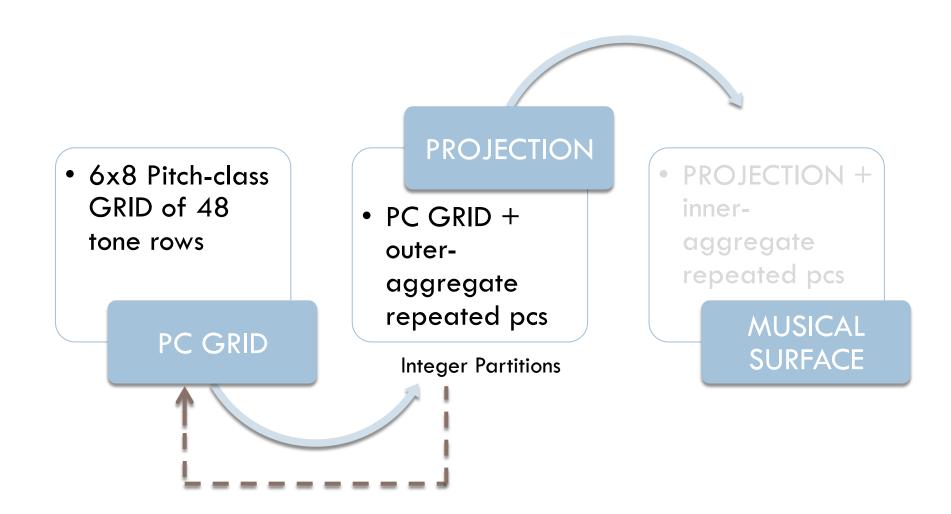
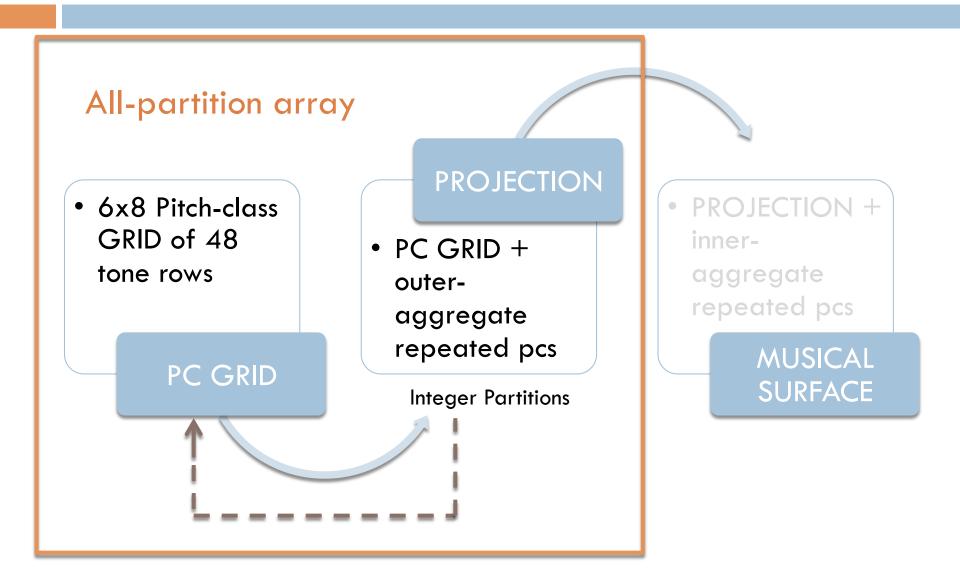
MILTON BABBITT'S COMPOSITIONAL PROCESS: A COMPUTATIONAL MODEL

Milton Babbitt (1916–2011)


- Avant-garde composer of twelve-tone, atonal and serial music – "beyond" tonal repertoire of Bach, Mozart, etc.
- Sought mathematical methods of composition –
 continuation of practices developed by Schoenberg
- Third period of compositional style notable for the creation of the all-partition array structure


Purpose


- Musical analysis description of the structure of a musical piece
- Most efforts (by human or machine) take as input the musical surface (i.e. score) and produce some analysis
- This research represents efforts to do the reverse –
 take as input an encoding of an analysis (i.e. the all-partition array) and produce the musical surface


Basic Terminology

- □ **Pitch class** = set of all musical pitches a whole number of octaves apart $-C_2$, C_3 , C_4 , C_5 etc...
- □ Pitch classes can be represented as integers modulo
 12 C = 0, C# = 1, D = 2 etc...
- An aggregate is a collection of all twelve pitch classes.
- □ A tone row is some ordered set of the aggregate <0,11,6,5,4,8,1,9,2,10,7,3>

PC GRID

6x8 grid of 48 tone rows = 576 pcs

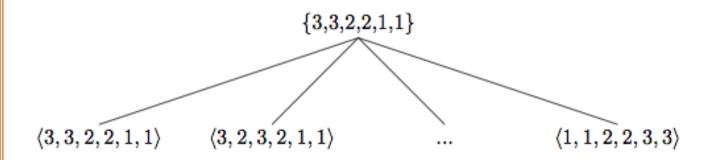
R _{1,1}	R _{1,2}	R _{1,3}	R _{1,4}	R _{1,5}	R _{1,6}	R _{1,7}	R _{1,8}
R _{2,1}	R _{2,2}	R _{2,3}	R _{2,4}	R _{2,5}	R _{2,6}	R _{2,7}	R _{2,8}
R _{3,1}	R _{3,2}	R _{3,3}	R _{3,4}	R _{3,5}	R _{3,6}	R _{3,7}	R _{3,8}
R _{4,1}	R _{4,2}	R _{4,3}	R _{4,4}	R _{4,5}	R _{4,6}	R _{4,7}	R _{4,8}
R _{5,1}	R _{5,2}	R _{5,3}	R _{5,4}	R _{5,5}	R _{5,6}	R _{5,7}	R _{5,8}
R _{6,1}	R _{6,2}	R _{6,3}	R _{6,4}	R _{6,5}	R _{6,6}	R _{6,7}	R _{6,8}

PC GRID

6x8 grid of 48 tone rows = 576 pcs

_							
R _{1,1}	R _{1,2}	R _{1,3}	R _{1,4}	R _{1,5}	R _{1,6}	R _{1,7}	R _{1,8}
R _{2,1}	R _{2,2}	R _{2,3}	R _{2,4}	R _{2,5}	R _{2,6}	R _{2,7}	R _{2,8}
R _{3,1}	R _{3,2}	R _{3,3}	R _{3,4}	R _{3,5}	R _{3,6}	R _{3,7}	R _{3,8}
R _{4,1}	R _{4,2}	R _{4,3}	R _{4,4}	R _{4,5}	R _{4,6}	R _{4,7}	R _{4,8}
R _{5,1}	R _{5,2}	R _{5,3}	R _{5,4}	R _{5,5}	R _{5,6}	R _{5,7}	R _{5,8}
R _{6,1}	R _{6,2}	R _{6,3}	R _{6,4}	R _{6,5}	R _{6,6}	R _{6,7}	R _{6,8}

Column 1 of PC GRID


11 4 3 5 9 10 1 8 2 0 7 6 67028110953411 56111709842310 29108430511167 0 5 4 6 10 11 2 9 3 1 8 7 $1\ 8\ 9\ 7\ 3\ 2\ 11\ 4\ 10\ 0\ 5\ 6$

Integer Partition vs. Integer Composition

There are 58 such integer partitions.

There are 6,188 such integer compositions.

An integer partition is a representation of an integer n, as an unordered sum of k positive integers. If n = 12 and k = 6, one possible integer partition is

An integer composition is a representation of an integer n, as an ordered sum of k positive integers.

The role of integer partitions in the allpartition array

- Integer partitions are used to parse the PC GRID into a sequence of uniquely "shaped" vertical aggregates
- Must use all 58 integer partitions
- □ 58 partitions requires 696 pcs
- □ But... PC GRID contains only 576 pcs
- In order to go from PC GRID to PROJECTION we must insert 120 extra pcs...outer-aggregate repeated pcs

PC GRID to PROJECTION

Column 1 of PC GRID

Column 1 cross-section of PROJECTION

11 4 3 5 9 10 1 8 2 0 7 6		$11\ 4\ 3$	$5 \ 9 \ 10$	10 1
67028110953411		6 7	7 0 2	
5 6 11 1 7 0 9 8 4 2 3 10		5	6 11 1	
2 9 10 8 4 3 0 5 11 1 6 7	/	2 9 10	$8\ 4\ 3$	
0 5 4 6 10 11 2 9 3 1 8 7		0		0 5 4 6
1 8 9 7 3 2 11 4 10 0 5 6		1 8		8 9 7 3 2 11

 $\langle 3, 2, 1, 3, 1, 2 \rangle \ \langle 3, 3, 3, 3, 0, 0 \rangle \ \langle 2, 0, 0, 0, 4, 6 \rangle \ |$

Pcs in bold = outer-aggregate repeated pcs

PC GRID to PROJECTION

Column 1 of PC GRID

Column 1 cross-section of PROJECTION

 $11\ 4\ 3\ 5\ 9\ 10\ 1\ 8\ 2\ 0\ 7\ 6$ $6\ 7\ 0\ 2\ 8\ 1\ 10\ 9\ 5\ 3\ 4\ 11$ $5\ 6\ 11\ 1\ 7\ 0\ 9\ 8\ 4\ 2\ 3\ 10$ $2\ 9\ 10\ 8\ 4\ 3\ 0\ 5\ 11\ 1\ 6\ 7$ $0\ 5\ 4\ 6\ 10\ 11\ 2\ 9\ 3\ 1\ 8\ 7$ $1\ 8\ 9\ 7\ 3\ 2\ 11\ 4\ 10\ 0\ 5\ 6$

11 4 3	5 9 10 ——	— 10 1
67	- 7 0 2	
5	6 11 1	
2 9 10	$8\ 4\ 3$	
0 —		— 0 5 4 6
18		8 9 7 3 2 11

$$\langle 3, 2, 1, 3, 1, 2 \rangle \ \langle 3, 3, 3, 3, 0, 0 \rangle \ \langle 2, 0, 0, 0, 4, 6 \rangle \ |$$

Pcs in bold = outer-aggregate repeated pcs

- <3,2,1,3,1,2> = complete aggregate
- <3,3,3,3,0,0>= incomplete aggregate
- Missing 7 and duplicated 8
- □ Look to last positions of blue for missing 7 and last positions of orange for duplicated 8
- □ Insert 7 and push 8
- □ Second row <0,2,8> becomes <7,0,2>

```
11\ 4\ 3\ 5\ 9\ 10\ 1\ 8\ 2\ 0\ 7\ 6 6\ 7\ 0\ 2\ 8\ 1\ 10\ 9\ 5\ 3\ 4\ 11 5\ 6\ 11\ 1\ 7\ 0\ 9\ 8\ 4\ 2\ 3\ 10 2\ 9\ 10\ 8\ 4\ 3\ 0\ 5\ 11\ 1\ 6\ 7 0\ 5\ 4\ 6\ 10\ 11\ 2\ 9\ 3\ 1\ 8\ 7 1\ 8\ 9\ 7\ 3\ 2\ 11\ 4\ 10\ 0\ 5\ 6
```

- <3,2,1,3,1,2> = complete aggregate
- <3,3,3,0,0>= incomplete aggregate
- ☐ Missing 7 and duplicated 8
- □ Look to last positions of blue for missing 7 and last positions of orange for duplicated 8
- □ Insert 7 and push 8
- □ Second row <0,2,8> becomes <7,0,2>

```
11\ 4\ 3\ 5\ 9\ 10\ 1\ 8\ 2\ 0\ 7\ 6 6\ 7\ 0\ 2\ 8\ 1\ 10\ 9\ 5\ 3\ 4\ 11 5\ 6\ 11\ 1\ 7\ 0\ 9\ 8\ 4\ 2\ 3\ 10 2\ 9\ 10\ 8\ 4\ 3\ 0\ 5\ 11\ 1\ 6\ 7 0\ 5\ 4\ 6\ 10\ 11\ 2\ 9\ 3\ 1\ 8\ 7 1\ 8\ 9\ 7\ 3\ 2\ 11\ 4\ 10\ 0\ 5\ 6
```

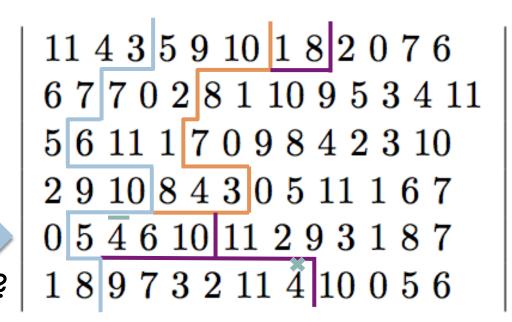
- <3,2,1,3,1,2> = complete aggregate
- <3,3,3,0,0> =
 incomplete aggregate
- Missing 7 and duplicated 8
- Look to last positions of blue for missing 7 and last positions of orange for duplicated 8
- □ Insert 7 and push 8
- □ Second row <0,2,8> becomes <7,0,2>

```
11\ 4\ 3\ 5\ 9\ 10\ 1\ 8\ 2\ 0\ 7\ 6 6\ 7\ 0\ 2\ 8\ 1\ 10\ 9\ 5\ 3\ 4\ 11 5\ 6\ 11\ 1\ 7\ 0\ 9\ 8\ 4\ 2\ 3\ 10 2\ 9\ 10\ 8\ 4\ 3\ 0\ 5\ 11\ 1\ 6\ 7 0\ 5\ 4\ 6\ 10\ 11\ 2\ 9\ 3\ 1\ 8\ 7 1\ 8\ 9\ 7\ 3\ 2\ 11\ 4\ 10\ 0\ 5\ 6
```

- <3,2,1,3,1,2> = complete aggregate
- <3,3,3,0,0>= incomplete aggregate
- Missing 7 and duplicated 8
- Look to last positions of blue for missing 7 and last positions of orange for duplicated 8
- □ Insert 7 and push 8
- □ Second row <0,2,8> becomes <7,0,2>

```
11 4 3 5 9 10 1 8 2 0 7 6
67028110953411
         7\ 0\ 9\ 8\ 4\ 2\ 3\ 10
2 9 10 8 4 3 0 5 11 1 6 7
0 5 4 6 10 11 2 9 3 1 8 7
1\ 8\ 9\ 7\ 3\ 2\ 11\ 4\ 10\ 0\ 5\ 6
```

- <3,2,1,3,1,2> = complete aggregate
- <3,3,3,0,0>= incomplete aggregate
- Missing 7 and duplicated 8
- Look to last positions of blue for missing 7 and last positions of orange for duplicated 8
- □ Insert 7 and push 8
- □ Second row <0,2,8> becomes <7,0,2>


```
11\ 4\ 3\ 5\ 9\ 10\ 1\ 8\ 2\ 0\ 7\ 6 6\ 7\ 0\ 2\ 8\ 1\ 10\ 9\ 5\ 3\ 4\ 11 5\ 6\ 11\ 1\ 7\ 0\ 9\ 8\ 4\ 2\ 3\ 10 2\ 9\ 10\ 8\ 4\ 3\ 0\ 5\ 11\ 1\ 6\ 7 0\ 5\ 4\ 6\ 10\ 11\ 2\ 9\ 3\ 1\ 8\ 7 1\ 8\ 9\ 7\ 3\ 2\ 11\ 4\ 10\ 0\ 5\ 6
```

- <3,2,1,3,1,2> = complete aggregate
- <3,3,3,3,0,0>= incomplete aggregate
- Missing 7 and duplicated 8
- Look to last positions of blue for missing 7 and last positions of orange for duplicated 8
- □ Insert 7 and push 8
- Second row <0,2,8>becomes <7,0,2>

```
11 4 3 5 9 10 1 8 2 0 7 6
6 7 7 0 2 8 1 10 9 5 3 4 11
5 6 11 1 7 0 9 8 4 2 3 10
2 9 10 8 4 3 0 5 11 1 6 7
0 5 4 6 10 11 2 9 3 1 8 7
1 8 9 7 3 2 11 4 10 0 5 6
```

Complete aggregate

- = <2,0,0,0,4,6> = incomplete aggregate
- Missing 0 and duplicated 4
- □ Insert 0 and now missing 10
- □ Insert 10 and now missing 8
- □ Insert 8 and push duplicated 4

- = <2,0,0,0,4,6> = incomplete aggregate
- Missing 0 and duplicated 4
- Insert 0 and now missing 10
- □ Insert 10 and now missing 8
- □ Insert 8 and push duplicated 4

```
11 4 3 5 9 10 1 8 2 0 7 6
6 7 7 0 2 8 1 10 9 5 3 4 11
5 6 11 1 7 0 9 8 4 2 3 10
2 9 10 8 4 3 0 5 11 1 6 7
0 0 5 4 6 10 11 2 9 3 1 8 7
1 8 9 7 3 2 11 4 10 0 5 6
```

- <2,0,0,0,4,6> = incomplete aggregate
- Missing 0 and duplicated 4
- Insert 0 and now missing 10
- Insert 10 and now missing 8
- □ Insert 8 and push duplicated 4

```
11\ 4\ 3\ 5\ 9\ 10\ 10\ 1\ 8\ 2\ 0\ 7\ 6 6\ 7\ 7\ 0\ 2\ 8\ 1\ 10\ 9\ 5\ 3\ 4\ 11 5\ 6\ 11\ 1\ 7\ 0\ 9\ 8\ 4\ 2\ 3\ 10 2\ 9\ 10\ 8\ 4\ 3\ 0\ 5\ 11\ 1\ 6\ 7 0\ 0\ 5\ 4\ 6\ 10\ 11\ 2\ 9\ 3\ 1\ 8\ 7 1\ 8\ 9\ 7\ 3\ 2\ 11\ 4\ 10\ 0\ 5\ 6
```

- = <2,0,0,0,4,6> = incomplete aggregate
- Missing 0 and duplicated 4
- Insert 0 and now missing 10
- Insert 10 and now missing 8
- Insert 8 and push duplicated 4

```
11 4 3 5 9 10 10 1 8 2 0 7 6
6 7 7 0 2 8 1 10 9 5 3 4 11
5 6 11 1 7 0 9 8 4 2 3 10
2 9 10 8 4 3 0 5 11 1 6 7
0 0 5 4 6 10 11 2 9 3 1 8 7
1 8 8 9 7 3 2 11 4 10 0 5 6
```

Complete aggregate

- For this partition, compute compositions that produce an aggregate with < 5 duplicates = compmat
- Select first unused. Insert pcs to complete aggregate.
- If successful, move to next partition and repeat.
- If not successful, select next unused composition and insert pcs.
- ☐ If no compositions left, backtrack and try next composition then repeat.

- For this partition, compute compositions that produce an aggregate with < 5 duplicates = compmat
- Select first unused. Insert pcs to complete aggregate.
- If successful, move to next partition and repeat.
- If not successful, select next unused composition and insert pcs.
- ☐ If no compositions left, backtrack and try next composition then repeat.

- For this partition, compute compositions that produce an aggregate with < 5 duplicates = compmat
- Select first unused. Insert pcs to complete aggregate.
- If successful, move to next partition and repeat.
- If not successful, select next unused composition and insert pcs.
- ☐ If no compositions left, backtrack and try next composition then repeat.

$$<\{3,3,2,2,1,1\}, \{3,3,3,3,0,0\}, \{6,4,2,0,0,0,\}, ..., >$$
compmat
$$<3,3,1,2,1,2> compmat empty$$

$$<3,2,1,3,1,2>$$

- For this partition, compute compositions that produce an aggregate with < 5 duplicates = compmat
- Select first unused. Insert pcs to complete aggregate.
- If successful, move to next partition and repeat.
- If not successful, select next unused composition and insert pcs.
- If no compositions left, backtrack and try next composition then repeat.

$$<\{3,3,2,2,1,1\}, \{3,3,3,3,0,0\}, \{6,4,2,0,0,0,\}, \ldots, >$$
 compmat $<3,3,1,2,1,2>$ compmat empty $<3,2,1,3,1,2>$

- For this partition, compute compositions that produce an aggregate with < 5 duplicates = compmat
- Select first unused. Insert pcs to complete aggregate.
- If successful, move to next partition and repeat.
- If not successful, select next unused composition and insert pcs.
- If no compositions left, backtrack and try next composition then repeat.

What might these compositions sound like? <2,2,2,2,2,2 | <6,6,0,0,0,0>

 6x8 Pitch-class GRID of 48 tone rows

PC GRID

PROJECTION

PC GRID +
 outer aggregate
 repeated pcs

 PROJECTION + inneraggregate repeated pcs

MUSICAL SURFACE

58% of pcs accounted for

Future research